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Summary & Contents

Summarizing statements

Our understanding of Classical Gravity, encoded in General Relativity,
relies on Riemannian Geometry.

Quantum Theory and (first order) Riemannian Geometry are
incompatible.

Second order geometry is a minimal extension that makes
Riemannian geometry compatible with quantum theory.

Extensions to kth-order geometry with k ∈ N are possible.
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Incompatibility between Geometry
and Quantum Theory

A path integral analysis
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Quantum Mechanics

Replace single path by (uncountably) many paths weighted by P

P on Ω induces µ = P ◦ X−1 on L2(Ω), such that dµX = e
i S(X )

ℏ DX

Note: Picture can be generalized to (relativistic) field theory.

Problem: Existence1 of probability measure P
Question: What do the paths look like?

1Albeverio, Høegh-Krohn, Mazzucchi, Lecture Notes in Math. 523, Springer (2008).
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Existence of P
Euclidean theory
Wick rotation:

1 Change of signature: Lorentzian → Euclidean
2 Change of diffusion: Quantum → Statistical

Wick rotation → Wiener integral2

⇒ X becomes a Wiener process (a.k.a. Brownian Motion)
⇒ P exists in the Euclidean Theory

Lorentzian Theory
P does not exist (in a minimal formulation).3

Existence of P can be achieved by complexifying the tangent bundle:4

TM =
⊔

x∈M
TxM→

⊔
x∈M

TxMC

2M. Kac, Trans. Amer. Math. Soc. 65 (1949).
3R. Cameron, J. Math. and Phys. (1960); Yu. Daletskii, Russ.Math.Surv. (1962).
4M. Pavon, J. Math. Phys. 41 (2000); FK, Eur. Phys. J. Plus 138 (2023).
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Property I: Rough Paths

X (ω) ∈ C0 (continuous everywhere), X (ω) /∈ C1 (nowhere differentiable)
More precisely,5 X (ω) is α-Hölder continuous only for α < 1/2:

X (ω) ∈ Cα(R,M) , α ∈ [0, 1/2) .

Path integral formulation Canonical Quantization

Roughness of paths
time−ordering6←→ Non-commutativity

5c.f. e.g. Mörters & Peres, Cambridge UP (2012).
6R.P. Feynman, Rev. Mod. Phys. 20 (1948).
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Property II: Worldlines → Worldsheets

Classical theory: dim{X (τ) : τ ∈ [0,T ]} = 1

Quantum Theory:7 dimHausdorff{X (τ, ω) : τ ∈ [0,T ], ω ∈ Ω} = 2.

Note: Upper bound is set by α-Hölder regularity:

dimHausdorff{X (τ, ω) : τ ∈ [0,T ], ω ∈ Ω} ≤ α−1
sup

7c.f. e.g. Mörters & Peres, Cambridge UP (2012).
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Implications of roughness

Paths are non-differentiable:

lim
dτ→0

Xµ(τ + dτ)− Xµ(τ)

dτ
= ±∞ .

By taking an expectation value, we obtain well-defined limits

vµ+ = lim
dτ→0

〈
Xµ(τ + dτ)− Xµ(τ)

dτ

〉
,

vµ− = lim
dτ→0

〈
Xµ(τ)− Xµ(τ − dτ)

dτ

〉
defining independent velocities along the path.
Similarly, one can define the second order object

vµν2 = lim
dτ→0

〈
[Xµ(τ + dτ)− Xµ(τ)][X ν(τ + dτ)− X ν(τ)]

dτ

〉
,

which is the velocity of the variance.
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Rough paths

Given ω ∈ Ω, X (ω) : R→M and f , g ∈ C2(M,C), h ∈ C2(C,C)
We define the increment

d+X (τ) := X (τ + dτ)− X (τ) ,

d−X (τ) := X (τ)− X (τ − dτ) .

