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The Lagrange-Hamilton Formalism

Principle of Least Action

Classical mechanics of particle:

Newtonian Mechanics
Equations of motion are inserted axiomatically and involve forces as main ingredients
emerging from physics → calculation of trajectories.

Least action perspective
E.o.M. are not inserted axiomatically, potentials are considered the main ingredients.

Principle of least action:

From all possible trajectories
the particle chooses the one
that minimizes the action S :

S =

∫ t2

t1

L(q(t), q̇(t)) dt,

where L is the Lagrangian.
For simple cases, it is the dif-
ference between the kinetic
energy and the potential,
L = T − V
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The Lagrange-Hamilton Formalism

Euler-Lagrange Equations

Certainly it’s not the optimal way to proceed by calculating every possible trajectory and
choosing the one with the minimum action . It’s too difficult and time consuming. There
is another way:

We consider a variation δq(t) in the trajectory from q(t1) to q(t2).
In the minimum of S , the δS that corresponds to a δq, should vanish (δS = 0):

δS =

∫ t2

t1

(
∂L

∂q(t)
δq(t) +

∂L

∂q̇(t)
δq̇(t)

)
dt

Using:

δq̇(t) =
d(δq(t))

dt

the above equation gives:

δS =

∫ t2

t1

(
∂L

∂q(t)
δq(t) +

∂L

∂q̇(t)

d(δq(t))

dt

)
dt

Then, by integrating the second term by parts, we obtain:

δS =

∫ t2

t1

δq(t)

(
∂L

∂q(t)
− d

dt

∂L

∂q̇(t)

)
dt +

[
∂L

∂q̇(t)
δq(t)

]t2
t1
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The Lagrange-Hamilton Formalism

However, given that every possible trajectory begins and ends at the moment t1 and t2
respectively, we have δq(t1) = δq(t2) = 0. So:

δS =

∫ t2

t1

δq(t)

(
∂L

∂q(t)
− d

dt

∂L

∂q̇(t)

)
dt = 0

The above equation should be valid for an arbitrary δq(t), so:

∂L

∂q(t)
− d

dt

∂L

∂q̇(t)
= 0

This is the Euler- Lagrange Equation . Its solution is the real trajectory of the particle.

As a simple example we take the Lagrangian L = T − V = 1
2
mẋ2 − V (x).

Therefore, the E-L equation becomes:

−∂V (x)

∂x
− 1

2
m

d

dt

∂ẋ2

∂ẋ
= 0

But

−∂V (x)

∂x
= F and

1

2
m

d

dt

∂ẋ2

∂ẋ
=

1

2

d

dt
2mẋ = mẍ

Finally we obtain:
F = mẍ

which is Newton’s second law of motion.
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The Lagrange-Hamilton Formalism

Field Mechanics

We shall have in mind the passage from a large number (N) of discrete mass points
connected to springs (N degrees of freedom), to the continuous limit of the string
(infinite degrees of freedom - field), that is, for N →∞:

{qr (t), r = 1, 2, ...,N} N→∞
=⇒ φ(x , t),

where x is now a continuous variable labeling the displacement of the string.
At each point x we have an independent degree of freedom φ(x , t).

In this case, the action will be:

S =

∫
L dt, where L =

∫
Ldx ,

where L is the Lagrangian density.

We see that [φ] = [Length], [L] =
[
Energy
Length

]
or [L] =

[
Energy
Volume

]
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The Lagrange-Hamilton Formalism

A new feature is that φ is continuous, therefore the L could also depend on ∂φ/∂t:

L = L
(
φ, φ̇,

∂φ

∂x

)
Like before, we demand that δS = 0:

δS =

∫
dt

∫ [
∂L
∂φ

δφ+
∂L
∂φ̇

δφ̇+
∂L

∂(∂φ/∂x)
δ(∂φ/∂x)

]
dx = 0

Working in the same way:

δS =

∫
dt

∫
dx δφ

[
∂L
∂φ
− ∂

∂t

(
∂L
∂φ̇

)
− ∂

∂x

(
∂L

∂(∂φ/∂x)

)]
= 0,

we finally obtain the E-L field equations :

∂L
∂φ
− ∂

∂t

(
∂L
∂φ̇

)
− ∂

∂x

(
∂L

∂(∂φ/∂x)

