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Abstract

In the present study, the unification of the Conformal and Fuzzy Gravities with
the Internal Interactions is based on the observation that the tangent space of a
curved space and the space itself do not have necessarily the same dimensions.
Moreover, the construction is based on the fact that the gravitational theories can
be formulated in a gauge-theoretical way. In the present work we study the various
consecutive breakings through which these unified theories can ultimately result
into the Standard Model. We estimate the scales of the breakings in each case using
one-loop RGEs.

1 Introduction

The target of constructing a unified scheme involving all interactions was in the center
of discussions in the physics community since many decades and started more than a
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century ago with the early attempts of Kaluza and Klein [1, 2], who were trying to unify
the known interactions at the time, namely gravity and electromagnetism, by going to
five dimensions. An interesting revival of the Kaluza-Klein scheme started much later
when it was realised that non-abelian gauge groups, such as those that constitute the
well established today Standard Model (SM) of Particle Physics, appear too naturally
in addition to the U(1) of electromagnetism when one considers further extensions of
the space dimensions [3–5]. Assuming that the total space-time can be described as a
direct product structure MD = M4×B, where M4 is the usual Minkowski space-time and
B is a compact Riemannian space with a non-abelian isometry group S, the dimensional
reduction of the theory leads to gravity coupled to a Yang-Mills theory with a gauge group
containing S and scalars in four dimensions. Therefore an attractive geometric unification
of gravity with other interactions, potentially those of the SM, is achieved together with
an explanation of the gauge symmetries. However there exist serious problems in the
Kaluza-Klein framework, such as that there is no classical ground state corresponding to
the direct product structure of MD. From the Particle Physics point of view though the
most serious problem is that, after adding fermions to the original action, it is impossible
to obtain chiral fermions in four dimensions [6]. Eventually this problem is resolved by
adding suitable matter fields to the original gravity action in particular Yang-Mills at
the cost of abandoning the pure geometric unification. Accepting the fact that one has
to introduce Yang-Mills fields in higher dimensions and considering that they are part
of a Grand Unified Theory (GUT) together with a Dirac one [7, 8], the restriction to
obtain chiral fermions in four dimensions is limited in requiring that the total dimension
of spacetime has to be of the form 4k + 2 (see e.g., ref. [9]).

During the last several decades the Superstring theories (see e.g., refs. [10–12]) dom-
inated the research on extra dimensions. In particular the heterotic string theory [13],
defined in ten dimensions, was the most promising, due to the fact that the SM gauge
group can be accommodated into GUTs that emerge after the dimensional reduction of
the initial E8 × E8 of the theory. It should be noted though that even before the formu-
lation of superstring theories, another framework has been developed that focused on the
dimensional reduction of higher-dimensional gauge theories, which provided another av-
enue for exploring the unification of fundamental interactions [14–18]. The latter approach
to unify fundamental interactions, which shared common objectives with the superstring
theories, was first investigated by Forgacs-Manton (F-M) and Scherk-Schwartz (S-S). F-M
explored the concept of Coset Space Dimensional Reduction (CSDR) [14–17], which can
lead naturally to chiral fermions while S-S focused on the group manifold reduction [19],
which does not admit chiral fermions though. Recent developments and attempts towards
realistic models that can be confronted with experiment can be found in refs. [20–24].

Given the above picture concerning the gauge theories part of unification attempts
on the gravity side diffeomorphism-invariant gravity theory is obviously invariant with
respect to transformations whose parameters are functions of spacetime, just as in the
local gauge theories. Therefore, naturally it has been long believed that general relativity
(GR) can be formulated as a gauge theory [25–31]. The gauge-theoretical approach to
gravity started with Utiyama’s pioneering study [25]. The spin connection can be treated
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as the gauge field of the theory and would enter in the action using its field strength.
Subsequently more elegantly in addition to the spin connection the veilbein was identified
also as part of the gauge fields and it was discussed as a gauge theory of the de Sitter
SO(1, 4) or the AdS group SO(2, 3), spontaneously broken by a scalar field to the Lorentz
SO(1, 3) group [30, 31]. In addition, the Conformal Gravity (CG) has been formulated
by gauging the conformal group SO(2, 4) [32, 33], which can be spontaneously broken
to the well-known Eistein Gravity (EG) or to the Weyl gravity [33], a model whose
action is made out of the square of the Weyl tensor. The latter has been studied quite
extensively [34–40]. The basic idea of the gauge-theoretic approach to gravity was used in
a fundamental way in supergravity (see e.g. ref. [41–43]) while recently it was transferred
in the non-commutative gravity attempts too [44–49].

