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Abstract

The idea of reduction of couplings in renormalizable theories will be presented and then will
be applied in Particle Physics models. Reduced couplings appeared as functions of a primary
one, compatible with the renormalization group equation and thus solutions of a specific set of
ordinary differential equations. If these functions have the form of power series the respective
theories resemble standard renormalizable ones and thus widen considerably the area covered
until then by symmetries as a tool for constraining the number of couplings consistently. Still on
the more abstract level reducing couplings enabled one to construct theories with beta-functions
vanishing to all orders of perturbation theory. Reduction of couplings became physics-wise
truly interesting and phenomenologically important when applied to the standard model and
its possible extensions. In particular in the context of supersymmetric theories it became the
most powerful tool known today once it was learned how to apply it also to couplings having
dimension of mass and to mass parameters. Technically this all relies on the basic property that
reducing couplings is a renormalization scheme independent procedure. Predictions of top and
Higgs mass prior to their experimental finding highlight the fundamental physical significance
of this notion.



Prologue and Synopsis

In spite of their limitations, perturbative local field theories are still of prominent practical
value.

It is remarkable that the intrinsic ambiguities connected with locality and causality - most
of the time associated with ultraviolet infinities - can be summarized in terms of a formal group
which acts in the space of the coupling constants or coupling functions attached to each type
of local interaction.

It is therefore natural to look systematically for stable submanifolds. Some such have been
known for a long time: e.g., spaces of renormalizable interactions and subspaces characterized
by system of Ward identities mostly related to symmetries.

A systematic search for such stable submanifolds has been initiated by W. Zimmermann in
the early eighties.

Disappointing for some time, this program has attracted several other active researchers
and recently produced physically interesting results.

It looks at the moment as the only theoretically founded algorithm potentially able to
decrease the number of parameters within the physically favoured perturbative models a.

Raymond Stora, CERN (Switzerland), December 16, 2013

a The above text has appeared, as Geleitwort (preface), in the book “Reduction of Couplings and its Appli-
cation in Particle Physics Finite Theories Higgs and Top Mass Predictions”, Ed. Klaus Sibold, Authors: Jisuke
Kubo, Sven Heinemeyer, Myriam Mondragon, Olivier Piguet, Klaus Sibold, Wolfhart Zimmermann, George
Zoupanos. Published in PoS (Higgs & top)001.
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Chapter 1

Introduction: The Basic Ideas

In the recent years the theoretical endeavours that attempt to achieve a deeper understanding of
Nature have presented a series of successes in developing frameworks such as String Theories and
Noncommutativity that aim to describe the fundamental theory at the Planck scale. However,
the essence of all theoretical efforts in Elementary Particle Physics (EPP) is to understand the
present day free parameters of the Standard Model (SM) in terms of few fundamental ones, i.e.
to achieve reductions of couplings [1]. Unfortunately, despite the several successes in the above
frameworks they do not offer anything in the understanding of the free paramaters of the SM.
The pathology of the plethora of free parameters is deeply connected to the presence of infinities
at the quantum level. The renormalization program can remove the infinities by introducing
counterterms, but only at the cost of leaving the corresponding terms as free parameters.

Although the Standard Model (SM) has been very successful in describing elementary par-
ticles and its interactions, it has been known for some time that it must be the low energy limit
of a more fundamental theory. This quest for a theory beyond the Standard Model (BSM) has
expanded in various directions. The usual, and very efficient, way of reducing the number of
free parameters of a theory to render it more predictive, is to introduce a symmetry. Grand
Unified Theories (GUTs) are very good examples of such a procedure [2–7]. First in the case
of minimal SU(5), because of the (approximate) gauge coupling unification, it was possible to
reduce the gauge couplings of the SM and give a prediction for one of them. By adding a further
symmetry, namely N = 1 global supersymmetry [8–10] it was possible to make the prediction
viable. GUTs can also relate the Yukawa couplings among themselves, again SU(5) provided
an example of this by predicting the ratio Mτ/Mb [11] in the SM. Unfortunately, requiring more
gauge symmetry does not seem to help, since additional complications are introduced due to
new degrees of freedom, for instance in the ways and channels of breaking the symmetry.

A possible way to look for relations among unrelated parameters is the method of reduction
of couplings [12–14]; see also refs [15–17]. This method, as its name proclaims, reduces the
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number of couplings in a theory by relating either all or a number of couplings to a single
coupling denoted as the “primary coupling”. This method might help to identify hidden sym-
metries in a system, but it is also possible to have reduction of couplings in systems where there
is no apparent symmetry. The reduction of couplings is based on the assumption that both the
original and the reduced theory are renormalizable and that there exist renormalization group
invariant (RGI) relations among parameters.