)
= 0 3D

−→
∂L
∂φ
− ∂

∂t

(
∂L
∂φ̇

)
− ~∇

(
∂L

∂(~∇φ)

)
= 0

Example: Let’s consider the (1-D) Lagrangian density for a string:

Lstring =
1

2
ρ

(
∂φ

∂t

)2

− 1

2
ρυ2

(
∂φ

∂x

)
,

where ρ is the density and υ the velocity. Applying the E-L equations we obtain the wave
equation:

∂2φ

∂x2
− 1

υ2

∂2φ

∂t2
= 0 (Homework)
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The Lagrange-Hamilton Formalism

For relativistic fields, the E-L equations can be written in a relativistically invariant form:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0

Also, the action will be written as:

S =

∫
dt

∫
d3xL =

∫
d4xL

The action S is Lorentz invariant because d4x is invariant.

Therefore, in order to construct a relativistic field theory, we have to construct an
invariant L and then make use of the E-L.

Example: The previous Lagrangian density Lstring becomes:

Lstring =
1

2
(∂µφ)(∂µφ), ρ = υ = 1

Using the E-L equations, we obtain the equation of motion (relativistic wave equation):

�
�
��>

0
∂Lstring

∂φ
− ∂µ

(
∂Lstring

∂(∂µφ)

)
= 0 ⇒ ∂µ∂

µφ = 0
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The Lagrange-Hamilton Formalism

Noether’s Theorem

We consider a system that can be described by the Lagrangian:

L =

∫
d3xL(φi (x), ∂µφi (x))

and has E.o.M:

∂µ
∂L

∂(∂µφi )
− ∂L
∂φi

= 0

Every continuous transformation under which the action

S =

∫
L dt

is invariant, leads to a conserved current:

∂µJµ(x) = 0
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The Lagrange-Hamilton Formalism

Proof of Noether’s Theorem (for a continuous internal non-abelian
symmetry)

Consider that L is invariant under a symmetry group G , namely under infinitesimal
transformations:

φi (x)→ φ′i (x) = φi (x) + δφi (x) ,

where δφi (x) = iεataijφj(x), εa: spacetime-invariant small parameters and ta a set of
matrices that satisfy G ’s Lie algebra:

[ta, tb] = iC abctc ,

where C abc are the structure constants of G .
Then, the variation of L becomes:

δL =
∂L
∂φi

δφi +
∂L

∂(∂µφi )
δ(∂µφi )

From δ(∂µφi ) ≡ ∂µφ′i − ∂µφi = ∂µ(δφi ) and the E.o.M.

δL = ∂µ
∂L

∂(∂µφi )
δφi +

∂L
∂(∂µφi )

∂µ(δφi ) = ∂µ

[
∂L

∂(∂µφi )
δφi

]
= εa∂µ

[
∂L

∂(∂µφi )
itaijφj

]
Therefore, if δL = 0:

∂µJa
µ = 0 , where Ja

µ = −i
∂L

∂(∂µφi )
taijφj
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The Lagrange-Hamilton Formalism

If we define as charge:

Q(t) ≡
∫

d3xJ0(x)

It follows that:
dQ

dt
= 0 → it’s a constant of motion

(Taking under consideration that a ”surface” term is zero in the infinity)

In the case of invariance under continuous internal symmetry Lie group, the conserved
charges:

Qα =

∫
d3xJα

0 (x)

are the generators of the symmetry group.

Homework: L invariance under transformations xµ → xµ′
= xµ + αµ =⇒ energy and

momentum conservation

G. Zoupanos (Department of Physics, NTUA ) Gauge Theories, Higgs Mechanism, Standard Model Dubna, February 2014 11 / 20



The Lagrange-Hamilton Formalism

Lagrangian density for two real fields

The Lagrangian density for two free, real fields φ1, φ2 of same mass

L =
1

2
∂µφ1∂

µφ1 −
1

2
m2φ2

1 +
1

2
∂µφ2∂

µφ2 −
1

2
m2φ2

2

is invariant under the transformation:

φ′1 = cosαφ1 − sinαφ2

φ′2 = sinαφ1 + cosαφ2

By simple substitution of φ′1, φ
′
2, we obtain:

L(φ′1, φ
′
2) = L(φ1, φ2) =⇒ SO(2) symmetry

We would like to find which is the conserved current in this case. It is simple (and
sufficient) to consider infinitesimal rotation ε, so the above field transformation becomes:

φ′1 = φ1 − εφ2

φ′2 = εφ1 + φ2

Since δL = 0 under these transformations and L = L(φ1, φ2, ∂µφ1, ∂µφ2), we have:

0 = δL =
∂L
∂φ1

δφ1 +
∂L
∂φ2

δφ2 +
∂L

∂(∂µφ1)
δ(∂µφ1) +

∂L
∂(∂µφ2)

δ(∂µφ2)
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The Lagrange-Hamilton Formalism

We can use the E.o.M to show that:

0 = ∂µ
∂L

∂(∂µφ1)
δφ1 +

∂L
∂(∂µφ1)

∂µ(δφ1) + ∂µ
∂L

∂(∂µφ2)
δφ2 +

∂L
∂(∂µφ2)

∂µ(δφ2)

= ∂µ

[
∂L

∂(∂µφ1)
δφ1 +

∂L
∂(∂µφ2)

δφ2

]
In this case, we have:

δφ1 ≡ φ′1 − φ1 = −εφ2

δφ2 ≡ φ′2 − φ2 = εφ1

so:
ε∂µ[(∂µφ2)φ1 − (∂µφ1)φ2] = 0

and since ε is arbitrary:

∂µ [(∂µφ2)φ1 − (∂µφ1)φ2]︸ ︷︷ ︸
≡jµ

= 0 =⇒ ∂µjµ = 0

Note: Introducing a complex field φ = 1√
2
(φ1 − iφ2), φ† = 1√

2
(φ1 + iφ2), the previous

Lagrangian density becomes: L = ∂µφ
†∂µφ−m2φ†φ
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The Lagrange-Hamilton Formalism

Dirac Lagrangian density

The Lagrangian density for a free Dirac particle of mass m

L = iψ̄γµ∂µψ −mψ̄ψ

is invariant under the transformation ψ(x)→ e iαψ(x), where α is a real constant. The
invariance derives easily, observing that:

∂µψ → e iα∂µψ

ψ̄ → e−iαψ̄

The transformations U(α) ≡ e iα form the unitary abelian group U(1).

An abelian group has the property:

U(α1)U(α2) = U(α2)U(α1)

We would like to find which conservation law is related to this symmetry. Again, it’s
sufficient to study the invariance of L under an infinitesimal U(1) transformation:

ψ → (1 + iα)ψ

Following the same steps as before, we get the conserved current:

jµ = −eψ̄γµψ (Homework)
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The Lagrange-Hamilton Formalism

Global Invariance in Non-Abelian Symmetries

The generalization to the non-abelian case occurs if we consider together more than one
wavefunctions or states.
Quantum mechanics: When we have degenerate states in energy (or mass), there is no
unique way to determine them. Every linear combination of an initially selected set of
degenerate states will be as good as any if the normalization conditions are satisfied.

Example: The neutron and proton masses are almost equal (939.553 MeV - 938.259
MeV), so we could consider (Heisenberg 1932) the two states as degenerate. Thus, linear
combinations of the proton and neutron eigenstates are completely equivalent i.e.
redefinitions of the proton and neutron eigenfunctions, such as:

ψp → ψ′p = αψp + βψn

ψn → ψ′n = γψp + δψn ,

for complex coefficients α, β, γ, δ, are permitted.
Since ψp, ψn are degenerate states i.e. Hψp = Eψp and Hψn = Eψn, we obtain:

Hψ′p = H(αψp + βψn) = E(αψp + βψn) = Eψ′p

Hψ′n = ... = Eψ′n

The redefined states describe 2 states with the same energy degeneracy.
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The Lagrange-Hamilton Formalism

The double degeneracy suggests a resemblance to spin 1/2 - systems in absence of
magnetic field (sz = ±1/2 are both degenerate).