A more interesting suggestion towards unifying gravity as gauge theory with the rest
fundamental interactions described as GUTs was suggested in the past [50,51] and revived
recently [33, 48, 52–58]. It is based on the following observation: although usually the
dimension of the tangent space is taken to be equal to the dimension of the corresponding
curved manifold, the tangent group of a manifold of dimension d is not necessarily SO(d)
[59]. It is very interesting that one can consider higher than four dimensional tangent
groups in a four dimensional space-time which opens the possibility to achieve unification
of gravity with internal interactions by gauging these higher-dimensional tangent groups.
Technically a very attractive feature of this approach is that most of the machinery that
was used in the high dimensional theories with extra physical space dimensions, such as
in the coset space dimensional reduction (CSDR) scheme [9, 14–24], can be transfered
in the present four-dimensional constructions since they have the same tangent group.
For instance there exist constraints which one has to take into account when aiming to
construct realistic chiral theories for the internal interactions; similarly attempting to
avoid a doubling of the spectrum of chiral theories by imposing Majorana condition in
addition to Weyl in the extra dimensions [9, 17].

Along the lines described above, a unification of CG and internal interactions has been
constructed recently [33]. This construction was subsequently extended to the unification
of four-dimensional Gravity on a covariant noncommutative (fuzzy) space (fuzzy gravity
- FG) with internal interactions [49]. In the present work we focus on the consequences
of the CG - internal interactions unification scheme w.r.t the physics that follow in lower
energy scales, while we also comment on the FG - internal interactions unification case,
since by construction they have several similarities.

2 Conformal Gravity

According to the discussion in Sect. 1, EG has been treated as the gauge theory of the
Poincaré group but much insight and elegance was gained by considering instead the
gauging of the de Sitter (dS), SO(1, 4), and the Anti-de Sitter group (AdS), SO(2, 3). Both
of these groups contain the same number of generators, i.e. 10 as the Poincaré group and
can be spontaneously broken by a scalar field to the Lorentz group, SO(1, 3) [30,31,33,60].
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The Poincaré, the dS and the AdS groups are all subgroups of the conformal group
SO(2, 4), which has 15 generators and is the group of transformations on space-time
which leave invariant the null interval ds2 = ηµνdx

µdxν = 0. In ref [32] the gauge
theory formalism of Gravity was extended to the conformal group constructing in this
way the CG. The breaking of CG to EG or to Weyl’s scale invariant theory of gravity
was done by the imposition of constraints (see e.g. [32]). However in ref [33], for the first
time, the breaking of the conformal gauge group was done spontaneously, induced by the
introduction of a scalar field in the action using the Lagrange multiplier method.

2.1 Spontaneous symmetry breaking

The spontaneous symmetry breaking of CG, which is based, as already mentioned on the
SO(2, 4) gauge group, whose algebra is isomorphic to those of SU(4) and SO(6), can be
done in two ways. For convenience we work with Euclidean signature. Then one way is
to introduce a scalar in the vector representation (rep) of SO(6), 6, which takes vev in
the ⟨1⟩ component [61, 62] of the 6 according to the branching rules of reps of SO(6) to
its maximal subgroup SO(5) [33], i.e.

SO(6) ⊃ SO(5)

6 = 1 + 5
(1)

Then the SO(5), being isomorphic to SO(2, 3), can break spontaneously further to SO(1, 3),
when a scalar in the 5 rep takes a vev in the ⟨1, 1⟩ component according to the branching
rules:

SO(5) ⊃ SU(2)× SU(2)

5 = (1, 1) + (2, 2),
(2)

where the algebra of SU(2)×SU(2) is isomorphic to those of SO(4) and SO(1, 3). There-
fore in order to realise the above breakings from SO(2, 4) to SO(1, 3) one has to introduce
two scalar fields, belonging in the vector rep, 6 of SO(2, 4) (for details see ref [33]).

Keeping in mind the above way of breaking the SO(2,4) to SO(1,3), we can use a more
direct way to achieve the same breaking in one step using a scalar belonging in the 2nd
rank antisymmetric rep, 15. In fact this breaking can lead either to the four-dimensional
EG or to WG as we will see 1.

The gauge group SO(2, 4), as mentioned previously, has 15 generators. These genera-
tors in four-dimensional notation can be represented by the six Lorentz transformations,
Mab, four translations, Pa , four special conformal transformations (conformal boosts),
Ka, and the dilatation 2.

1The same breaking can be achieved in the two steps breaking too (see ref [33]).
2The details on the reps chosen, along with the commutation and anticommutation relations of the

generators, can be found in ref [33].
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2.2 Einstein-Hilbert and Weyl action from SSB of the conformal group,
by using a scalar in the adjoint representation

In the past, in order to construct the four-dimensional CG, one had to start by gauging the
conformal group, SO(2, 4), and impose constraints in order to retrieve WG (see e.g. [32]).
Here, instead, we use SSB mechanism which is more elegant and appropriate for a field
theory treatment, and the SO(2, 4) gauge group is being directly reduced to the SO(1, 3)
by a scalar field belonging to the adjoint rep. This can lead either to the four-dimensional
EG or to WG.