A natural extension of the GUT idea and successful application of the method of reduction
of couplings is to find a way to relate the gauge and Yukawa sectors of a theory, that is to
achieve gauge-Yukawa Unification (GYU). This will be presented in Chapter 5. Following
the original suggestion for reducing the couplings within the framework of GUTs we were
hunting for renormalization group invariant (RGI) relations holding below the Planck scale,
which in turn are preserved down to the GUT scale. It is indeed an impressive observation
that one can guarantee the validity of the RGI relations to all-orders in perturbation theory
by studying the uniqueness of the resulting relations at one-loop. Even more remarkable is
the fact that it is possible to find RGI relations among couplings that guarantee finiteness
to all-orders in perturbation theory. The above principles have only been applied in N = 1
supersymmetric GUTs for reasons that will be transparent in the following sections, here we
should only note that the use of N = 1 supersymmetric GUTs comprises the demand of the
cancellation of quadratic divergencies in the SM. The above GYU program applied in the
dimensionless couplings of supersymmetric GUTs had a great success by predicting correctly,
among others, the top quark mass in the finite [18,19] and in the minimal N = 1 supersymmetric
SU(5) [20] before its discovery [21].

Although supersymmetry seems to be an essential feature for a successful realization of the
above program, its breaking has to be understood too, since it has the ambition to supply the
SM with predictions for several of its free parameters. Indeed, the search for RGI relations has
been extended to the soft supersymmetry breaking sector (SSB) of these theories, which involves
parameters of dimension one and two. In addition, there was important progress concerning the
renormalization properties of the SSB parameters, based on the powerful supergraph method
for studying supersymmetric theories, and it was applied to the softly broken ones by using
the “spurion” external space-time independent superfields. According to this method a softly
broken supersymmetric gauge theory is considered as a supersymmetric one in which the various
parameters, such as couplings and masses, have been promoted to external superfields. Then,
relations among the soft term renormalization and that of an unbroken supersymmetric theory
have been derived. In particular the β-functions of the parameters of the softly broken theory
are expressed in terms of partial differential operators involving the dimensionless parameters
of the unbroken theory. The key point in solving the set of coupled differential equations so
as to be able to express all parameters in a RGI way, was to transform the partial differential
operators involved to total derivative operators. It is indeed possible to do this by choosing a
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suitable RGI surface.
On the phenomenological side the application on the reduction of coupling method to N = 1

supersymmetric theories has led to very interesting developments too. Previously an appealing
“universal” set of soft scalar masses was assumed in the SSB sector of supersymmetric theories,
given that apart from economy and simplicity (1) they are part of the constraints that preserve
finiteness up to two-loops, (2) they appear in the attractive dilaton dominated supersymmetry
breaking superstring scenarios. However, further studies have exhibited a number of problems,
all due to the restrictive nature of the “universality” assumption for the soft scalar masses.
Therefore, there were attempts to relax this constraint without loosing its attractive features.
Indeed an interesting observation on N = 1 GYU theories is that there exists a RGI sum rule
for the soft scalar masses at lower orders in perturbation theory, which was later extended to
all-orders, and manages to overcome all the unpleasant phenomenological consequences. Armed
with the above tools and results we were in a position to study the spectrum of the full finite
models in terms of few free parameters, with emphasis on the predictions of supersymmetric
particles and the lightest Higgs mass.

The result was indeed very impressive since it led to a prediction of the Higgs mass which
coincided with the results of the LHC for the Higgs mass by ATLAS [22,23] and CMS [24,25],
and predicted a relatively heavy spectrum consistent with the non-observation of supersym-
metric particles at the LHC. The coloured supersymmetric particles are predicted to be above
2.7 TeV, while the electroweak supersymmetric spectrum starts below 1 TeV. These successes
will be presented in Chapter 6.