This analogy suggests that we can introduce the 2-component nucleon isospinor:

ψ( 1
2 ) =

(
ψp

ψn

)
= ψpχ

( 1
2 )

p + ψnχ
( 1
2 )

n , where χ
( 1
2 )

p =

(
1
0

)
︸ ︷︷ ︸

isospin up

, χ
( 1
2 )

n =

(
0
1

)
︸ ︷︷ ︸

isospin down

The ψp, ψn are coefficients from which the |ψp|2, |ψn|2 give the probability of the nucleon

to have isospin χ
( 1
2 )

p or χ
( 1
2 )

n .

Let’s write a redefinition of the isospinor as:

ψ( 1
2 ) → ψ( 1

2 )′ = Uψ( 1
2 ),

where U is a complex 2× 2 matrix.

Heisenberg postulated that the strong interaction physics is invariant under these
transformations.

Rephrasing: There is a symmetry (in absence of E/M interactions).
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The Lagrange-Hamilton Formalism

Let us examine the restrictions imposed on U(
ψ′p
ψ′n

)
= U

(
ψp

ψn

)
In order to maintain the normalization (probability), we demand that U is unitary:

UU† = U†U = 1

Obviously, this property is not limited to the 2-states case.

Clearly, the coefficients of the transformation of n degenerate states will form the
elements of a n × n matrix.

Trivial case: n = 1→ U becomes a phase factor indicating that the previous examples
will be included as a special case of these more general transformations.

From the properties of determinants we obtain:

det UU† = det U det U† = | det U|2 = 1 =⇒ det U = exp(iθ), θ − real

We can distinguish such total phase factor from the transformations of p − n mixing
because it corresponds to a phase rotation of both p and n by the same quantity.

The invariance of the theory under such transformations corresponds to the conservation
law of the total number of p and n.
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The Lagrange-Hamilton Formalism

The new physics will be found in the rest of the transformations that satisfy:

det U = +1

Such a matrix is called special unitary. The set of all matrices U forms the Lie group
SU(2).

An important property of Lie groups is that their physical consequences can be found
considering infinitesimal transformations, i.e. U matrices that differ infinitesimally form
the ”no-change” state that corresponds to U = 1.

U = 1 + iξ ,

where ξ is a 2× 2 matrix whose elements are all small quantities of first order. Omitting
the second order terms, from the condition UU† = 1, we obtain :

(1 + iξ)(1− iξ) = 1 =⇒ ξ = ξ† → ξ is a 2× 2 Hermitian matrix , .

and from the condition det U = +1:

Trξ = 0 (since u = e iξ → det u = eTrξ, ξ Hermitian)
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The Lagrange-Hamilton Formalism

Counting the restrictions imposed by the conditions ξ = ξ†,Trξ = 0, we see that ξ has 3
independent parameters. Therefore, it can be expressed in a general way as:

ξ =
~ε · ~τ

2

as the angular momentum operators of spin 1/2, while the ~ε = (ε1, ε2, ε3) are 3 small
quantities of first order and ~τ the Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
which satisfy: [τi

2
,
τj
2

]
= iεijk

τk
2

while the basic wavefunctions χ
( 1
2 )

p , χ
( 1
2 )

n are eigenfunctions of the total ”spin” and its
third component:

1

4
~τ 2χ

( 1
2 )

p =
3

4
χ

( 1
2 )

p ,
1

2
τ3χ

( 1
2 )

p =
1

2
χ

( 1
2 )

p

1

4
~τ 2χ

( 1
2 )

n =
3

4
χ

( 1
2 )

n ,
1

2
τ3χ

( 1
2 )

n = −1

2
χ

( 1
2 )

n

This double degree of freedom in the ”charge space” of p − n is called isospin.
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The Lagrange-Hamilton Formalism

An infinitesimal SU(2) transformation of the doublet p − n is:(
ψ′p
ψ′n

)
=

(
1 + i

~ε · ~τ
2

)(
ψp

ψn

)

As an example, let’s consider the Lagrangian that describes 2 free fermions u and d that
have the same mass m:

L = ψ̄u(i 6∂ −m)ψu + ψ̄d(i 6∂ −m)ψd

6∂ ≡ γµ∂µ

L is invariant under the unitary SU(2) transformations(
ψ′u
ψ′d

)
= exp

(
−i
~α · τ

2

)(
ψu

ψd

)

Homework: Which is the conserved Noether current? Which are the conserved charges?
Show that the conserved charges are indeed the generators of SU(2).
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