The gauge group, SO(2, 4), as mentioned in the previous subsection, comprises of
fifteen generators. Those generators in four-dimensional notation consist of six Lorentz
transformations, Mab, four translations, Pa, four special conformal transformations (con-
formal boosts), Ka, and the dilatation, D.

The gauge connection, Aµ, as an element of the SO(2, 4) algebra, can be expanded in
terms of the generators as

Aµ =
1

2
ωµ

abMab + eµ
aPa + bµ

aKa + ãµD, (3)

where, for each generator a gauge field has been introduced. The gauge field related to
the translations is identified as the vierbein, while the one of the Lorentz transformations
is identified as the spin connection. The field strength tensor is of the form

Fµν =
1

2
Rµν

abMab + R̃µν
aPa +Rµν

aKa +RµνD, (4)

where
Rµν

ab = ∂µων
ab − ∂νωµ

ab − ωµ
acωνc

b + ων
acωµc

b − 8e[µ
[abν]

b]

= R(0)ab
µν − 8e[µ

[abν]
b],

R̃µν
a = ∂µeν

a − ∂νeµ
a + ωµ

abeνb − ων
abeµb − 2ã[µeν]

a

= T (0)a
µν − 2ã[µeν]

a,

Rµν
a = ∂µbν

a − ∂νbµ
a + ωµ

abbνb − ων
abbµb + 2ã[µbν]

a

= T (0)a
µν (b) + 2ã[µbν]

a,

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a,

(5)

where T
(0)a
µν and R

(0)ab
µν are the torsion and curvature component tensors in the four-

dimensional vierbein formalism of GR, while T
(0)a
µν (b) is the torsion tensor related to the

gauge field bµ
a.

We shall start by choosing the parity conserving action, which is quadratic in terms of
the field strength tensor (4), in which we have introduced a scalar that belongs in the 2nd
rank antisymmetric rep, 15, of SO(6) ∼ SO(2, 4) along with a dimensionful parameter,
m:

SSO(2,4) = aCG

∫
d4x[tr ϵµνρσmϕFµνFρσ + (ϕ2 −m−2I4)], (6)
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where the trace is defined as tr → ϵabcd[Generators]abcd.
The scalar expanded on the generators is:

ϕ = ϕabMab + ϕ̃aPa + ϕaKa + ϕ̃D . (7)

In accordance with [63], we pick the specific gauge in which ϕ is diagonal of the form
diag(1, 1,−1,−1). Specifically we choose ϕ to be only in the direction of the dilatation
generator D:

ϕ = ϕ0 = ϕ̃D
ϕ2=m−2I4−−−−−−→ ϕ = −2m−1D. (8)

In this particular gauge the action reduces to

S = −2aCG

∫
d4x tr ϵµνρσFµνFρσD, (9)

and the gauge fields e, b and ã become scaled as me,mb and mã correspondingly. After
straightforward calculations, using the expansion of the field strength tensor as in eq. (4),
and the anticommutation relations of the generators, we obtain:

S = −2aCG

∫
d4x tr ϵµνρσ

[1
4
Rµν

abRρσ
cdMabMcdD

+iϵabcd(Rµν
abRρσ

cKdD −Rµν
abR̃ρσ

cP dD) + (
1

2
R̃µν

aRρσ + 2R̃µν
aRρσ

b)Mab

+(
1

4
RµνRρσ − 2R̃µν

aRρσa)D
]
.

(10)

In this point we employ the trace on the several generators and their products. In par-
ticular:

tr[KdD] = tr[P dD] = tr[Mab] = tr[D] = 0,

and tr[MabMcdD] = −1

2
ϵabcd.

(11)

The resulting broken action is:

SSO(1,3) =
aCG

4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd, (12)

while its invariance has obviously been reduced only to Lorentz. Before continuing, we
notice that there is no term containing the field ãµ in any way present in the action. Thus,
we may set ãµ = 03. This simplifies the form of the two component field strength tensors
related to the P and K generators:

R̃µν
a = mT (0)a

µν − 2m2ã[µeν]
a −→ mT (0)a

µν ,

Rµν
a = mT (0)a

µν (b) + 2m2ã[µbν]
a −→ mT (0)a

µν (b).
(13)

3Let us note that since ãµ is the gauge field corresponding to the dilatation generator, D, by switching
off ãµ or by making it heavy due to SSB, it remains a global symmetry corresponding to scale invariance.
The latter is broken by the presence of dimensionful parameters as the cosmological constant.
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The absence of the above field strength tensors in the action, allows us to also set R̃µν
a =

Rµν
a = 0, and thus to obtain a torsion-free theory. Since Rµν is also absent from the

expression of the broken action, it may also be set equal to zero. From its definition in
eq. (5), then we obtain the following relation among e and b:

eµ
abνa − eν

abµa = 0, (14)

The above result reinforces one to consider solutions that relate e and b. Here we examine
two possible solutions of eq. (14).