Last but certainly not least, the above machinery has been recently applied in the MSSM
with impressive results concerning the predictivity of the top, bottom and Higgs masses, being
at the same time consistent with the non-observation of supersymmeric particles at the LHC.
More specifically the electroweak supersymmetric spectrum starts at 1.3 TeV and the coloured
at ∼ 4 TeV. These results will be presented too in Chapter 6.
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Chapter 2

Theoretical Basis

2.1 Reduction of Dimensionless Parameters

In this section we outline the idea of reduction of couplings. Any RGI relation among couplings
(i.e. which does not depend on the renormalization scale µ explicitly) can be expressed, in the
implicit form Φ(g1, · · · , gA) = const., which has to satisfy the partial differential equation
(PDE)

µ
dΦ

dµ
= ~∇Φ · ~β =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (2.1)

where βa is the β-function of ga. This PDE is equivalent to a set of ordinary differential
equations, the so-called reduction equations (REs) [12–14],

βg
dga
dg

= βa , a = 1, · · · , A , (2.2)

where g and βg are the primary coupling and its β-function, and the counting on a does not
include g. Since maximally (A− 1) independent RGI “constraints” in the A-dimensional space
of couplings can be imposed by the Φa’s, one could in principle express all the couplings in
terms of a single coupling g. However, a closer look to the set of Eqs. (2.2) reveals that their
general solutions contain as many integration constants as the number of equations themselves.
Thus, using such integration constants we have just traded an integration constant for each
ordinary renormalized coupling, and consequently, these general solutions cannot be considered
as reduced ones. The crucial requirement in the search for RGE relations is to demand power
series solutions to the REs,

ga =
∑
n

ρ(n)
a g2n+1 , (2.3)
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which preserve perturbative renormalizability. Such an ansatz fixes the corresponding inte-
gration constant in each of the REs and picks up a special solution out of the general one.
Remarkably, the uniqueness of such power series solutions can be decided already at the one-
loop level [12–14]. To illustrate this, let us assume that the β-functions have the form

βa =
1

16π2

[ ∑
b,c,d 6=g

β(1) bcd
a gbgcgd +

∑
b6=g

β(1) b
a gbg

2

]
+ · · · ,

βg =
1

16π2
β(1)
g g3 + · · · ,

(2.4)

where · · · stands for higher order terms, and β
(1) bcd
a ’s are symmetric in b, c, d. We then assume

that the ρ
(n)
a ’s with n ≤ r have been uniquely determined. To obtain ρ

(r+1)
a ’s, we insert the

power series (2.3) into the REs (2.2) and collect terms of O(g2r+3) and find∑
d 6=g

M(r)da ρ
(r+1)
d = lower order quantities ,

where the r.h.s. is known by assumption, and

M(r)da = 3
∑
b,c 6=g

β(1) bcd
a ρ

(1)
b ρ(1)

c + β(1) d
a − (2r + 1) β(1)

g δda , (2.5)

0 =
∑
b,c,d 6=g

β(1) bcd
a ρ

(1)
b ρ(1)

c ρ
(1)
d +

∑
d6=g

β(1) d
a ρ

(1)
d − β

(1)
g ρ(1)

a . (2.6)

Therefore, the ρ
(n)
a ’s for all n > 1 for a given set of ρ

(1)
a ’s can be uniquely determined if

detM(n)da 6= 0 for all n ≥ 0.
As it will be clear later by examining specific examples, the various couplings in supersym-

metric theories have the same asymptotic behaviour. Therefore searching for a power series
solution of the form (2.3) to the REs (2.2) is justified.

The possibility of coupling unification described in this section is without any doubt attrac-
tive because the “completely reduced” theory contains only one independent coupling, but it
can be unrealistic. Therefore, one often would like to impose fewer RGI constraints, and this
is the idea of partial reduction [26,27].

The above facts lead us to suspect that there is and intimate connection among the re-
quirement of reduction of couplings and supersymmetry which still waits to be uncovered. The
connection becomes more clear by examining the following example.

Consider an SU(N) gauge theory with the following matter content: φi(N) and φ̂i(N) are
complex scalars, ψi(N) and ψ̂i(N) are left-handed Weyl spinor, and λa(a = 1, . . . , N2 − 1) is a
right-handed Weyl spinor in the adjoint representation of SU(N).
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The Lagrangian, omitting kinetic terms, includes:

L ⊃ i
√

2{ gY ψλaT aφ− ĝY ψ̂λaT aφ̂+ h.c. } − V (φ, φ), (2.7)

where

V (φ, φ) =
1

4
λ1(φiφ∗i )

2 +
1

4
λ2(φ̂iφ̂

∗ i)2 + λ3(φiφ∗i )(φ̂jφ̂
∗ j) + λ4(φiφ∗j)(φ̂iφ̂

∗ j), (2.8)

which is the most general renormalizable form of dimension four, consistent with the SU(N)×
SU(N) global symmetry.

Searching for a solution of the form of Eq. (2.3) for the REs (2.2,) we find in lowest order
the following one (g is the gauge coupling):

gY = ĝY = g ,

λ1 = λ2 =
N − 1

N
g2 ,

λ3 =
1

2N
g2 , λ4 = −1

2
g2 ,

(2.9)

which corresponds to an N = 1 supersymmetric gauge theory. Clearly the above remarks do
not answer the question of the relation among reduction of couplings and supersymmetry but
rather try to trigger the interest for further investigation.

