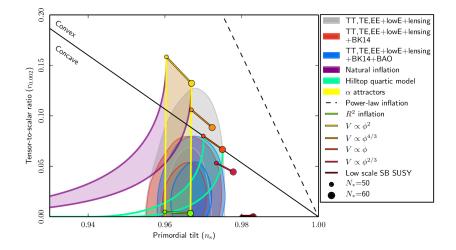
Radiation exchange in primordial gravitational waves

Atsuhisa Ota (Chongqing U.)

Based on arXiv:2310.19071 with Yi Wang and Misao Sasaki

September 14, 2024


1/25

We computed thermal corrections to primordial gravitational wave (GW) spectrum during radiation dominant universe. The super-horizon primordial GWs are enhanced.

*Questions

- Superhorizon conservation of GWs?
- **2** What is the observational implications?

Cosmological perturbations in the sky

(ロ) (日) (王) (王) (王) (2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

GWs in Radiation dominated universe

*Linearized Einstein equation with hydrodynamical approximation:

$$h_{ij}'' + 2\frac{a'}{a}h_{ij}' - \partial_k^2 h_{ij} = 0.$$

- Massless.
- **2** Constant superhorizon modes.
- **③** Radiation drives the background dynamics only.
- \bullet h_{ij} is a free field in the FLRW background.

UV model of radiation dominant universe

*RD universe realized by massless scalar field χ with a local thermal state ρ_{χ} .

$$S_{\chi} = -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_{\mu} \chi \partial_{\nu} \chi$$
$$= \frac{1}{2} \int d^4x \ a^2 (\chi'^2 - \delta^{ij} \partial_i \chi \partial_j \chi) + \cdots,$$

1 Energy momentum tensor of χ .

$$T_{\chi,\mu\nu} = \partial_{\mu}\chi\partial_{\nu}\chi - \frac{g_{\mu\nu}}{2}g^{\rho\sigma}\partial_{\rho}\chi\partial_{\sigma}\chi$$

2 Matching condition:

$$T_{\gamma,\mu\nu} = \operatorname{Tr}[\hat{\varrho}_{\chi}\hat{T}_{\chi,\mu\nu}] \to P = \frac{\rho}{3}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

5/25

*Individual χ feels gravity and vice versa:

$$S_{\chi} = -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_{\mu}\chi \partial_{\nu}\chi$$
$$= \dots + \frac{1}{2} \int d^4x \ a^2 h^i{}_k \delta^{kj} \partial_j \chi \partial_i \chi$$
$$- \frac{1}{4} \int d^4x \ a^2 h^i{}_k h^k{}_l \delta^{lj} \partial_j \chi \partial_i \chi \dots$$

•

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

6/25

*Radiation χ and h_{ij} are coupled.

Hydrodynamical approx.	(A simple) UV theory
h_{ij} is free	h_{ij} couples to χ .

Something might be missing in the standard cosmological perturbation theory based on hydrodynamical approximation.

*Hydrodynamical approximation:

$$\mathrm{EoM}(\hat{h},\hat{\chi})=0\rightarrow\mathrm{Tr}\left[\hat{\varrho}\mathrm{EoM}(\hat{h},\hat{\chi})\right]_{\chi}=0.$$

イロト 不得 トイヨト イヨト 二日

8/25

* \hat{h} is regarded as external field when averaging χ . \rightarrow Mean field approximation for χ . *Consider effective mass of ϕ in

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi - g\phi^{2}\chi,$$

*Wrong answer:

$$m_{\mathrm{eff.},\phi}^2 = 2g\langle\chi\rangle?$$

9/25

*Correct answer: find the pole of the 1-loop propagator.

*Hydrodynamics v.s. PT in interaction picture.

*Interaction Hamiltonian:

$$H_{\rm int} = \epsilon H_{\hat{h}\hat{\chi}\hat{\chi}} + \epsilon^2 H_{\hat{h}\hat{h}\hat{\chi}\hat{\chi}} + \mathcal{O}(\epsilon^3)$$

*Operator evolution[Weinberg 2008]:

$$h = \hat{h} + \lambda \int_{\tau_{\mathrm{R}}}^{\tau} d\tau_1 [H_{\mathrm{int},1}, \hat{h}]$$

+ $\lambda^2 \int_{\tau_{\mathrm{R}}}^{\tau} d\tau_1 \int_{\tau_{\mathrm{R}}}^{\tau_1} d\tau_2 [H_{\mathrm{int},2}, [H_{\mathrm{int},1}, \hat{h}]] + \cdots$

<ロト < 回 ト < 三 ト < 三 ト < 三 ト 三 の < () 11 / 25 *Inflationary adiabatic vacuum & local equilibrium density operators:

$$\varrho^{\mathrm{tot}} \sim \varrho_{h,\mathrm{adi.}} \otimes \varrho_{\chi,eta}$$