2.2.1 When bµ
a = aeµ

a - Einstein-Hilbert action in the presence of a cosmo-
logical constant

In this case, first proposed in [64], by a simple substitution we obtain:

SSO(1,3) =
aCG

4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν − 4m2a
(
eµ

aeν
b − eµ

beν
a
)]

[
R(0)cd

ρσ − 4m2a
(
eρ

ceσ
d − eρ

deσ
c
)]

−→

SSO(1,3) =
aCG

4

∫
d4xϵµνρσϵabcd[R

(0)ab
µν − 8m2aeµ

aeν
b]
[
R(0)cd

ρσ − 8m2aeρ
ceσ

d
]
,

(15)

which yields

SSO(1,3) =
aCG

4

∫
d4xϵµνρσϵabcd[R

(0)ab
µν R(0)cd

ρσ − 16m2aR(0)ab
µν eρ

ceσ
d+

+64m4a2eµ
aeν

beρ
ceσ

d].

(16)

This action consists of three terms: one G-B topological term, the E-H action, and a
cosmological constant, and for a < 0 describes EG in AdS space.

2.2.2 When bµ
a = −1

4
(Rµ

a + 1
6
Reµ

a) - Weyl action

This relation among b and e, which is again solution of (14), was suggested in refs [32]
and [41]. Taking this into account we obtain the following action:

S =
aCG

4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν +
1

2

(
meµ

[aRν
b] −meν

[aRµ
b]
)
− 1

3
m2Reµ

[aeν
b]

]
[
R(0)cd

ρσ +
1

2

(
meρ

[cRσ
d] −meσ

[cRρ
d]
)
− 1

3
m2Reρ

[ceσ
d]

]
.

(17)

Considering the rescaled vierbein ẽµ
a = meµ

a and recalling that R
(0)ab
µν = −R

(0)ab
νµ , we

obtain

S =
aCG

4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν − 1

2

(
ẽµ

[aRν
b] − ẽν

[aRµ
b]
)
+

1

3
Rẽµ

[aẽν
b]

]
[
R(0)cd

ρσ − 1

2

(
ẽρ

[cRσ
d] − ẽσ

[cRρ
d]
)
+

1

3
Rẽρ

[cẽσ
d]

]
,

(18)
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which is equal to

S =
aCG

4

∫
d4xϵµνρσϵabcdCµν

abCρσ
cd, (19)

where Cµν
ab is the Weyl conformal tensor. This action, leads to the well-know four-

dimensional scale invariant Weyl action,

S = 2aCG

∫
d4x

(
RµνR

νµ − 1

3
R2

)
. (20)

3 Unification of Conformal Gravity with Internal

Interactions, Fermions and Breakings

3.1 Unification and Field Content

In [33] was suggested that the unification of the CG with internal interactions based
on a framework that results in the GUT SO(10) could be achieved using the SO(2, 16)
as unifying gauge group. As it was emphasized in the Introduction the whole strategy
was based on the observation that the dimension of the tangent space is not necessarily
equal to the dimension of the corresponding curved manifold [49–59]. An additional
fundamental observation [33] is that in the case of SO(2, 16) one can impose Weyl and
Majorana conditions on fermions [65,66]. More specifically, using Euclidean signature for
simplicity (the implications of using non-compact space are explicitly discussed in [33]),
one starts with SO(18) and with the fermions in its spinor representation, 256. Then the
spontaneous symmetry breaking of SO(18) leads to its maximal subgroup SO(6)×SO(12)
[33]. Let us recall for convenience the branching rules of the relevant reps [61–63],

SO(18) ⊃ SO(6)× SO(12)

256 = (4,32) + (4,32) spinor (21)

170 = (1,1) + (6,12) + (20′,1) + (1,77) 2nd rank symmetric (22)

The breaking of SO(18) to SO(6)×SO(12) is done by giving a vev to the ⟨1,1⟩ component
of a scalar in the 170 rep. In turn, given that the Majorana condition can be imposed, due
to the non-compactness of the used SO(2, 6) ∼ SO(18), we are led after the spontaneous
symmetry breaking to the SO(6) × SO(12) gauge theory with fermions in the (4,32)
representation.

Then, according to [33], the following spontaneous symmetry breakings can be achieved
by using scalars in the appropriate representations.