2.2 Reduction of Couplings in N = 1 Supersymmetric

Gauge Theories. Partial Reduction

Let us consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory based on
a group G with gauge coupling constant g. The superpotential of the theory is given by

W =
1

2
mij φi φj +

1

6
Cijk φi φj φk , (2.10)

where mij and Cijk are gauge invariant tensors and the matter field (chiral superfield) φi trans-
forms according to the irreducible representation Ri of the gauge group G. The renormalization
constants associated with the superpotential (2.10), assuming that supersymmetry is preserved,
are

φ0
i =

(
Zj
i

)(1/2)
φj , (2.11)

m0
ij = Zi′j′

ij mi′j′ , (2.12)
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C0
ijk = Zi′j′k′

ijk Ci′j′k′ . (2.13)

The N = 1 non-renormalization theorem [28–31] ensures that there are no mass and cubic-
interaction-term infinities and therefore

Zi′j′

ij

(
Zi′′

i′

)(1/2) (
Zj′′

j′

)(1/2)

= δi
′′

(i δ
j′′

j) ,

Zi′j′k′

ijk

(
Zi′′

i′

)(1/2) (
Zj′′

j′

)(1/2) (
Zk′′

k′

)(1/2)

= δi
′′

(i δ
j′′

j δ
k′′

k) .

(2.14)

As a result the only surviving possible infinities are the wave-function renormalization constants
Zj
i , i.e., one infinity for each field. The one-loop β-function of the gauge coupling g is given

by [32–36]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (2.15)

where, as usual, t is the logarithm of the ratio of the energy scale over a reference scale, C2(G)
is the quadratic Casimir of the adjoint representation of the associated gauge group G and
T (R) is given by the relation Tr[T aT b] = T (R)δab while T a is the generators of the group in
the appropriate representation. The β-functions of Cijk, by virtue of the non-renormalization
theorem, are related to the anomalous dimension matrix γij of the matter fields φi as:

βijk =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i . (2.16)

At one-loop level γij is given by [32]

γ(1)i
j =

1

32π2
[Cikl Cjkl − 2 g2C2(Ri)δ

i
j ], (2.17)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗ijk. Since di-
mensional coupling parameters such as masses and couplings of scalar field cubic terms do not
influence the asymptotic properties of a theory on which we are interested here, it is sufficient
to take into account only the dimensionless supersymmetric couplings such as g and Cijk. So
we neglect the existence of dimensional parameters, and assume furthermore that Cijk are real
so that C2

ijk always are positive numbers. For our purposes, it is convenient to work with the
square of the couplings and to arrange Cijk in such a way that they are covered by a single
index i (i = 1, · · · , n):

α =
g2

4π
, αi =

g2
i

4π
. (2.18)
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The evolution equations of α’s in perturbation theory then take the form

dα

dt
= β = − β(1)α2 + · · · ,

dαi
dt

= βi = − β(1)
i αi α +

∑
j,k

β
(1)
i,jk αj αk + · · · ,

(2.19)

where · · · denotes the contributions from higher orders, and β
(1)
i,jk = β

(1)
i,kj.

Given the set of the evolution equations (2.19), we investigate the asymptotic properties,
as follows. First we define [12,14,16,37,38]

α̃i ≡
αi
α
, i = 1, · · · , n , (2.20)

and derive from Eq. (2.19)

α
dα̃i
dα

= −α̃i +
βi
β

=

(
−1 +

β
(1)
i

β(1)

)
α̃i

−
∑
j,k

β
(1)
i,jk

β(1)
α̃j α̃k +

∑
r=2

(α
π

)r−1

β̃
(r)
i (α̃) ,

(2.21)

where β̃
(r)
i (α̃) (r = 2, · · · ) are power series of α̃’s and can be computed from the r-th loop

β-functions. Next we search for fixed points ρi of Eq. (2.20) at α = 0. To this end, we have to
solve (

−1 +
β

(1)
i

β(1)

)
ρi −

∑
j,k

β
(1)
i,jk

β(1)
ρj ρk = 0 , (2.22)

and assume that the fixed points have the form

ρi = 0 for i = 1, · · · , n′ ; ρi > 0 for i = n′ + 1, · · · , n . (2.23)

We then regard α̃i with i ≤ n′ as small perturbations to the undisturbed system which is
defined by setting α̃i with i ≤ n′ equal to zero. As we have seen, it is possible to verify at the
one-loop level [12–14,37] the existence of the unique power series solution

α̃i = ρi +
∑
r=2

ρ
(r)
i αr−1 , i = n′ + 1, · · · , n (2.24)

of the reduction equations (2.21) to all orders in the undisturbed system. These are RGI
relations among couplings and keep formally perturbative renormalizability of the undisturbed
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system. So in the undisturbed system there is only one independent coupling, the primary
coupling α.

