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Abstract

The search for renormalization group invariant relations among parameters to all orders in perturbation
theory constitutes the basis of the reduction of couplings concept. Reduction of couplings can be achieved
in certain N = 1 supersymmetric Grand Unified Theories and few of them can become even finite at all
loops. We review the basic idea, the tools that have been developed as well as the resulting theories in
which successful reduction of couplings has been achieved so far. These include: (i) a reduced version of
the minimal N = 1 SU(5) model, (ii) an all-loop finite N = 1 SU(5) model, (iii) a two-loop finite N = 1
SU(3)3 model and finally (vi) a reduced version of the Minimal Supersymmetric Standard Model. In this
paper we present a number of benchmark scenarios for each model and investigate their observability at
existing and future hadron colliders. The heavy supersymmetric spectra featured by each of the above
models are found to be beyond the reach of the 14 TeV HL-LHC. It is also found that the reduced version
of the MSSM is already ruled out by the LHC searches for heavy neutral MSSM Higgs bosons. In turn
the discovery potential of the 100 TeV FCC-hh is investigated and found that large parts of the predicted
spectrum of these models can be tested, but the higher mass regions are beyond the reach even of the FCC-hh.
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1 Introduction

The reduction of couplings method [1–4] (see also [5–7]) is a promising method which relates originally
seemingly independent parameters to a single, “primary” coupling. The method requires the original theory
to which it is applied to be a renormalizable one, and the resulting relation among the parameters to be
valid at all energy scales, i.e. Renormalization Group Invariant (RGI).

A next (natural) step, after the introduction of a novel symmetry through a Grand Unified Theory
(GUT) [8–13]), in order to achieve reduction of free parameters of the SM is the relation of the gauge sector
to the Yukawa sector (Gauge Yukawa Unification, GYU). This was the central characteristic of the reduction
of couplings approach in the first period of searches, applied in N = 1 GUTs [14–27]. According to that
approach, being in a GUT environment, RGI relations are set between the unification scale and the Planck
scale. One-loop consideration can guarantee the all-loop validity of those relations. Moreover, RGI relations
can be found which guarantee all order finiteness of a theory. The method has predicted the top quark
mass in the finite N = 1 SU(5) model [14, 15] as well as in the minimal N = 1 SU(5) one [16] before its
experimental measurement [28].

Since SuperSymmetry (SUSY) seems an essential ingredient for the reduction of couplings method, we
have to include a supersymmetry breaking sector (SSB), which involves dimension-1 and -2 couplings. The
supergraph method and the spurion superfield technique played an important role for the progress in that
sector, leading to complete all-loop finite models, i.e. including the SSB sector. The all-loop finite N = 1
SU(5) model [29] has given a prediction for the Higgs mass compatible with the experimental results [30–32]
and a heavy SUSY mass spectrum, consistent with the experimental non-observation of these particles.
The reduction of couplings method has been applied to several other cases. The full analysis of the most
successful models, that includes predictions in agreement with the experimental measurements of the top
and bottom quark masses for each model, can be found in a recent work [37].

In this paper we address the question to what extent the reduction of couplings idea, as applied in
the so far phenomenologically successful models, can be experimentally tested at HL-LHC and future FCC
hadron collider. To this end we propose a number of benchmark points for each model. We present the
SUSY breaking parameters used as input in each benchmark to calculate the corresponding Higgs boson
and supersymmetric particles masses. Then we compute the expected production cross sections at the 14
TeV (HL-)LHC and the 100 TeV FCC-hh and investigate which production channels can be observed.

The present work is organized as follows. In Section 2 we review the basic idea of the reduction of
couplings. In Section 3 we list the phenomenological constraints used in our analyses, wile in Section 4 we
explain the computational setup. In Sections 5, 6, 7 and 8 we review four interesting models, namely (i) the
Minimal N = 1 Supersymmetric SU(5), (ii) the Finite N = 1 Supersymmetric SU(5), (iii) the Finite SU(3)3

and (iv) the MSSM, in which the reduction of couplings has been successfully applied. We briefly review some
earlier results of our phenomenological analysis. In this context the new version of the FeynHiggs [33–36]
code plays a crucial role, which was used to calculate the Higgs-boson predictions, in particular the mass
of the lightest CP-even Higgs boson. The improved predictions of FeynHiggs are compared with the LHC
measurements and the Beyond Standard Model (BSM) Higgs boson searches. As a new part of the analysis
we examine in each model the discovery potential of the Higgs and SUSY spectrum at approved future and
hypothetical future hadron colliders. Finally, Section 8 is dedicated to brief conclusive remarks.

2 Theoretical Basis

Here we will briefly review the core idea of the reduction of couplings method. The target is to single out
a basic parameter (which we will call the primary coupling), where all other parameters can be expressed in
terms of this one through RGI relations. Such a relation has, in general, the form Φ(g1, · · · , gA) = const.
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which should satisfy the following partial differential equation (PDE)

µ
dΦ

dµ
= ~∇Φ · ~β =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (1)

where βa is the β-functions of ga. The above PDE is equivalent to the following set of ordinary differential
equations (ODEs), which are called Reduction Equations (REs) [2–4],

βg
dga
dg

= βa , a = 1, · · · , A− 1 , (2)

where now g and βg are the primary coupling and its corresponding β-function. There are obviously A− 1
relations in the form of Φ(g1, · · · , gA) = const. in order to express all other couplings in term of the primary
one.

The crucial demand is that the above REs admit power series solutions

ga =
∑
n

ρ(n)
a g2n+1 , (3)

which preserve perturbative renormalizability. Without this requirement, we just trade each “dependent”
coupling for an integration constant. The power series, which are a set of special solutions, fix that constant.
It is very important to point out that the uniqueness of such a solution can be already decided at the one-loop
level [2–4]. In supersymmetric theories, where the asymptotic behaviour of several parameters are similar,
the use of power series as solutions of the REs are justified. But, usually, the reduction is not “complete”,
which means that not all of the couplings can be reduced in favor of the primary one, leading to the so called
“partial reduction” [38,39].

We proceed to the reduction scheme for massive parameters, which is far from being straightforward. A
number of conditions is required (see for example [40]). Nevertheless, progress has been achieved, starting
from [41], and finally we can introduce mass parameters and couplings carrying mass dimension [42, 43] in
the same way as dimensionless couplings.

Consider the superpotential

W =
1

2
µij Φi Φj +

1

6
Cijk Φi Φj Φk , (4)

and the SSB sector Lagrangian

− LSSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2
(m2)ji φ

∗ iφj +
1

2
M λiλi + h.c., (5)

where φi’s are the scalar fields of the corresponding superfields Φi’s and λi are the gauginos.
Let us write down some well known relations:

(i) The β-function of the gauge coupling at one-loop level is given by [44–48]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (6)

where T (Ri) is the Dynkin index of the rep Ri where the matter fields belong and C2(G) is the quadratic
Casimir operator of the adjoint rep G.
(ii) The anomalous dimension γ(1) i

j , at a one-loop level, of a chiral superfield is

γ(1) i
j =

1

32π2

[
Cikl Cjkl − 2 g2 C2(Ri)δ

i
j

]
. (7)
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(iii) The β-functions of Cijk’s, at one-loop level, following the N = 1 non-renormalization theorem [49–51],
are expressed in terms of the anomalous dimensions of the fields involved

βijkC =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i . (8)

We proceed by assuming that the REs admit power series solutions:

Cijk = g
∑
n=0

ρijk(n)g
2n . (9)

Trying to obtain all-loop results we turn to relations among β-functions. The spurion technique [51–55] gives
all-loop relations among SSB β-functions [56–62]. Then, assuming that the reduction of Cijk is possible to
all orders

dCijk

dg
=
βijkC
βg

, (10)

as well as for hijk

hijk = −M dCijk

d ln g
, (11)

it can be proven [63,64] that the following relations are all-loop RGI

M = M0
βg
g
, (12)

hijk = −M0 β
ijk
C , (13)

bij = −M0 β
ij
µ , (14)