SO(6) → SU(2)× SU(2) , (23)

in the CG sector, and
SO(12) → SO(10)× [U(1)]global (24)

8



in the internal gauge symmetry sector, with fermions in the 16L(−1) under the SO(10)×
[U(1)]global. The other generations are introduced as usual with more chiral fermions in
the 256 rep of SO(18). In the present study, following Sect. 2.2, we choose scalars in the
2nd rank antisymmetric 15 rep of SO(6) to break the CG gauge group, while the internal
interactions gauge group SO(12) is broken spontaneously by scalars in the 77 rep. The
15 rep can be drawn from the SO(18) rep 153:

153 = (15,1) + (6,12) + (1,66) , (25)

while from Eq. (22) we see that the 77 rep can result from a 170 rep of the parent group.
Thus, in SO(6)× SO(12) notation, the scalars breaking the two gauge groups belong to
(15,1) and (1,77), respectively.

According to the above picture we start from some high scale where the SO(18) gauge
group breaks, eventually obtaining EG and SO(10) × [U(1)]global after several symme-
try breakings. From that point, we use the symmetry breaking paths and field con-
tent followed in [67], in order to finally arrive at the SM. In particular, the SO(10)
group breaks spontaneously into an intermediate group which eventually breaks into
the SM gauge group. The intermediate groups are the Pati-Salam (PS) gauge group,
SU(4)C × SU(2)L × SU(2)R, with or without a discrete left-right symmetry, D, and the
minimal left-right gauge group (LR), SU(3)C × SU(2)L × SU(2)R ×U(1)B−L, again with
or without the discrete left-right symmetry. We will denote the four intermediate gauge
groups as 422, 422D, 3221 and 3221D, respectively.

The SO(10) group breaks with a scalar 210 into the 422 and the 3221D groups, with
a scalar 54 into 422 and with a scalar 45 into 3221. The spontaneous breaking into
the SM gauge group from each and every intermediate group is achieved with scalars
that are accommodated in a 126 rep (still in SO(10) language), while the Higgs boson
necessary for the electroweak breaking will be accommodated in a 10 rep4. We will call
the scale at which the SO(10) gauge group breaks GUT scale, MGUT , in the sense that all
three gauge couplings are unified at that scale, while we will call the scale at which the
422(D)/3221(D) groups break intermediate scale, MI . Thus, the consecutive breakings in
each case can be seen below:

422 : SO(10)|MGUT

⟨210H⟩−−−−−→ SU(4)C × SU(2)R × SU(2)R|MI

⟨126H⟩−−−−−→ SM ; (26)

422D : SO(10)|MGUT

⟨54H⟩−−−−→ SU(4)C × SU(2)R × SU(2)R ×D|MI

⟨126H⟩−−−−−→ SM ; (27)

3221 : SO(10)|MGUT

⟨45H⟩−−−−→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L|MI

⟨126H⟩−−−−−→ SM ; (28)

3221D : SO(10)|MGUT

⟨210H⟩−−−−−→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L ×D|MI

⟨126H⟩−−−−−→ SM . (29)

4In [67] it is stated that, in order to accommodate the Higgs boson into a 10 instead of a 120 and
to avoid an extra Yukawa term, a U(1) Peccei-Quinn symmetry is taken into account. This could in
principle be identified with the global U(1) that survives the SO(12) breaking and which also breaks at
the unification scale.
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Considering the branching rules of:

SO(12) ⊃ SO(10)× [U(1)]global

12 = (1)(2) + (1)(−2) + (10)(0) (30)

66 = (1)(0) + (10)(2) + (10)(−2) + (45)(0) (31)

77 = (1)(4) + (1)(0) + (1)(−4) + (10)(2) + (10)(−2) + (54)(0) (32)

495 = (45)(0) + (120)(2) + (120)(−2) + (210)(0) (33)

792 = (120)(0) + (126)(0) + (126)(0) + (210)(2) + (210)(−2) , (34)

we choose accommodate the Higgs 10 rep into 12 of SO(12) and the 126 that breaks
the intermediate gauge group into 792. Regarding the four different breaking scenaria,
45 will come from 66, 54 from 77 and 210 from 792. Examining the SO(18) following
branching rules:

SO(18) ⊃SO(6)× SO(12)

18 =(6,1) + (1,12) (35)

3060 =(15,1) + (10,12) + (10,12) + (15,66) + (6,220) + (1,495) (36)

8568 =(6,1) + (15,12) + (10,66) + (10,66) + (15,220) + (6,495)+

+ (1,792) , (37)

and taking into account the branching rules of Eqs. (22) and (25), we make the following
choices regarding the SO(12) reps: 12 comes from 18 of SO(18), 792 from 8568, 66
from 153, 495 from a 3060 and 77 from 170. For convenience, the accommodation of
the full field content into the reps of each group is given in Tab. 1.

3.2 An estimation of the scales of spontaneous symmetry breakings

With the the field content clear, we can now make an estimation of the scales at which
all the above-mentioned breakings occur. This is achieved by the 1-loop running of the
the gauge couplings in each energy regime.