Then, since X (ω) ∈ C1/2−ϵ(R,M), one has

d±X
µ = bµ± dτ1/2 + vµ± dτ + o(dτ) ,

d±X
µd±X

ν = bµ±b
ν
± dτ + o(dτ) ,

d±f = ∂µf d±X
µ±1

2
∂ν∂µf d±X

µd±X
ν + o(dτ) ,

d±f d±g = ∂µf ∂νg d±X
µd±X

ν + o(dτ) .

⇒ modification of Leibniz rule and chain rule:

d±(f g) = f d±g + g d±f±d±f d±g ,

d±(h ◦ f ) = (h′ ◦ f ) d±f±
1

2
(h′′ ◦ f )d±f d±f .

F.J. Kuipers (LMU München) Second Order Geometry QG Corfu, Sep. 2024 9 / 25



Change of basis

We may also define the increments

d0X (τ) := X (τ + dτ/2)− X (τ − dτ/2) ,

d20X (τ) := X (τ + dτ)− 2X (τ) + X (τ − dτ) .

Then

d0X (τ) =
b+ + b−√

2
dτ1/2 + v◦ dτ + o(dτ) ,

d20X (τ) = (b+ − b−) dτ
1/2 + 2 v⊥ dτ + o(dτ) ,

where

v◦ =
v+ + v−

2
, v⊥ =

v+ − v−
2

.

Remark: b± can be related to creation/annihilation operators using the
Wiener-Itô chaos expansion8

8P. Biane, Stoch. Process. Their Appl. 120 (2010).
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Rough paths and Geometry

First order geometry: differential forms are given by

df (x) = ∂µf dx
µ .

Riemannian Geometry: the line element is assumed9 to be given by

ds2 = gµν dx
µdxν .

For rough paths, this does not encode all necessary information.
Regularity requirement: α = 1, while α < 1/2.
⇒ Incompatibility between quantum theory and geometry

Solution: Second order geometry

d2f = ∂µf d2x
µ +

1

2
∂ν∂µf dx

µdxν ,

ds2 = gµνd2x
µd2x

ν + gµ(κλ)d2x
µdxκdxλ + g(ρσ)νdx

ρdxσd2x
ν

+ g(ρσ)(κλ)dx
ρdxσdxκdxλ .

9B. Riemann (1868).
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Introduction to
Second Order Geometry10

10P.A. Meyer, Springer Berlin (1981); L. Schwartz, Montreal University Press (1984);
M. Emery, Springer Berlin (1989); Q. Huang, J.C. Zambrini, J. Nonlinear Sci. (2023).
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Second order geometry

Given a manifoldM and x ∈M, the (co)tangent spaces are extended:

TxM→ T2,xM∼= TxM⊕ Sym(TxM⊗ TxM)

Vectors v ∈ T2,xM and forms α ∈ T ∗
2,xM are represented as

v = vµ ∂µ +
1

2
vµν2 ∂µ∂ν ,

α = αµ d2x
µ +

1

2
αµν dx

µdxν .

The duality pairing is given by

⟨α, v⟩ = αµv
µ +

1

2
αµνv

µν
2 .

Dimensions

dim(M) = n = 4 ,

dim(TxM) = n = 4 ,

dim(T2,xM) =
n(n + 3)

2
= 14 .
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Coordinate transformations

Structure group of T2M is the Itô group:

G I
n = GL(n,R)⋉ Lin(Rn ⊗ Rn,Rn) ,

such that (v , v2) ∈ T2M transforms under xµ → x̃µ as(
ṽµ

ṽρσ2

)
=

(
∂x̃µ

∂xν
1
2

∂2x̃µ

∂xκ∂xλ

0 ∂x̃ρ

∂xκ
∂x̃σ

∂xλ

)(
vν

vκλ2

)
.

⇒ vµ does not transform covariantly.
There exist covariant representations:

v̂µ = vµ +
1

2
Γµρσv

ρσ
2 ,

v̂µν2 = vµν2 .

where Γ is the first order Christoffel symbol.