(m2)ij =
1

2
|M0|2 µ

dγij
dµ

, (15)

where M0 is an arbitrary reference mass scale to be specified and Eq. (12) is the Hisano-Shifman relation [59]
(note that in both assumptions we do not rely on specific solutions of these equations).
As a next step we substitute the last equation, Eq. (15), by a more general RGI sum rule that holds to all
orders [65]

m2
i +m2

j +m2
k = |M |2

{
1

1− g2C2(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2

}
+
∑
l

m2
l T (Rl)

C2(G)− 8π2/g2

d lnCijk

d ln g
,

(16)

which leads to the following one-loop relation

m2
i +m2

j +m2
k = |M |2 . (17)

Finally, note that in the case of product gauge groups, Eq. (12) takes the form

Mi =
βgi
gi
M0 , (18)

where i denotes the group of the product. This will be used in the Reduced MSSM case.
Consider an N = 1 globally supersymmetric gauge theory, which is chiral and anomaly free, where G

is the gauge group and g the associated gauge coupling. The theory has the superpotential of Eq. (4),

4



while the one-loop gauge and Cijks β-functions are given by Eq. (6) and Eq. (8) respectively and the one-
loop anomalous dimensions of the chiral superfields by Eq. (7).
Demanding the vanishing of all one-loop β-functions, Eqs.(6,7) lead to the relations∑

i

T (Ri) = 3C2(G) , (19)

CiklCjkl = 2δijg
2C2(Ri) . (20)

The finiteness conditions for an N = 1 supersymmetric theory with SU(N) associated group is found in [66]
while discussion of the no-charge renormalization and anomaly free requirements can be found in [67]. It
should be noted that conditions (19) and (20) are necessary and sufficient to ensure finiteness at the two-loop
level [44–48].

The requirement of finiteness, at the one-loop level, in softly broken SUSY theories demands addi-
tional constraints among the soft terms of the SSB sector [68], while, once more, these one-loop requirements
assure two-loop finiteness, too [69]. These conditions impose restrictions on the irreducible representations
Ri of the gauge group G as well as on the Yukawa couplings. For example, since U(1)s are not compatible
with condition (19), the MSSM is excluded. Therefore, a GUT is initially required with the MSSM being
its low energy theory. Also, since condition (20) forbids the appearance of gauge singlets (C2(1) = 0),
F-type spontaneous symmetry breaking [70] are not compatible with finiteness. Finally, D-type sponta-
neous breaking [71] is also incompatible since it requires a U(1) group.

The nontrivial point is that the relations among couplings (gauge and Yukawa) which are imposed by
the conditions (19) and (20) should hold at any energy scale. The necessary and sufficient condition is to
require that such relations are solutions to the REs (see Eq. (10))

βg
dCijk
dg

= βijk (21)

holding at all orders. We note, once more, that the existence of one-loop level power series solution guarantees
the all-order series.

There exist the following theorem [72, 73] which points down which are the necessary and sufficient
conditions in order for an N = 1 SUSY theory to be all-loop finite. In refs [72–78] it was shown that for an
N = 1 SUSY Yang-Mills theory, based on a simple gauge group, if the following four conditions are fulfilled:
(i) No gauge anomaly is present.
(ii) The β-function of the gauge coupling is zero at one-loop level

β(1)
g = 0 =

∑
i

T (Ri)− 3C2(G). (22)

(iii) The condition of vanishing for the one-loop anomalous dimensions of matter fields,

γ(1)i
j = 0 =

1

32π2
[ Cikl Cjkl − 2 g2 C2(R)δij ], (23)

admits solution of the form
Cijk = ρijkg, ρijk ∈ C . (24)

(iv) When considered as solutions of vanishing Yukawa β-functions (at one-loop order), i.e. βijk = 0, the
above solutions are isolated and non-degenerate;
then, each of the solutions in Eq. (24) can be extended uniquely to a formal power series in g, and the as-
sociated super Yang-Mills models depend on the single coupling constant g with a vanishing, at all orders,
β-function.

While the validity of the above cannot be extended to non-SUSY theories, it should be noted that
reduction of couplings and finiteness are intimately related.
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3 Phenomenological Constraints

In this section we briefly review several experimental constraints that were applied in our phenomenolog-
ical analysis. The used values do not correspond to the latest experimental results, which, however, has
a negligible impact on our analysis.

In our models we evaluate the pole mass of the top quark while the bottom quark mass is evaluated
at the MZ scale (to avoid uncertainties to its pole mass). The experimental values, taken from ref. [79] are:

mexp
t = 173.1± 0.9 GeV , mb(MZ) = 2.83± 0.10 GeV . (25)

We interpret the Higgs-like particle discovered in July 2012 by ATLAS and CMS [30,31] as the light CP-even
Higgs boson of the MSSM [80–82]. The Higgs boson experimental average mass is [79] a

Mexp
h = 125.10± 0.14 GeV . (26)

The theoretical uncertainty [33, 34], however, for the prediction of Mh in the MSSM dominates the total
uncertainty, since it is much larger than the experimental one. In our following analyses we shall use
the new FeynHiggs code [33–35] (Version 2.16.0) to predict the Higgs mass.b FeynHiggs evaluates the
Higgs masses based on a combination of fixed order diagrammatic calculations and resummation of the
(sub)leading logarithmic contributions at all orders. This provides a reliable Mh even for a large SUSY
scale. This new version gives a downward shift on the Higgs mass Mh of O(2 GeV) for large SUSY masses
and in particular gives a reliable point-by-point evaluation of the Higgs-boson mass uncertainty [36]. The
theoretical uncertainty calculated is added linearly to the experimental error in Eq. (26).

Furthermore, recent results from the ATLAS experiment [84] set limits to the mass of the pseudoscalar
Higgs boson, MA, in comparison with tanβ. For models with tanβ ∼ 45 − 55, as the ones examined here,
the lowest limit for the physical pseudoscalar Higgs mass is

MA & 1900 GeV. (27)

We also consider the following four flavor observables where SUSY has non-negligible impact. For
the branching ratio BR(b→ sγ) we take a value from [85,86], while for the branching ratio BR(Bs → µ+µ−)
we use a combination of [87–91]:

BR(b→ sγ)exp

BR(b→ sγ)SM
= 1.089± 0.27 , BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 . (28)

For the Bu decay to τν we use [86,92,93] and for ∆MBs we use [94,95]:

BR(Bu → τν)exp

BR(Bu → τν)SM
= 1.39± 0.69 ,

∆Mexp
Bs

∆MSM
Bs

= 0.97± 0.2 . (29)

In the following sections we will apply these constraints to each model and discuss the corresponding col-
lider phenomenology.

4 Computational setup

The setup for our phenomenological analysis is as follows. Starting from an appropriate set of MSSM
boundary conditions at the GUT scale, parameters are run down to the SUSY scale using a private code.
Two-loop RGEs are used throughout, with the exception of the soft sector, in which one-loop RGEs are used.

aThis is the latest available LHC combination. More recent measurements confirm this value.
bAn analysis of the impact of the improved Mh calculation in various SUSY models can be found in [83].
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Figure 1: Flow of information between used computer codes (see text for details).

The running parameters are then used as inputs for both FeynHiggs [33–36] and a SARAH [96] generated,
custom MSSM module for SPheno [97, 98]. It should be noted that FeynHiggs requires the mb(mb) scale,
the physical top quark mass mt as well as the physical pseudoscalar boson mass MA as input. The first two
values are calculated by the private code while MA is calculated only in DR scheme. This single value is
obtained from the SPheno output where it is calculated at the two-loop level in the gaugeless limit [99,100].
The flow of information between codes in our analysis is summarised in Fig. 1.

At this point both codes contain a consistent set of all required parameters. SM-like Higgs boson mass
as well as low energy observables mentioned in Sec. 3 are evaluated using FeynHiggs. To obtain collider
predictions we use SARAH to generate UFO [101, 102] model for MadGraph event generator. Based on SLHA
spectrum files generated by SPheno, we use MadGraph5 aMC@NLO [103] to calculate cross sections for Higgs
boson and SUSY particle production at the HL-LHC and a 100 TeV FCC-hh. Processes are generated at the
leading order, using NNPDF31 lo as 0130 [104] structure functions interfaced through LHAPDF6 [105]. Cross
sections are computed using dynamic scale choice, where the scale is set equal to the transverse mass of an
event, in 4 or 5-flavor scheme depending on the presence or not of b-quarks in the final state. The results
are given in Sec. 5, 6 and 7.