We begin from the MZ scale and the SM, where the values of all three gauge couplings
are well known from the experiment [68]. Then, using the 1-loop gauge β-functions for
the SM energy regime and for each of the four intermediate gauge symmetries (which can
be found in the Appendix, we find the intermediate scale MI and the GUT scale MGUT

that allow for gauge coupling unification, and also the value of the unified gauge coupling
at the GUT scale, g10(MGUT ). These results can be found in Tab. 2. The matching
conditions for the 422 breaking to the SM at the intermediate scale are:

α422
4 (MI) =αSM

3 (MI)

α422
2L (MI) =αSM

2 (MI)

1

α422
2R (MI)

=− 2

3

1

αSM
3 (MI)

+
5

3

1

αSM
1 (MI)

,
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SO(10) SO(6)× SO(12) SO(18) Type & Role

16 (4,32) 256 fermion, 3x generations

- (15,1) 153 scalar, breaks SO(6)

- (1,77) 170 scalar, breaks SO(12)

18 (1,12) 1818 scalar, breaks SM

126 (1,792) 8568 scalar, breaks the intermediate groups into SM

45 (1,66) 153 scalar, breaks SO(10) into 3221

210 (1,495) 3060 scalar, breaks SO(10) into 422 & 3221D

54 (1,77) 170 scalar, breaks SO(10) into 422D

Table 1: The full field content with the respective representations under each gauge group.

while the matching conditions for the 3221 breaking to the SM are:

α3221
3 (MI) =αSM

3 (MI)

α3221
2L (MI) =α3221

2R (MI) = αSM
2 (MI)

1

α3221
1 (MI)

=
5

2

1

αSM
1 (MI)

− 3

2

1

αSM
2 (MI)

.

Their RG evolution along the energy scale for each of the four cases is shown in Fig. 1.

At this point we should note that the breaking of the CG to EG given in eq. (23) gives a
negative contribution to the cosmological constant and, if this was the only contribution,
the space would be AdS. However, we have contributions to the cosmological constant
from the other spontaneous breakings of the theory, i.e. the those of SO(18) and SO(12),
which are positive. By choosing either of these breakings to be at the same scale with the
breaking of the conformal gravity, the various contributions can be fine tuned to give a
value for the cosmological constant of either zero or slightly positive, in agreement with
the experimental observation.

We will examine three different scenaria regarding the breakings above the GUT scale.
In the first, named scenario A, the SO(18) gauge group breaks into SO(6)× SO(12) and
they consequently break into EG and SO(10) (and the global U(1)), all at the same
scale, MX . This way, it is the contribution from the SO(18) breaking to the cosmological
constant that cancels the negative one that comes from the CG breaking. In contrast, in
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MI (GeV) MGUT (GeV) g
(1)
10 (MGUT )

422 1.2× 1011 2.1× 1016 0.587

422D 5.2× 1013 1.5× 1015 0.572

3221 1.0× 1010 1.1× 1016 0.531

3221D 1.7× 1011 1.4× 1015 0.546

Table 2: 1-loop results for the intermediate scale, MI , the GUT scale, MGUT and the
unified gauge coupling at the GUT scale.

the scenaria B and C, the SO(18) gauge group breaks into SO(6) × SO(12) at a scale
MB, while both SO(6) and SO(12) will break at a different scale, MX , which will be of
course between MGUT and MB. The hierarchy among the scales is shown in Fig. 2.

It is important to note that, while for the evolution of the couplings after the breaking
of SO(10) the calculation is clear and we can determine the renormalization group equa-
tions (RGEs) in a straightforward way, when we turn to the running of gauge theories
based on non-compact groups, the situation certainly is not clear. There exist serious cal-
culations of the β-functions of the various terms of Stelle’s R2 gravity, which was proven
to be renormalizable [69, 70], but all calculations are done in Euclidean space [71–76].
Therefore, strictly speaking the calculation of the β-function of a gauge theory based on
a non-compact group has not been done. We speculate though that at least at one-loop
level, the β-functions of gauge theories of non-compact groups could be well approxi-
mated by the corresponding ones of the compact ones. This speculation finds support
from the suggestions of Donoghue in a number of papers [77–79], which we adapt in the
corresponding calculations of the β-functions presented in the Appendix.

Starting from scenario A, if we run the SO(10) gauge coupling until the MX scale,
there it will match the value of the SO(6) and SO(12) gauge couplings, so

α
(1)
10 (MX) = α

(1)
CG(MX) . (38)

Considering the last term of Eq. (16) and substituting the above relation, we can compare
this term with the SO(18) contributions to the cosmological constant. This way we can
have an estimate of the breaking scale:

MX ∼ 1018 GeV . (39)

The precise value depends on various parameters, but the order of magnitude should
remain as above. However, trying to run the SO(18) coupling up to the Planck scale, we
see that its steep RGE moves it almost immediately in the non-perturbative regime and
it has a Landau pole lower than the Planck scale. As a consequence, for this scenario to

12



Figure 1: The RG evolution of gauge couplings from the Electroweak scale to the limit
close to the Planck scale is shown for the four cases. Top left: 422. Top right: 422D.
Bottom left: 3221. Bottom right: 3221D.

work one would need to either drastically change the field content, or include additional
new physics phenomena below the Planck scale.