A similar analysis applies to forms.
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Lorentz symmetry

Under the Lorentz symmetry, second order vectors transform as(
ṽa

ṽbc2

)
=

(
Λa

d eµe∂µΛ
a
f

0 Λb
eΛ

c
f

)(
vd

v ef2

)
where Λ ∈ SO+(3, 1) and

va = v̂µe a
µ − vµb2 ω a

µ b

vbc2 = vµν2 e b
µ e c

ν

with e the polyad (vielbein) and ω the spin connection.

⇒ Lorentz symmetry is deformed by the off-diagonal term.

Deformations vanish in two limits:

No fluctuations: ℏ→ 0⇒ v2 → 0;

Flat space(time): G → 0⇒ ∂Λ→ 0.
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Second order Metric

Inner product on the tangent spaces:

gµνv
µvν → Gµν v̂

µv̂ν +
1

2
Gµ(κλ)v̂

µv̂κλ2 +
1

2
G(ρσ)ν v̂

ρσ
2 v̂ν2 +

1

4
G(ρσ)(κλ)v̂

ρσ
2 v̂κλ2

where

(
Gµν Gµ(κλ)

G(ρσ)ν G(ρσ)(κλ)

)
=

gµν 0

0
ℓ−2
s

(
gρκgσλ + gρλgσκ − 2(1−a)

n gρσgκλ

)
+b (Rρκσλ +Rρλσκ)


ℓs a small length scale;

a ∈ R;
n = dim(M);

b is related to the Pauli-DeWitt term:
B.S. DeWitt, Rev. Mod. Phys. 29 (1957) ⇒ b = 1

3 ,
B.S. DeWitt, Int. Ser. Monogr. Phys. 114 (2003) ⇒ b = 1

2 .
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Killing vectors

Lie derivative11 of a first order tensor along a second order vector field:

L(v ,v2)T = Lv̂T + vµν2

(
∇µ∇ν +R·

µ·ν
)
T

⇒ Killing equation12

∇(µk̂ν) = k̂ρσ2 Rµρνσ

→ For any diffeormorphism generated by (v , v2)

(gνρv̂
ρ∇µ + vρσ2 Rµρνσ)T

µν = 0 .

⇒ Gravitational anomaly as ∇µ⟨Tµν⟩ ≠ 0.
→ For any Killing vector one can define a conserved current

Ĵµ = k̂νT
µν =

(
kν +

1

2
Γνρσk

ρσ
2

)
Tµ

ν ⇒ ∇µĴ
µ = 0 .

11FK, JHEP 05 (2021); Q. Huang, J.C. Zambrini, J. Nonlinear Sci. (2023).
12FK, Springer Proc. Math. Stat. (2022).
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Implications and Extensions
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Path integral measure

Any physical theory must depend on the second order vectors
{(v+, v2), (v−, v2)} or {(v◦, v2), (v⊥, v2)}, such that

L(x , v)→ L(x , v◦, v⊥, v2)

Thus, the path integral measure is given by

dµ(X ) = e i
∫
L(x ,v◦,v⊥,v2)dτDX

On a flat space(time),

dµ(X ) = e i
∫
L(x ,v◦)dτe i

∫
L(x ,v⊥)dτe i

∫
L(x ,v2)dτDX ,

Hence, the new parts containing v⊥ and v2 only affect the normalization.

On curved space(times) one must consider the full measure, as v◦, v⊥
couple to v2.

F.J. Kuipers (LMU München) Second Order Geometry QG Corfu, Sep. 2024 19 / 25



Hamiltonian

The Hamiltonian is constructed through a second order Legendre
transform:13

H(x , p◦, ∂⊥, p2) = ⟨p◦, v◦⟩+ ⟨p⊥, v⊥⟩ − L(x , v◦, v⊥, v2)

Example for free particle:

H =
ε

2

[
gµν

(
p̂◦µp̂

◦
ν + p̂⊥µ p̂

⊥
ν

)
+

1

4
G (µν)(ρσ)p̂(2)µν p̂

(2)
ρσ +m2

]
Note:

One obtains a modified energy-momentum relation.