5 The Minimal N = 1 Supersymmetric SU(5) Model

We start with the partial reduction of the N = 1 SUSY SU(5) model [16, 41]. Our notation is as follows:
ΨI(10) and ΦI(5) refer to the three generations of leptons and quarks (I = 1, 2, 3), Σ(24) is the adjoint
which breaks SU(5) to SU(3)C×SU(2)L×U(1)Y and H(5) represent the two Higgs superfields for the elec-
troweak symmetry breaking (ESB) [106,107]. The choice of using only one set of (5+ 5̄) for the ESB renders
the model asymptotically free (i.e. βg < 0 ). The superpotential of the model is described by

W =
gt
4
εαβγδτ Ψ

(3)
αβΨ

(3)
γδHτ +

√
2gb Φ(3)αΨ

(3)
αβH

β
+
gλ
3

ΣβαΣγβΣαγ + gf H
α

ΣβαHβ

+
µΣ

2
ΣγαΣαγ + µH H

α
Hα ,

(30)

where only the third generation Yukawa couplings are taken into account. The indices α, β, γ, δ, τ are SU(5)
ones. A detailed presentation of the model can be found in [108] as well as in [109,110].

Our primary coupling is the gauge coupling g. In this model the gauge-Yukawa unification can be achieved
through two sets of solutions which are asymptotically free [108]:

a : gt =

√
2533

2605
g +O(g3) , gb =

√
1491

2605
g +O(g3) , gλ = 0 , gf =

√
560

521
g +O(g3) ,

b : gt =

√
89

65
g +O(g3) , gb =

√
63

65
g +O(g3) , gλ = 0 , gf = 0 ,

(31)
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where the higher order terms denote uniquely computable power series in g. Let us note that the reduction of
the dimensionless sector is independent of the dimensionful one. These solutions describe the boundaries of
a RGI surface in the parameter space which is AF and where gf and gλ could be different from zero.
Therefore, a partial reduction is possible where gλ and gf are independent (non-vanishing) parameters
without endangering asymptotic freedom (AF). The proton decay constraints favor solution a, therefore we
choose this one for our discussion. c

The SSB Lagrangian is

−Lsoft = m2
HuĤ

∗αĤα +m2
HdĤ

∗
αĤ

α

+m2
ΣΣ̂† αβ Σ̂βα +

∑
I=1,2,3

[m2
ΦI Φ̂∗ (I)

α Φ̂(I)α

+ m2
ΨI Ψ̂† (I)αβΨ̂

(I)
βα ] + { 1

2
Mλλ+BHĤ

α

Ĥα +BΣΣ̂αβ Σ̂βα + hf Ĥ
α

Σ̂βαĤβ

+
hλ
3

Σ̂βαΣ̂γβΣ̂αγ +
ht
4
εαβγδτ Ψ̂

(3)
αβΨ̂

(3)
γδ Ĥτ +

√
2hb Φ̂(3)αΨ̂

(3)
αβĤ

β

+ h.c. } ,

(32)

where the hat denotes the scalar components of the chiral superfields. The parameters M , µΣ and µH are
treated as independent ones, since they cannot be reduced in a suitable form. The lowest-order reduction
for the parameters of the SSB Lagrangian are given by:

BH =
1029

521
µHM , BΣ = −3100

521
µΣM , (33)

ht = −gtM , hb = −gbM , hf = −gf M , hλ = 0 ,

m2
Hu = −569

521
M2 , m2

Hd = −460

521
M2 , m2

Σ =
1550

521
M2 ,

m2
Φ3 =

436

521
M2 , m2

Φ1,2 =
8

5
M2 , m2

Ψ3 =
545

521
M2 , m2

Ψ1,2 =
12

5
M2 .

(34)

We choose the gaugino mass M for characterizing the SUSY breaking scale. Finally, we note that (i) BΣ

and BH are treated as independent parameters without spoiling the one-loop reduction solution of Eq. (34)
and (ii) the soft scalar mass sum rule still holds despite the specific relations among the gaugino mass and
the soft scalar masses.

We analyze the particle spectrum predicted for µ < 0 as the only phenomenologically acceptable choice
(in the µ > 0 the quark masses do not match the experimental measurements). Below MGUT all couplings
and masses of the theory run according to the RGEs of the MSSM. Thus we examine the evolution of
these parameters according to their RGEs up to two-loops for dimensionless parameters and at one-loop for
dimensionful ones imposing the corresponding boundary conditions.

As presented in [37], the pole top mass mt is predicted within 2σ of Eq. (25). Concerning the mb(MZ)
prediction (also in [37]), we take into account a theoretical uncertainty of ∼ 3%. But even taking theoretical
and experimental uncertainties into account in combination, we find agreement with the experimental value
only at the 4σ level. However, since there additional uncertainties of a few percent on the quark Yukawa
couplings at the SUSY-breaking scale, that were not fully included (see [20]) into the evaluation of the
bottom mass, we still consider the model as viable and proceed with its analysis.

The prediction for Mh as a function of the unified gaugino mass M with µ < 0 is given in Fig. 2 (left).
The ∆MBs channel is responsible for the gap at the B-physics allowed points (green points). The scattered
points come from the fact that for each M we vary the free parameters µΣ and µH . Fig. 2 (right) gives the
theoretical uncertainty of the Higgs mass for each point, calculated with FeynHiggs 2.16.0 [36]. There is
substantial improvement to the Higgs mass uncertainty compared to past analyses, since it has dropped by
more than 1 GeV.

cgλ = 0 is inconsistent, but gλ <∼ 0.005 is necessary in order for the proton decay constraint [20] to be satisfied. A small gλ
is expected to not affect the prediction of unification of SSB parameters.
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Figure 2: Scatter plots for the Minimal N = 1 SU(5) model. Left: The lightest Higgs mass, Mh, as a
function of M . The B-physics constraints allow (mostly) higher scale points (with green color). Right: The
theoretical uncertainty of the light Higgs mass. [36].

Large parts of the predicted particle spectrum are in agreement with the B-physics observables and the
lightest Higgs boson mass measurement and its theoretical uncertainty. We choose three benchmarks in
the low-mass region, marking the points with the lightest SUSY particle (LSP) above 1200 GeV (MINI-
1), 1500 GeV (MINI-2) and 2200 GeV (MINI-3), respectively. The mass of the LSP can go as high as
∼ 3800 GeV, but the cross sections calculated below will then be negligible and we restrict ourselves here
to the low-mass region. The values presented in Table 1 were used as input to get the full supersymmetric
spectrum from SPheno 4.0.4 [97,98]. Mi are the gaugino masses and the rest are squared soft sfermion masses
which are diagonal (m2 = diag(m2

1,m
2
2,m

2
3)), and soft trilinear couplings (also diagonal Ai = 13×3Ai).

M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

MINI-1 1227 2228 5310 4236 4012 4325 4772 1732 50.3 61712

MINI-2 1507 2721 6376 5091 4962 5245 5586 2005 52.0 74452

MINI-3 2249 4019 9138 7367 12462 7571 8317 3271 50.3 107622

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2 m2

e3

MINI-1 45482 37142 27672 59742 41812 54782 41772 41602 24912

MINI-2 54692 45212 33582 72062 50392 54782 49942 50702 30192

MINI-3 78902 66392 49342 104122 72332 94952 72112 74592 44642

Table 1: Minimal N = 1 SU(5) predictions that are used as input to SPheno. Mass parameters are in GeV
and rounded to 1 GeV.