Turning our attention to scenaria B and C, the difference between them is that for
scenario B we choose to break SO(18) at a scale lower than the Planck scale, soMB < MPl,
while in scenario C SO(18) breaks exactly at the Planck scale, MB = MPl. Then, in both
scenaria, the SO(6) × SO(12) gauge group will run until the breaking scale MX , under
which we are left with the SO(10) gauge group and EG. Note that SO(6) and SO(12)
have to break at the same scale, if we want to keep the cosmological constant fine tuning.

Here we do not have the matching condition of Eq. (38), as we now have α
(1)
10 (MX) =

α
(1)
12 (MX). Thus, using the β-function of SO(10) and SO(12) and the approximative β-

Figure 2: The hierarchy among the various symmetry breaking scales of the models and
the respective gauge groups that act on each energy regime.
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Figure 3: The RG evolution of gauge couplings from the GUT scale up to the Planck
scale is shown for the four cases for scenario B. Top left: 422. Top right: 422D. Bottom
left: 3221. Bottom right: 3221D.

functions of SO(6), we make a rough estimate of the scale in question, which again is
MX ∼ 1018GeV. For both scenaria, above MX the SO(12) gauge coupling runs smoothly
up toMB, well within the perturbative regime. This is due to our choice of representations
for some of the scalars of the theory (as explained above), since the fact that they are
singlets under the CG gauge group avoids unwanted multiplicities during the calculation
of the SO(12) gauge β-function. For scenario B, MB is slightly below the Planck scale,
and the SO(18) gauge coupling runs up to MPl without entering the non-perturbative
regime, although its RG evolution is very steep. The runnings for scenaria B and C are
can be found in Fig. 3 and Fig. 4, respectively. Once more, all the β-functions can be
found in the Appendix.

We would like to add a comment about the case of FG. As it was explained in [49],
when attempting to unify FG with internal interactions, along the lines of Unification of
Conformal Gravity with SO(10) [33], the difficulties that in principle one is facing are
that fermions should (a) be chiral in order to have a chance to survive in low energies
and not receive masses as the Planck scale, (b) appear in a matrix representation, since
the constructed FG is a matrix model. Then it was suggested [49] and given that the
Majorana condition can be imposed, a solution satisfying the conditions (a) and (b) above
is the following. We choose to start with the SO(6)× SO(12) as the initial gauge theory
with fermions in the (4,32) representation satisfying in this way the criteria to obtain
chiral fermions in tensorial representation of a fuzzy space. Another important point is
that using the gauge-theoretic formulation of gravity to construct the FG one is led to in
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Figure 4: The RG evolution of gauge couplings from the GUT scale up to the Planck
scale is shown for the four cases for scenario C. Top left: 422. Top right: 422D. Bottom
left: 3221. Bottom right: 3221D.

gauging the SO(6) × U(1) ∼ SO(2, 4) × U(1). Therefore from this point of view there
exist only a small difference as compared to the CG. Since the extra U(1) symmetry of
the gravity part is irrelevant to the above calculations, one could identify scenario C to
the FG model. Obviously, the notable difference will be that there is no (SO(18)) group
above the Planck scale, but this does not affect the calculation above.

4 Conclusions and Discussion

In a previous paper [33], a potentially realistic model was constructed based on the idea
that unification of gravity and internal interactions in four dimensions can be achieved by
gauging an enlarged tangent Lorentz group. This possibility was based on the observation
that the dimension of the tangent space is not necessarily equal to the dimension of the
corresponding curved manifold. In [33], due to the very interesting fact that gravitational
theories can be described by gauge theories, first was constructed the CG in a gauge
theoretic manner by gauging the SO(2, 4) group. Of particular interest was the fact that
the spontaneous symmetry breaking of the constructed CG could lead, among others,
to the EG and the WG. Then it is was possible to unify the CG with internal interac-
tions based on the SO(10) GUT (after breaking of SO(12)), using the higher-dimensional
tangent group SO(2, 16). Inclusion of fermions and application suitably the Weyl and
Majorana conditions led to a fully unified scheme, which was promised to be examined
further concerning its low scale behaviour as well as its cosmological predictions.
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In the present work the behaviour of the fully unified theory has been examined in
some detail by examining its breakings at three scales, namely (i) the scale that the
SO(18) gauge group breaks, MB, (ii) the scale where SO(6) × SO(12) breaks, MX , and
(iii) the SO(10) unification scale of internal interactions, MGUT (the examination of the
model includes the scale that the intermediate gauge groups below the GUT scale break
into the SM gauge group, MI , and it runs all the way down to the electroweak scale).