The Hamiltonian is quadratic in all momenta ⇒ it is bounded from
below.

Ostragradski’s theorem does not apply, as we consider dx
dτ ,

d2x
dτ ,

dxdx
dτ

instead of dx
dτ ,

d2x
dτ2

.
13Q. Huang, J.C. Zambrini, J. Nonlinear Sci. (2023)
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Field Theory

All analysis so far was for the single particle.
However, we can derive some implications for field theories:

A QFT on curved spacetime has a deformed Lorentz symmetry ↔
modified dispersion relations;

Deformations scale with ℏG = l2p .

Field theories are defined on the second order jet bundle
L(ϕ,∇ϕ)→ L(ϕ,∇ϕ,∇∇ϕ).
Ostragradski’s theorem is avoided ⇒ ghosts may be avoided.

⇒ Quadratic gravity may be both normalizable and ghost-free.
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Unification?

TxM→ T̃xM∼= TxM⊕ TxM⊕ Sym(TxM⊗ TxM)

dim(TxM) = n = 4 = (1, 3) ,

dim(T̃xM) = N =
n(n + 5)

2
= 18 =

{
(5, 13) if a > 0 ,

(6, 12) if a < 0 .

It has been suggested that n = 4 < N allows for unification of forces14

For N = 14, scenario with15 SO(1, 13) and16 SO(3, 11).

For N = 18, scenario with17 SO(1, 17) and18 SO(2, 16).

Unification in kth-order geometry.19
14Krasnov, Percacci, Class. Quantum Grav. 35 (2018).
15Percacci, Phys. Lett. B144 (1984); Chamseddine, Mukhanov, JHEP 03 (2016).
16Nesti, Percacci, Phys.Rev.D 81 (2010).
17Konitopoulos, Roumelioti, Zoupanos, Forthschr. Phys. 72 (2024).
18Roumelioti, Stefas, Zoupanos, Eur.Phys.J.C 84 (2024).
19Bies, arXiv:2406.06605 [math.DG] (2024).
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Extensions: non-commutative geometry

We have assumed a symmetric second order vector field, since

d2f = vµ∂µf +
1

2
vµν2 ∂ν∂µf .

By promoting ∂µ → Dµ with [Dµ,Dν ] ̸= 0, v2 =
dxµdxν

dτ is no longer
required to be symmetric. This imposes a spacetime non-commutativity
relation of the form

[xµ, xν ] = Bµν(x) .

We may also extend to infinite order geometry:

d2f = vµ∂µf +
1

2
vµν2 ∂ν∂µf +

1

6
vµνρ3 ∂ρ∂ν∂µ + ... .

This corresponds to studying non-continuous paths X /∈ C0. This can be
related to a space-time non-commutativity relation of the form20

[xµ, xν ] = Cµν
ρ (x) xρ .

20Arzano, FK, arxiv:2409.xxxxx (2024).
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Conclusions & Outlook
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Conclusions

Path integrals violate basic assumptions of Riemannian geometry
⇒ incompatibility between Quantum theory and Gravity;
Solution: Higher order Geometry.
Implication: dim(T̃xM) > dim(M) = 4.

Outlook I: Further development of 2nd-order geometry

Math: generalize concepts from 1st-order to 2nd-order geometry.
Physics: investigate consequences such as

Dynamical theory of gravity in 2nd-order geometry
Unification of gauge forces and gravity

...

Outlook II: Generalizations beyond 2nd-order geometry
Rougher paths: consider C1/k paths with k ∈ N

requires kth-order geometry.
k →∞ ⇒ [xµ, xν ] = Cµν

ρ xρ.

Non-symmetric v2 fields ⇒ [xµ, xν ] = Bµν

Sector (v◦, v⊥) ↔ generalized geometry?
...
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