The resulting masses of all the particles that will be relevant for our analysis can be found in
Table 2. The three first values are the heavy Higgs masses. The gluino mass is Mg̃, the neutralinos
and the charginos are denoted as Mχ̃0

i
and Mχ̃±

i
, while the slepton and sneutrino masses for all three

generations are given as Mẽ1,2,3 , Mν̃1,2,3 . Similarly, the squarks are denoted as Md̃1,2
and Mũ1,2 for

the first two generations. The third generation masses are given by Mt̃1,2
for stops and Mb̃1,2

for

sbottoms.
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MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

M
χ̃±
1

M
χ̃±
2

MINI-1 2.660 2.660 2.637 5.596 1.221 2.316 4.224 4.225 2.316 4.225

MINI-2 3.329 3.329 3.300 6.717 1.500 2.827 5.076 5.077 2.827 5.078

MINI-3 8.656 8.656 8.631 9.618 2.239 4.176 7.357 7.358 4.176 7.359

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

MINI-1 3.729 3.728 2.445 2.766 5.617 6.100 4.332 4.698 4.312 4.704

MINI-2 4.539 4.538 2.968 3.356 6.759 7.354 5.180 5.647 5.197 5.652

MINI-3 6.666 6.665 4.408 4.935 9.722 10.616 7.471 8.148 7.477 8.151

Table 2: Masses of Higgs bosons and some of the SUSY particles for each benchmark of the Minimal N = 1
SU(5) (in TeV).

Table 3 shows the expected production cross section for selected channels at the 100 TeV future
FCC-hh collider. We do not show any cross sections for

√
s = 14 TeV, since the prospects for

discovery of MINI scenarios at the HL-LHC are very dim. SUSY particles are too heavy to be
produced with cross sections greater that 0.01 fb. Concerning the heavy Higgs bosons, the main
search channels will be H/A→ τ+τ−. Our heavy Higgs-boson mass scale shows values >∼ 2500 GeV
with tanβ ∼ 50. The corresponding reach of the HL-LHC has been estimated in [142]. In comparison
with our benchmark points we conclude that they will not be accessible at the HL-LHC.d

The situation changes for the FCC-hh. Theory analyses [143, 144] have shown that for large
tanβ heavy Higgs-boson mass scales up to ∼ 8 TeV may be accessible, both for neutral as well as
for charged Higgs bosons. The relevant decay channels are H/A → τ+τ− and H± → τντ , tb. This
places our three benchmark points well within the covered region (MINI-1 and MINI-2) or at the
border of the parameter space that can be probed (MINI-3).

The energy of 100 TeV is big enough to produce SUSY particles in pairs. However, the cross
sections remain relatively small. Only for the MINI-1 scenario the squark pair and squark-gluino
(summed over all squarks) production cross sections can reach tens of fb. For MINI-2 and MINI-3
scenarios the cross sections are significantly smaller. In these scenarios squarks decay preferentially
into a quark+LSP (with BR ∼ 0.95), gluino into t̃t̄ and b̃b̄ +h.c with BR ∼ 0.33 each.

The SUSY discovery reach at the FCC-hh with 3 ab−1 was evaluated in [145] for a certain set of
simplified models. In the following we will compare these simplified model limits with our benchmark
points to get an idea, which part of the spectrum can be covered at the FCC-hh. A more detailed
evaluation with the future limits implemented into proper recasting tools would be necessary to
obtain a firmer statement. However, such a detailed analysis goes beyond the scope of our paper
and we restrict ourselves to the simpler direct comparison of the simplified model limits with our
benchmark predictions.

Concerning the scalar tops, the mass predictions of MINI-1 and MINI-2 are well within the
anticipated reach of the FCC-hh, while MINI-3 predicts a too heavy stop mass. On the other hand,
even for MINI-1 and MINI-2 no 5σ discovery can be expected. The situation looks more favorable
for the first and second generation squarks. All the predicted masses can be excluded at the FCC-hh,
whereas a 5σ discovery will be difficult, but potentially possible (see Fig. 19 in [145]). Even more
favorable appear the prospects for gluino searches at the FCC-hh. All three benchmark points may
lead to a 5σ discovery (see Fig. 13 in [145]). On the other hand, chances for chargino/neutralino

dThe analysis presented in [142] only reaches MA ≤ 2000 GeV, where an exclusion down to tanβ ∼ 30 is expected. An
extrapolation to tanβ ∼ 50 reaches Higgs-boson mass scales of ∼ 2500 GeV.
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searches are slim at the FCC-hh. The Next-to LSP (NLSP) can only be accessed for Mχ̃0
1

<∼ 1 TeV
(see Fig. 21 in [145]), where all our benchmark points have Mχ̃0

1
> 1 TeV. Taking into account that

our three benchmark points represent only the lower part of the possible mass spectrum (with LSP
masses of up to ∼ 1.5 TeV higher), we conclude that even at the FCC-hh large parts of the possible
SUSY spectrum will remain elusive.

scenarios MINI-1 MINI-2 MINI-3 scenarios MINI-1 MINI-2 MINI-3√
s 100 TeV 100 TeV 100 TeV

√
s 100 TeV 100 TeV 100 TeV

χ̃0
1χ̃

0
1 0.04 0.02 ũiχ̃

−
1 , d̃iχ̃

+
1 + h.c. 1.00 0.35 0.03

χ̃0
1χ̃

0
3 0.02 0.01 ũiχ̃

−
2 , d̃iχ̃

+
2 + h.c. 0.07 0.02

χ̃0
2χ̃

0
2 0.06 0.02 q̃iχ̃

0
1, q̃
∗
i χ̃

0
1 0.38 0.14 0.02

χ̃0
2χ̃

0
3 0.03 0.01 q̃iχ̃

0
2, q̃
∗
i χ̃

0
2 0.51 0.17 0.02

χ̃0
2χ̃

0
4 0.02 0.01 ν̃iẽ

∗
j , ν̃
∗
i ẽj 0.06 0.02

χ̃0
3χ̃

0
4 0.05 0.02 Hbb̄ 84.04 30.10 0.17

χ̃0
2χ̃

+
1 2.20 0.98 0.18 Abb̄ 84.79 29.79 0.18

χ̃0
3χ̃

+
2 0.10 0.04 0.01 H+bt̄+H−tb̄ 33.24 12.76 0.1

χ̃0
4χ̃

+
2 0.10 0.04 0.01 H−bb̄ 0.04 0.02

g̃g̃ 7.76 2.02 0.11 Htt̄ 0.03 0.01
g̃χ̃0

1 0.28 0.11 0.01 Att̄ 0.02 0.01
g̃χ̃0

2 0.34 0.12 0.01 Htb 0.01
g̃χ̃+

1 0.70 0.27 0.03 HA 0.03 0.01
q̃iq̃j , q̃iq̃

∗
j 21.15 7.44 0.74 HH+ 0.06 0.02

χ̃+
1 χ̃
−
1 1.19 0.54 0.09 H+W− 6.50 2.96 0.03

χ̃+
1 χ̃
−
2 0.05 0.02 HW+ 0.02 0.01

χ̃+
2 χ̃
−
1 0.05 0.02 H+H− 0.04 0.01

χ̃+
2 χ̃
−
2 0.06 0.02 AH+ 0.06 0.02

ẽiẽ
∗
j 0.16 0.08 0.01 AW+ 0.02 0.01

q̃ig̃, q̃
∗
i g̃ 30.57 9.33 0.66 HZ 1.38 0.58 0.01

ν̃iν̃
∗
j 0.04 0.02 AZ 1.20 0.52 0.01

Table 3: Expected production cross sections (in fb) for SUSY particles in the MINI scenarios. There are no
channels with cross sections exceeding 0.01 fb at

√
s = 14 TeV.

6 The Finite N = 1 Supersymmetric SU(5) Model

We proceed now to the finite to all-orders SU(5) gauge theory, where the reduction of couplings
is restricted to the third generation. An older examination of this specific Finite Unified Theory
(FUT) was shown to be in agreement with the experimental constraints at the time [29] and has
predicted, almost five years before its discovery, the light Higgs mass in the correct range. As
discussed below, improved Higgs calculations predict a somewhat different interval that is still in
agreement with current experimental data. The particle content of the model has three (5 + 10)
supermultiplets for the three generations of leptons and quarks, while the Higgs sector consists of
four supermultiplets (5 + 5) and one 24. The finite SU(5) group is broken to the MSSM, which
of course in no longer a finite theory [14–17,21,24].

In order for this finite to all-orders SU(5) model to achieve Gauge Yukawa Unification (GYU),
it should have the following characteristics:
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(i) The one-loop anomalous dimensions are diagonal i.e., γ
(1) j
i ∝ δji .