This leads to three distinct scenaria. In scenario A we assume MB = MX , so SO(18)
breaks immediately to SO(10) and EG, and CG and SO(12) do not run. In scenario B
none of the above-mentioned scales coincide, so all different gauge structures run in their
respective energy regimes. In scenario C, we identify MB = MPl, so there is no SO(18)
running below the Panck scale. The running of the usual internal, i.e. non-gravitational
interactions, has been also examined below the SO(10) breaking scale. In particular,
gauge couplings run down to the scale that the intermediate gauge groups break, MI ,
and in turn the SM gauge couplings are run all the way down to the electroweak scale.
The result is that the proposed in [33] unification scheme of all interactions, including
gravity in the form of CG, which subsequently was broken to EG is a realistic one and
can be examined perturbatively for scenaria B and C, while we provide an estimate of all
the symmetry breaking scales for each case. The FG case exhibits the same behaviour as
scenario C.

In the future we plan to study the cosmological implications of the constructed Unified
scheme. In particular we plan to do studies along those done in the ghost-free bigravity [80]
and of E. Kolb and collaborators [81]. A more immediate examination concerns the
implications of the various spontaneous symmetry breakings discussed in the present paper
in the formation of cosmic strings and their possible gravitational wave signal along the
study of [82].

It is always useful to repeat the reason that the present unified scheme overcomes the
Coleman–Mandula (CM) theorem [83]. The point being that the CM theorem has several
hypotheses and the most relevant is that the theory is Poincaré invariant. In [33], given
that the final aim was to obtain the Einstein gravitational theory coupled to the GUTs,
obviously the original conformal group, which is an extension of the Poincaré group was
spontaneously broken to the Lorentz group.
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Appendix: β-Functions of the Gauge Couplings at each

Energy Sale

In this section we give all the one-loop β-functions of the gauge couplings of all gauge
groups -with the appropriate field content each time- that we encounter after the various
spontaneous symmetry breakings mentioned above. They are given by:

βgi = 16π2µ
d

dµ
gi = big

3
i or βαi

= 2πµ
d

dµ
αi = biα

2
i , (40)

where αi = g2i /4π and bi is the respective β-function coefficient, which is the quantity we
need to calculate in each case.

Considering the group-theoretical details of all three SM gauge groups well-known, we
can give their respective β-function coefficients:

b3 =− 7 (41)

b2 =− 19

6
(42)

b1 =
41

10
, (43)

where the b1 ocoefficient is given in the usual SU(5) normalization.

For the four intermediate gauge groups using the usual way of [84], the bi coefficients can
be easily found to be:

442:

• b4 = −7
3

• b2L = 2

• b2R = 28
3

442D:

• b4 =
2
3

• b2L = 28
3

• b2R = 28
3

3221:

• b3 = −7

• b2L = −8
3

• b2R = −2

• b1 =
11
2

3221D:

• b3 = −7

• b2L = −4
3

• b2R = −4
3

• b1 = 7

For the bigger groups that feature in the above theory, we give a list of a few details that
are necessary for the calculation of their bi’s:
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SO(6):

• Generators:
N2 − 1 = 15

• C2(15) = 4

• T (15) = 4

• T (4) = 1/2

SO(10):

• Generators:
N(N − 1)/2 =
45

• C2(45) =
T (45) = 8

• T (16) = 2

• T (10) = 1

• T (54) = 12

• T (126) = 35

• T (210) = 56

SO(12):

• Generators:
N(N − 1)/2 =
66

• C2(66) =
T (66) = 10

• T (12) = 1

• T (32) = 4

• T (77) = 14

• T (495) = 120

• T (792) = 210

SO(18):

• Generators:
N(N − 1)/2 =
153

• C2(153) =
T (153) = 16

• T (18) = 1

• T (170) = 20

• T (256) = 32

• T (3060) =
560

• T (8568) =
1820

With this information at hand, we can now calculate their respective bi coefficients for
each intermediate breaking scenario:

SO(10):

• b42210 = 16
3

• b422D10 = −28
3

• b322110 = −32
3

• b3221D10 = 16
3

SO(12):

• b42212 = 331
3

• b422D12 = 75

• b322112 = 221
3

• b3221D12 = 331
3

SO(6):

• b4226 = 4

• b422D6 = 4

• b32216 = 4

• b3221D6 = 4

SO(18):

• b42218 = −

• b422D18 = −

• b322118 = −

• b3221D18 = −

One can see that, since all the scalars that break the intermediate symmetries at MI are
singlets under the CG group, its bi’s will be the same for each case.
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