*Power spectrum:

$$\operatorname{Tr}[\varrho^{\text{tot}}h_{\mathbf{q}}h_{\mathbf{q}'}] = P_h(q)(2\pi)^3\delta(\mathbf{q}+\mathbf{q}')$$

*Feynman graphs in the in-in formalism:

$$\begin{split} \Theta(\tau)[\partial\hat{\chi},\partial\hat{\chi}] &= \underline{\qquad}\\ \Theta(\tau)[\hat{h},\hat{h}] &= \underbrace{\qquad}\\ \partial\hat{\chi} &= \underbrace{\qquad}\\ \hat{h} &= \underbrace{\qquad}\\ \int d^4x &= \bullet \end{split}$$

< □ ト < □ ト < 臣 ト < 臣 ト < 臣 ト 三 の Q (~ 13 / 25 *Single scattering with 3-pt interaction:

$$\delta \hat{h}_{ij}^{(1,2)}(x) = i \int^{x^0} dy^0 [\hat{H}_{h\chi\chi}(y^0), \hat{h}_{ij}(x)] =$$

*Gravitational waves are produced by (random motion of) radiation.

*Single scattering with 4-pt interaction:

$$\delta \hat{h}_{ij}^{(1,3)}(x) = i \int^{x^0} dy^0 [\hat{H}_{hh\chi\chi}(y^0), \hat{h}_{ij}(x)] =$$

1

15/25

*The effective mass.

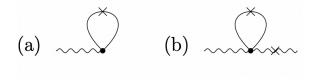
Evolution of h_{ij}

*Double scattering of 3-pt interaction:

$$\delta \hat{h}_{ij}^{(2,3)}(x) = i \int^{x^0} dy^0 i \int^{y^0} dz^0 \left[\hat{H}_{h\chi\chi}(z^0), \left[\hat{H}_{h\chi\chi}(y^0), \hat{h}_{ij}(x) \right] \right]$$
$$= \underbrace{}$$

*Not included in hydrodynamics (beyond MFA). *I named this radiation exchange.

GW spectrum up-to 1-loop order

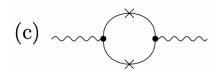

(b) (c) (d) (e) (a)

・ロト ・ 同ト ・ ヨト ・ ヨト

17/25

- (a) Tadpole
- (b) Effective mass
- (c) Induced GWs
- (d) Radiation exchange
- (e) Tree level spectrum

*General covariance prohibits the mass of graviton:


- The effective mass from (b): $m_{\text{eff}}^2 = 2H^2$.
- (a) is perturbed by the local thermal state (extra h_{ij} from coordinate transf.).

イロト イロト イヨト イヨト 二日

18/25

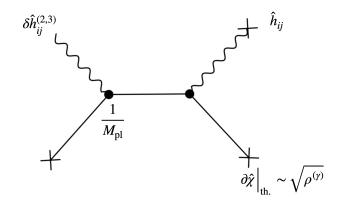
• The perturbed tadpole cancels the effective mass.

*Interactions of plasma generates GWs from nothing.

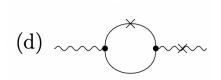
- Causal production happens only in the subhorizon scale.
- The IR contribution is zero: $\sim q^3$ (Poissonian)
- IGW does not affect the super horizon primordial GWs.

*Initial spectrum is enhanced by exchanging radiation.

(d)
$$(\ln \frac{\tau}{\tau_{\rm R}} - 1 + \frac{\tau_{\rm R}}{\tau}) P_h^{\rm tree}$$


- Reheating time (initial time of RD): τ_R
- Thermal correction dominates over the tree graph: $\ln \frac{\tau}{\tau_{\rm R}} = \mathcal{O}(10)$
- IR (super horizon) spectrum varies.

*Radiation exchange is weird because:


- **(**) Super horizon spectrum enhances. Violation of causality?
- ② Graviton interactions should be tiny. Why do we have a big effect?
- **③** Is perturbation theory valid? \rightarrow Work in progress!

Why big?

*Usually, gravitons are optically thin. Why the interaction looks big?

*BG Friedmann equation: $3M_{\rm pl}^2 H^2 = \rho_{\gamma}$.

*Diagrams are constructed from causal propagators (based on a local Lagrangian).

- Interactions between GWs and fundamental fields in a radiation fluid are considered.
- These interactions have been missing in the standard framework where the mean-field approximation (MFA) is implicit.
- **③** We went beyond the MFA using the in-in formalism.
- The inflationary GW power spectrum is modified at 1-loop order by the thermal effect, even at super horizon scale.
- 1-loop effect is comparable to the tree level since innumerous thermally excited fields contribute.

- Any possibility of cancellation?
- **2**-loop graphs?
- **3** The same effect on ζ ?
- Isocurvature?