(ii) The fermions of the 5i and 10i (i = 1, 2, 3) are not coupled to the 24.
(iii) The pair of the MSSM Higgs doublets are mostly composed from the 5 and 5̄ Higgs that couple to
the third generation

The superpotential of the model, with an enhanced symmetry due to the reduction of couplings,
is given by [25,27]:

W =

3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iHi ] + gu23 102103H4 (35)

+ gd23 10253H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 .

Discussion of the model with a more detailed description can be found in [14–16]. The non-

degenerate and isolated solutions to the vanishing of γ
(1)
i are:

(gu1 )2 =
8

5
g2 , (gd1)2 =

6

5
g2 , (gu2 )2 = (gu3 )2 =

4

5
g2 ,

(gd2)2 = (gd3)2 =
3

5
g2 , (gu23)2 =

4

5
g2 , (gd23)2 = (gd32)2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf2 )2 = (gf3 )2 =

1

2
g2 , (gf1 )2 = 0 , (gf4 )2 = 0 .

(36)

We have also the relation h = −MC, while the sum rules lead to:

m2
Hu + 2m2

10 = M2 , m2
Hd
− 2m2

10 = −M
2

3
, m2

5
+ 3m2

10 =
4M2

3
. (37)

Therefore, we only have two free parameters, namely m10 and M in the dimensionful sector.
When SU(5) breaks down to the MSSM, a suitable rotation in the Higgs sector [14,15,111–114],

permits only a pair of Higgs doublets (coupled mostly to the third family) to remain light and
acquire vev’s. Avoiding fast proton decay is achieved with the usual doublet-triplet splitting,
although different from the one applied to the minimal SU(5) due to the extended Higgs sector of
the finite model. Therefore, below the GUT scale we get the MSSM where the third generation is
given by the finiteness conditions while the first two remain unrestricted.

Conditions set by finiteness do not restrict the renormalization properties at low energies, so
we are left with boundary conditions on the gauge and Yukawa couplings (36), the h = −MC
relation and the soft scalar-mass sum rule at MGUT. The quark masses mb(MZ) and mt are predicted
within 2σ and 3σ uncertainty, respectively of their experimental values (see [37] for details). The
only phenomenologically viable option is to consider µ < 0, as shown in [37,115–121].

The scatter plot of the light Higgs boson mass is given in Fig. 3 (left), while its theory uncer-
tainty [36] is given in Fig. 3 (right), with the same color coding as in Fig. 2. This point-by-point
uncertainty (calculated with FeynHiggs) drops significantly (w.r.t. past analyses) to 0.65−0.70 GeV.
The scattered points come from the free parameter m10.

Compared to our previous analyses [37, 115–124], the improved evaluation of Mh and its uncer-
tainty prefer a heavier (Higgs) spectrum and thus allows only a heavy supersymmetric spectrum
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Figure 3: Scatter plot for the Finite N = 1 SU(5) model. Left: Mh as a function of M . Green points comply
with B-physics constraints. Right: The lightest Higgs mass theoretical uncertainty calculated with FeynHiggs

2.16.0 [36].

M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

FUTSU5-1 2124 3815 8804 4825 8542 7282 7710 2961 49.9 81122

FUTSU5-2 2501 4473 10198 5508 10482 8493 9023 3536 50.1 93872

FUTSU5-3 3000 5340 11996 6673 23612 10086 10562 4243 49.9 110302

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2 m2

e3

FUTSU5-1 66342 38692 31202 76842 50532 76352 41772 30842 22412

FUTSU5-2 76692 45212 37472 88872 68652 88262 68932 36022 25512

FUTSU5-3 91162 53552 37452 104192 81702 103622 77082 43292 34032

Table 4: Finite N = 1 SU(5) predictions that are used as input to SPheno. Mass parameters are in GeV and
rounded to 1 GeV.

(which is in agreement with all existing experimental constraints). In particular, very heavy col-
ored SUSY particles are favored (nearly independent of the Mh uncertainty), in agreement with the
non-observation of those particles at the LHC [126].
We choose three benchmarks, each featuring the LSP above 2100 GeV, 2400 GeV and 2900 GeV
respectively. Again, they are chosen from the low-mass region. Although the LSP can be as heavy
as ∼ 4000 GeV, but in such cases the production cross sections even at the FCC-hh would be too
small. The input and output of SPheno 4.0.4 [97,98] can be found in Table 4 and Table 5 (with the
notation as in Sect. 5).

The expected production cross sections for various final states are listed in Table 6. At 14 TeV
HL-LHC none of the Finite N = 1 SU(5) scenarios listed in Table 4 has a SUSY production cross
section above 0.01 fb, and thus will (likely) remain unobservable. All superpartners are too heavy
to be produced in pairs. Also the heavy Higgs bosons are far outside the reach of the HL-LHC [142].

At the FCC-hh the discovery prospects for the heavy Higgs-boson spectrum is significantly better.
With tanβ ∼ 50 the first two benchmark points, FUTSU5-1 and FUTSU5-2, are well within the
reach of the FCC-hh. The third point, FUTSU5-3, however, with MA ∼ 16 TeV will be far outside
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MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

M
χ̃±
1

M
χ̃±
2

FUTSU5-1 5.688 5.688 5.688 8.966 2.103 3.917 4.829 4.832 3.917 4.833

FUTSU5-2 7.039 7.039 7.086 10.380 2.476 4.592 5.515 5.518 4.592 5.519

FUTSU5-3 16.382 16.382 16.401 12.210 2.972 5.484 6.688 6.691 5.484 6.691

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

FUTSU5-1 3.102 3.907 2.205 3.137 7.839 7.888 6.102 6.817 6.099 6.821

FUTSU5-2 3.623 4.566 2.517 3.768 9.059 9.119 7.113 7.877 7.032 7.881

FUTSU5-3 4.334 5.418 3.426 3.834 10.635 10.699 8.000 9.387 8.401 9.390

Table 5: Masses for each benchmark of the Finite N = 1 SU(5) (in TeV).

the reach of the FCC-hh. Prospects for detecting production of squark pairs and squark-gluino pairs
are also very dim since their production cross section is also at the level of a few fb. This is as a result
of a heavy spectrum in this class of models (see [145] with the same Figures as discussed in Sec. 5).
Concerning the stops, the lighter one might be accessible in FUTSU5-1. For the squarks of the
first two generations the prospects of testing the model are somewhat better. All three benchmark
models could possibly be excluded at the 2σ level, but no discovery at the 5σ can be expected. The
same holds for the gluino. Charginos and neutralinos will remain unobservable due to the heavy
LSP. As in the previous section, since only the lower part of the possible mass spectrum has been
considered (with LSP masses higher by up to ∼ 1 TeV), we have to conclude that again large parts
of the possible mass spectra will not be observable at the FCC-hh.

scenarios FUTSU5-1 FUTSU5-2 FUTSU5-3 scenarios FUTSU5-1 FUTSU5-2 FUTSU5-3√
s 100 TeV 100 TeV 100 TeV

√
s 100 TeV 100 TeV 100 TeV

χ̃0
2χ̃

0
3 0.01 0.01 ν̃iν̃

∗
j 0.02 0.01 0.01

χ̃0
3χ̃

0
4 0.03 0.01 ũiχ̃

−
1 , d̃iχ̃

+
1 + h.c. 0.15 0.06 0.02

χ̃0
2χ̃

+
1 0.17 0.08 0.03 q̃iχ̃

0
1, q̃
∗
i χ̃

0
1 0.08 0.03 0.01

χ̃0
3χ̃

+
2 0.05 0.03 0.01 q̃iχ̃

0
2, q̃
∗
i χ̃

0
2 0.08 0.03 0.01

χ̃0
4χ̃

+
2 0.05 0.03 0.01 ν̃iẽ

∗
j , ν̃
∗
i ẽj 0.09 0.04 0.01

g̃g̃ 0.20 0.05 0.01 Hbb̄ 2.76 0.85
g̃χ̃0

1 0.03 0.01 Abb̄ 2.73 0.84
g̃χ̃0

2 0.03 0.01 H+bt̄+ h.c. 1.32 0.42
g̃χ̃+

1 0.07 0.03 0.01 H+W− 0.38 0.12
q̃iq̃j , q̃iq̃

∗
j 3.70 1.51 0.53 HZ 0.09 0.03

χ̃+
1 χ̃
−
1 0.10 0.05 0.02 AZ 0.09 0.03

χ̃+
2 χ̃
−
2 0.03 0.02 0.01

ẽiẽ
∗
j 0.23 0.13 0.05

q̃ig̃, q̃
∗
i g̃ 2.26 0.75 0.20

Table 6: Expected production cross sections (in fb) for SUSY particles in the FUTSU5 scenarios.

7 The Finite SU(N)3 Model

We proceed now to a FUT based on a product gauge group. Consider an N = 1 SUSY the-
ory with SU(N)1 × SU(N)2 × · · · × SU(N)k having nf families transforming as (N,N∗, 1, . . . , 1) +
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(1, N,N∗, . . . , 1) + · · ·+ (N∗, 1, 1, . . . , N). Then, the first order coefficient of the β-function, for each
SU(N) group is:

b =

(
−11

3
+

2

3

)
N + nf

(
2

3
+

1

3

)(
1

2

)
2N = −3N + nfN . (38)

Demanding the vanishing of the gauge one-loop β-function, i.e. b = 0, we are led to the choice
nf = 3. Phenomenological reasons lead to the choice of the SU(3)C × SU(3)L × SU(3)R model,
discussed in Ref. [128], while a detailed discussion of the general well known example can be found
in [129–132]. The leptons and quarks transform as:

q =

d u D
d u D
d u D

 ∼ (3, 3∗, 1), qc =

 dc dc dc

uc uc uc

Dc Dc Dc

 ∼ (3∗, 1, 3), λ =

N Ec ν
E N c e
νc ec S

 ∼ (1, 3, 3∗)

(39)
where D are down-type quarks acquiring masses close to MGUT. A cyclic Z3 symmetry is imposed
on the multiplets to achieve equal gauge couplings at the GUT scale and in that case the vanishing
of the first-order β-function is satisfied. Continuing to the vanishing of the anomalous dimension of
all the fields (see Eq. (20)), we note that there are two trilinear invariant terms in the superpotential,
namely:

f Tr(λqcq) +
1

6
f ′ εijkεabc(λiaλjbλkc + qciaq

c
jbq

c
kc + qiaqjbqkc), (40)

with f and f ′ the corresponding Yukawa couplings. The superfields (Ñ , Ñ c) obtain vev’s and provide
masses to leptons and quarks

md = f〈Ñ〉, mu = f〈Ñ c〉, me = f ′〈Ñ〉, mν = f ′〈Ñ c〉. (41)

Having three families, 11 f couplings and 10 f ′ couplings are present in the most general superpo-
tential. Demanding the vanishing of all superfield anomalous dimensions, 9 conditions are imposed∑

j,k

fijk(fljk)∗ +
2

3

∑
j,k

f ′ijk(f ′ljk)∗ =
16

9
g2δil , (42)

where
fijk = fjki = fkij , f ′ijk = f ′jki = f ′kij = f ′ikj = f ′kji = f ′jik . (43)

The masses of leptons and quarks are acquired from the vev’s of the scalar parts of the superfields
Ñ1,2,3 and Ñ c

1,2,3.
At MGUT the SU(3)3 FUT breakse to the MSSM, where as was already mentioned, both Higgs

doublets couple mostly to the third generation. The FUT breaking leaves its mark in the form of
Eq. (42), i.e. boundary conditions on the gauge and Yukawa couplings, the relation among the soft
trilinear coupling, the corresponding Yukawa coupling and the unified gaugino mass and finally the
soft scalar mass sum rule at MGUT. In this specific model the sum rule takes the form:

m2
Hu +m2

t̃c +m2
q̃ = M2 = m2

Hd
+m2

b̃c
+m2

q̃ . (44)

e [133,134] and refs therein discuss in detail the spontaneous breaking of SU(3)3.
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The model is finite to all-orders if the solution of Eq. (42) is both isolated and unique. Then,
f ′ = 0 and we have the relations

f2 = f2111 = f2222 = f2333 =
16

9
g2 . (45)

Since all f ′ vanish, at one-loop order, the lepton masses vanish. Since these masses, even radiatively,
cannot be produced because of the finiteness conditions, we are faced with a problem which needs
further study. If the solution of Eq. (42) is unique but not isolated (i.e. parametric), we can have non
zero f ′ leading to non-vanishing lepton masses and at the same time achieving two-loop finiteness.
In that case the set of conditions restricting the Yukawa couplings read:

f2 = r

(
16

9

)
g2 , f ′2 = (1− r)

(
8

3

)
g2 , (46)

where r parametrises the different solutions and as such is a free parameter. It should be noted
that we use the sum rule as boundary condition for the soft scalar masses.

In our analysis we consider the two-loop finite version of the model, where again below MGUT

we get the MSSM. We take into account two new thresholds for the masses of the new particles at
∼ 1013 GeV and ∼ 1014 GeV resulting in a wider phenomenologically viable parameter space [125].

Looking for the values of the parameter r which comply with the experimental limits, we find
that both the top and bottom masses are in the experimental range (within 2σ) for the same value
of r between 0.65 and 0.80 (we singled out the µ < 0 case as the most promising). The inclusion of
the above-mentioned thresholds gives an important improvement on the top mass from past versions
of the model [128,135–137].

Figure 4: Scatter plot for the Finite N = 1 SU(3)3 model. Left: Mh as a function of M . Right: The Higgs
mass theoretical uncertainty [36].

Fig. 4 (left) shows the scatter plot of the light Higgs boson mass (green points satisfy the B-physics
constraints), while the point-by-point calculated theoretical uncertainty is presented in Fig. 4 (right).
The scattered points are due to the fact that we vary five parameters, namely r and four of the
parameters that form the sum rule. The uncertainty is found in the range between 0.6 GeV and
1.0 GeV. All constraints regarding quark masses, the light Higgs boson mass and B-physics are
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M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

FSU33-1 1522 2758 6369 6138 10022 4520 4413 1645 46.2 55742

FSU33-2 2070 3722 8330 7129 10832 5841 5734 2357 45.5 72552

FSU33-3 2500 4484 10016 6790 9722 7205 7110 2674 49.7 8709

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2 m2

e3

FSU33-1 47052 23822 37542 52342 55482 51972 70432 15582 30952

FSU33-2 72552 31362 41312 67492 72252 67452 85232 22382 33422

FSU33-3 90742 38312 54832 81522 72072 25582 86002 25072 40002

Table 7: Finite N = 1 SU(3)3 predictions that are used as input to SPheno. Mass parameters are in GeV and
rounded to 1 GeV.

satisfied, rendering the model very successful. The prediction of the SUSY spectrum results in
relatively heavy particles, in full agreement with the current experimental searches.

Again, we choose three benchmarks, each featuring the LSP above 1500 GeV, 2000 GeV and
2400 GeV respectively (but the LSP can go as high as ∼ 4100 GeV, again with too small cross
sections). The input and output of SPheno 4.0.4 [97, 98] can be found in Table 7 and Table 8
respectively (with the notation as in Sect. 5).

MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

M
χ̃±
1

M
χ̃±
2

FSU33-1 7.029 7.029 7.028 6.526 1.506 2.840 6.108 6.109 2.839 6.109

FSU33-2 6.484 6.484 6.431 8.561 2.041 3.817 7.092 7.093 3.817 7.093

FSU33-3 6.539 6.539 6.590 10.159 2.473 4.598 6.780 6.781 4.598 6.781

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

FSU33-1 2.416 2.415 1.578 2.414 5.375 5.411 4.913 5.375 4.912 5.411

FSU33-2 3.188 3.187 2.269 3.186 7.026 7.029 6.006 7.026 6.005 7.029

FSU33-3 3.883 3.882 2.540 3.882 8.334 8.397 7.227 8.334 7.214 7.409

Table 8: Masses for each benchmark of the Finite N = 1 SU(3)3 (in TeV).

It should be noted that in this model the scale of the heavy Higgs bosons does not vary
monotonously with Mχ̃0

1
, as in the previously considered models. This can be understood as follows.

The Higgs bosons masses are determined by a combination of the sum rule at the unification scale,
and the requirement of successful electroweak symmetry breaking at the low scale. Like in the finite
scenario of the previous section, there are no direct relations between the soft scalar masses and the
unified gaugino mass, but they are related through the corresponding sum rule and thus vary cor-
relatedly, a fact that makes the dependence on the boundary values more restrictive. Furthermore
(and even more importantly), the fact that we took into account the two thresholds at ∼ 1013 GeV
and ∼ 1014 GeV (as mentioned above), allows the new particles, mainly the Higgsinos of the two
other families (that were considered decoupled at the unification scale in previous analyses) and
the down-like exotic quarks (in a lower degree), to affect the running of the (soft) RGEs in a non-
negligible way. Thus, since at low energies the heavy Higgs masses depend mainly on the values of
m2
Hu

, m2
Hd

, |µ| and tanβ, they are substantially less connected to Mχ̃0
1

than in the other models,
leading to a different exclusion potential, as will be discussed in the following.
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Scenarios of Finite SU(3)3 are beyond the reach of the HL-LHC. Not only superpartners are
too heavy, but also heavy Higgs bosons with a mass scale of ∼ 7 TeV cannot be detected at the
HL-LHC. At 100 TeV collider (see Table 9), on the other hand, all three benchmark points are well
within the reach of the H/A → τ+τ− as well as the H± → τντ , tb searches [143, 144], despite the
slightly smaller values of tanβ ∼ 45. This is particularly because of the different dependence of the
heavy Higgs-boson mass scale on Mχ̃0

1
, as discussed above. However, we have checked that MA can

go up to to ∼ 11 TeV, and thus the heaviest part of the possible spectrum would escape the heavy
Higgs-boson searches at the FCC-hh.

Interesting are also the prospects for production of squark pairs and squark-gluino, which can
reach ∼ 20 fb for the FSU33-1 case, going down to a few fb for FSU33-2 and FSU33-3 scenarios.
The lightest squarks decay almost exclusively to the third generation quark and chargino/neutralino,
while gluino enjoys many possible decay channels to quark-squark pairs each one with branching
fraction of the order of a percent, with the biggest one ∼ 20% to tt̃1 + h.c..

We briefly discuss the SUSY discovery potential at the FCC-hh, referring agian to [145] with the
same Figures as discussed in Sec. 5. Stops in FSU33-1 and FSU33-2 can be tested at the FCC-hh,
while the masses turn out to be too heavy in FSU33-3. The situation is better for scalar quarks,
where all three scenarios can be tested, but will not allow for a 5σ discovery. Even more favorable
are the prospects for gluino. Possibly all three scenarios can be tested at the 5σ level. As in the
previous scenario, the charginos and neutralinos will not be accessible, due to the too heavy LSP.
Keeping in mind that only the lower part of possible mass spectrum is represented by the three
benchmarks (with the LSP up to ∼ 1.5 TeV heavier), we conclude that as before large parts of the
parameter space will not be testable at the FCC-hh. The only partial exception here is the Higgs-
boson sector, where only the the part with the highest possible Higgs-boson mass spectra would
escape the FCC-hh searches.

scenarios FSU33-1 FSU33-2 FSU33-3 scenarios FSU33-1 FSU33-2 FSU33-3√
s 100 TeV 100 TeV 100 TeV

√
s 100 TeV 100 TeV 100 TeV

χ̃0
1χ̃

0
1 0.04 0.01 0.01 q̃ig̃, q̃

∗
i g̃ 22.12 3.71 1.05

χ̃0
2χ̃

0
2 0.04 0.01 ν̃iν̃

∗
j 0.10 0.03 0.01

χ̃0
2χ̃

+
1 0.58 0.16 0.07 ũiχ̃

−
1 , d̃iχ̃

+
1 + h.c. 1.22 0.25 0.08

χ̃0
3χ̃

+
2 0.02 0.01 0.01 q̃iχ̃

0
1, q̃
∗
i χ̃

0
1 0.55 0.13 0.05

χ̃0
4χ̃

+
2 0.02 0.01 0.01 q̃iχ̃

0
2, q̃
∗
i χ̃

0
2 0.60 0.13 0.04

g̃g̃ 2.61 0.30 0.07 ν̃iẽ
∗
j , ν̃
∗
i ẽj 0.36 0.12 0.04

g̃χ̃0
1 0.20 0.05 0.02 Hbb̄ 0.71 1.23 1.19

g̃χ̃0
2 0.20 0.04 0.01 Abb̄ 0.72 1.23 1.18

g̃χ̃+
1 0.42 0.09 0.03 H+bt̄+ h.c. 0.37 0.75 0.58

q̃iq̃j , q̃iq̃
∗
j 25.09 6.09 2.25 H+W− 0.10 0.25 0.19

χ̃+
1 χ̃
−
1 0.37 0.10 0.04 HZ 0.02 0.04 0.04

ẽiẽ
∗
j 0.39 0.12 0.06 AZ 0.02 0.04 0.04

Table 9: Expected production cross sections (in fb) for SUSY particles in the FSU33 scenarios.
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8 The Reduced MSSM

We finish our phenomenological analyses with the application of the method of coupling reduction
to a version of the MSSM, where a covering GUT is assumed. The original partial reduction can
be found in refs. [138, 139] where only the third fermionic generation is considered. Following this
restriction, the superpotential reads:

W = YtH2Qt
c + YbH1Qb

c + YτH1Lτ
c + µH1H2 , (47)

where Yt,b,τ refer only to the third family, and the SSB Lagrangian is given by by (with the trilinear
couplings ht,b,τ for the third family)

−LSSB =
∑
φ

m2
φφ̂
∗φ̂+

[
m2

3Ĥ1Ĥ2 +

3∑
i=1

1

2
Miλiλi + h.c

]

+
[
htĤ2Q̂t̂c + hbĤ1Q̂b̂c + hτ Ĥ1L̂τ̂ c + h.c.

]
.

(48)

We start with the dimensionless sector and consider initially the top and bottom Yuakwa cou-
plings and the strong gauge coupling. The rest of the couplings will be treated as corrections.
If Y 2

(t,b)/(4π) ≡ α(t,b), the REs and the Yukawa RGEs give

αi = G2
iα3, where G2

i =
1

3
, i = t, b.

If the tau Yukawa is included in the reduction, the corresponding G2 coefficient for tau turns negative
[140], explaining why this coupling is treated also as a correction (i.e. it cannot be reduced).

We assume that the ratios of the top and bottom Yukawa to the strong coupling are constant at
the GUT scale, i.e. they have negligible scale dependence,

d

dg3

(
Y 2
t,b

g23

)
= 0.

Then, including the corrections from the SU(2), U(1) and tau couplings, at the GUT scale, the
coefficients G2

t,b become:

G2
t =

1

3
+

71

525
ρ1 +

3

7
ρ2 +

1

35
ρτ , G2

b =
1

3
+

29

525
ρ1 +

3

7
ρ2 −

6

35
ρτ , (49)

where

ρ1,2 =
g21,2
g23

=
α1,2

α3
, ρτ =

g2τ
g23

=

Y 2
τ

4π
α3

. (50)

We shall treat Eqs.(49) as boundary conditions at the GUT scale.
Going to the two-loop level, we assume that the corrections take the following form:

αi = G2
iα3 + J2

i α
2
3, i = t, b .
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Then, the two-loop coefficients, Ji, including the corrections from the gauge and the tau Yukawa
couplings, are:

J2
t =

1

4π

Nt
D
, J2

b =
1

4π

Nb
5D

,

where D, Nt and Nb are known quantities which can be found in ref. [141].
Proceeding to the the SSB Lagrangian, Eq. (48), and the dimension-one parameters, i.e the

trilinear couplings ht,b,τ , we first reduce ht,b and we get

hi = ciYiM3 = ciGiM3g3, where ci = −1 i = t, b,

where M3 is the gluino mass. Adding the corrections from the gauge and the tau couplings we have

ct = −AAAbb +AtbBB
AbtAtb −AbbAtt

, cb = −AAAbt +AttBB
AbtAtb −AbbAtt

.

Again, Att, Abb and Atb can be found in ref. [141].
We end up with the soft scalar masses m2

φ of the SSB Lagrangian. Assuming the relations

m2
i = ciM

2
3 (i = Q, u, d,Hu, Hd), and adding the corrections from the gauge, the tau couplings and

hτ , we get

cQ = −cQNum

Dm
, cu = −1

3

cuNum

Dm
, cd = −cdNum

Dm
, cHu = −2

3

cHuNum

Dm
, cHd = −cHdNum

Dm
, (51)

where Dm, cQNum, cuNum, cdNum, cHuNum, cHdNum and the complete analysis are again
given in ref. [141]. These values do not obey any soft scalar mass sum rule.

If only the reduced system was used, i.e. the strong, top and bottom Yukawa couplings as well
as the ht and hb, the coefficients turn to be

cQ = cu = cd =
2

3
, cHu = cHd = −1/3,

which clearly obey the sum rules

m2
Q +m2

u +m2
Hu

M2
3

= cQ + cu + cHu = 1,
m2
Q +m2

d +m2
Hd

M2
3

= cQ + cd + cHd = 1. (52)

There is an essential point for the gaugino masses that should be mentioned. The application of
the Hisano-Shifman relation, Eq. (12), is made for each gaugino mass as a boundary condition with
unified gauge coupling at MGUT. Then, at one-loop level, the gaugino mass depends on the one-loop
coefficient of the corresponding β-function and an arbitrary mass M0, Mi = biM0. This fact
permits, with a suitable choice of M0, to have the gluino mass equal to the unified gaugino mass,
while the gauginos masses of the other two gauge groups are given by the gluino mass multiplied
by the ratio of the appropriate one-loop β coefficient.

For our analysis we choose the unification scale to apply the corrections to all these RGI relations.
The full discussion on the selection of the free parameters of the model can be found in [37]. In
total, we vary ρτ , ρhτ , M and µ. This results in the scattered points of the next figure.

The model’s predictions for the bottom and top mass lie within 2σ of Eq. (25). The scatter
plot of the light Higgs boson mass Mh is shown in Fig. 5 (left),while the theory uncertainty given
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Figure 5: Left: The lightest Higgs boson mass, Mh in the Reduced MSSM. The green points is the full model
prediction. Right: the lightest Higgs mass theoretical uncertainty [36].

in Fig. 5 (right) has dropped below 1 GeV. The Higgs mass predicted by the model lies perfectly in
the experimentally measured range.

The Mh limits set a limit on the low-energy supersymmetric masses, which we briefly discuss.
The three selected benchmarks correspond to DR pseudoscalar Higgs boson masses above 1900 GeV,
1950 GeV and 2000 GeV respectively. The input of SPheno 4.0.4 [97, 98] can be found in Table 10
(notation as in Sect. 5).

M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

RMSSM-1 3711 1014 7109 4897 2842 5274 5750 20 44.9 59852

RMSSM-2 3792 1035 7249 4983 2942 5381 5871 557 44.6 61032

RMSSM-3 3829 1045 7313 5012 2982 5427 5942 420 45.3 61612

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2 m2

e3

RMSSM-1 55452 21062 20692 62772 53862 59892 51142 30512 44912

RMSSM-2 56562 21222 22902 63852 54762 61102 52192 31532 41812

RMSSM-3 57082 21062 22792 64272 55062 61722 52692 32292 35042

Table 10: Reduced MSSM predictions that are used as input to SPheno Mass parameters are in GeV and
rounded to 1 GeV.

Table 11 shows the resulting masses of Higgs bosons and some of the lightest SUSY particles.
In particular, we find MA

<∼ 1.5 TeV (for large values of tanβ as in the other models), values
substantially lower than in the previously considered models. This can be understood as follows.

In this model, we have direct relations between the soft scalar masses and the unified gaugino
mass, which receive corrections from the two gauge couplings g1 and g2 and the Yukawa coupling
of the τ lepton. As mentioned above, in the absence of these corrections the relations obey the
soft scalar mass sum rule. However, unlike all the previous models, these corrections make the
sum rule only approximate. Thus, these unique boundary conditions result in very low values for
the masses of the heavy Higgs bosons (even compared to the minimal SU(5) case presented above,
which also exhibits direct relations which however obey the sum rule). A relatively light spectrum
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is also favored by the prediction for the light CP-even Higgs boson mass, which turns out to be
relatively high in this model and does not allow us to consider heavier spectra. Thus, in this model,
contrary to the models analyzed before, because of the large tanβ ∼ 45 found here, the physical
mass of the pseudoscalar Higgs boson, MA, is excluded by the searches H/A→ ττ at ATLAS with
139/fb [84] for all three benchmarks. One could try considering a heavier spectrum, in which we
would have MA & 1900 GeV, but in that case the light Higgs mass would be well above its acceptable
region. Particularly, it would be above 128 GeV, a value that is clearly excluded, especially given
the improved (much smaller) uncertainty calculated by the new FeynHiggs code). Thus, the current
version of this model has been ruled out experimentally. Consequently, we do not show any SUSY
or Higgs production cross sections.

MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

M
χ̃±
1

M
χ̃±
2

RMSSM-1 1.393 1.393 1.387 7.253 1.075 3.662 4.889 4.891 1.075 4.890

RMSSM-2 1.417 1.417 1.414 7.394 1.098 3.741 4.975 4.976 1.098 4.976

RMSSM-3 1.491 1.491 1.492 7.459 1.109 3.776 5.003 5.004 1.108 5.004

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

RMSSM-1 2.124 2.123 2.078 2.079 6.189 6.202 5.307 5.715 5.509 5.731

RMSSM-2 2.297 2.139 2.140 2.139 6.314 6.324 5.414 5.828 5.602 5.842

RMSSM-3 2.280 2.123 2.125 2.123 6.376 6.382 5.465 5.881 5.635 5.894

Table 11: Masses for each benchmark of the Reduced MSSM (in TeV).

9 Conclusions

The reduction of couplings scheme consists in searching for RGE relations among parameters of a
renormalizable theory that hold to all orders in perturbation theory. In certain N = 1 theories
such a reduction of couplings indeed appears to be theoretically realised and therefore it developed
to a powerful tool able to reduce the parameters and increase the predictivity of these theories.
In the present paper first we briefly reviewed the ideas concerning the reduction of couplings of
renormalizable theories and the theoretical methods which have been developed to confront the
problem. Then we turned to the question of testing experimentally the idea of reduction of couplings.
Four specific models, namely the Reduced Minimal N = 1 SU(5), the all-loop Finite N = 1 SU(5),
the two-loop Finite N = 1 SU(3)3 and the Reduced MSSM, have been considered for which new
results have been obtained using the updated Higgs-boson mass calculation of FeynHiggs. In each
case benchmark points in the low-mass regions have been chosen for which the SPheno code has
been used to calculate the spectrum of SUSY particles and their decay modes. Finally the MadGraph
event generator was used to compute the production cross sections of relevant final states at the 14
TeV (HL-)LHC and 100 TeV FCC-hh colliders.

The first three (unified) models were found to be in comfortable agreement with LHC measure-
ments and searches, with the exception of the bottom quark mass in the Reduced Minimal SU(5), for
which agreement with measurements can be achieved only at the 4σ level. In addition it was found
that all models predict relatively heavy spectra, which evade largely the detection in the HL-LHC.
We found one noticeable exception. The reduced MSSM features a relatively light heavy Higgs-boson
mass spectrum. Together with the relatively high value of tanβ this spectrum is excluded already
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by current searches at ATLAS and CMS for in the pp → H/A → τ+τ− mode. We also analyzed
the accessibility of the SUSY and heavy Higgs spectrum at the FCC-hh with

√
s = 100 TeV. We

found that the lower parts of the parameter space will be testable at the 2σ level, with only an even
smaller part discoverable at the 5σ level. However, the heavier parts of the possible SUSY spectra
will remain elusive even at the FCC-hh. One exception here is the heavy Higgs-boson sector of the
two-loop finite N = 1 SU(3)3 model, which exhibits a spectrum where only the highest possible
mass values could escape the searches at the FCC-hh.
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