The small perturbations caused by nonvanishing α̃i with i ≤ n′ enter in such a way that
the reduced couplings, i.e. α̃i with i > n′, become functions not only of α but also of α̃i with
i ≤ n′. It turned out that, to investigate such partially reduced systems, it is most convenient
to work with the partial differential equations{

β̃
∂

∂α
+

n′∑
a=1

β̃a
∂

∂α̃a

}
α̃i(α, α̃) = β̃i(α, α̃) ,

β̃i(a) =
βi(a)

α2
− β

α2
α̃i(a), β̃ ≡ β

α
,

(2.25)

which are equivalent to the reduction equations (2.21), where we let a, b run from 1 to n′ and
i, j from n′ + 1 to n in order to avoid confusion. We then look for solutions of the form

α̃i = ρi +
∑
r=2

(α
π

)r−1

f
(r)
i (α̃a) , i = n′ + 1, · · · , n , (2.26)

where f
(r)
i (α̃a) are supposed to be power series of α̃a. This particular type of solution can be

motivated by requiring that in the limit of vanishing perturbations we obtain the undisturbed
solutions (2.24) [27,39]. Again it is possible to obtain the sufficient conditions for the uniqueness

of f
(r)
i in terms of the lowest order coefficients.

2.3 Reduction of Dimension-1 and -2 Parameters

The reduction of couplings was originally formulated for massless theories on the basis of the
Callan-Symanzik equation [12, 13]. The extension to theories with massive parameters is not
straightforward if one wants to keep the generality and the rigor on the same level as for
the massless case; one has to fulfill a set of requirements coming from the renormalization
group equations, the Callan-Symanzik equations, etc. along with the normalization conditions
imposed on irreducible Green’s functions [40]. There has been a lot of progress in this direction
starting from ref. [41], as it is already mentioned in the Introduction, where it was assumed that
a mass-independent renormalization scheme could be employed so that all the RG functions
have only trivial dependencies on dimensional parameters and then the mass parameters were
introduced similarly to couplings (i.e. as a power series in the couplings). This choice was
justified later in [42, 43] where the scheme independence of the reduction principle has been
proven generally, i.e it was shown that apart from dimensionless couplings, pole masses and

13



gauge parameters, the model may also involve coupling parameters carrying a dimension and
masses. Therefore here, to simplify the analysis, we follow Ref. [41] and make use also of a
mass-independent renormalization scheme.

We start by considering a renormalizable theory which contain a set of (N + 1) dimension-

zero couplings, (ĝ0, ĝ1, ..., ĝN), a set of L parameters with mass-dimension one,
(
ĥ1, ..., ĥL

)
, and

a set of M parameters with mass-dimension two, (m̂2
1, ..., m̂

2
M). The renormalized irreducible

vertex function Γ satisfies the RG equation

DΓ
[
Φ′s; ĝ0, ĝ1, ..., ĝN ; ĥ1, ..., ĥL; m̂2

1, ..., m̂
2
M ;µ

]
= 0 , (2.27)

where

D = µ
∂

∂µ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γha
∂

∂ĥa
+

M∑
α=1

γm
2

α

∂

∂m̂2
α

+
∑
J

ΦIγ
φI
J

δ

δΦJ

, (2.28)

where µ is the energy scale, while βi are the β-functions of the various dimensionless couplings
gi, ΦI are the various matter fields and γm

2

α , γha and γφIJ are the mass, trilinear coupling and
wave function anomalous dimensions, respectively (where I enumerates the matter fields). In
a mass independent renormalization scheme, the γ’s are given by

γha =
L∑
b=1

γh,ba (g0, g1, ..., gN)ĥb,

γm
2

α =
M∑
β=1

γm
2,β

α (g0, g1, ..., gN)m̂2
β +

L∑
a,b=1

γm
2,ab

α (g0, g1, ..., gN)ĥaĥb,

(2.29)

where γh,ba , γm
2,β

α and γm
2,ab

α are power series of the g’s (which are dimensionless) in perturbation
theory.

We look for a reduced theory where

g ≡ g0, ha ≡ ĥa for 1 ≤ a ≤ P , m2
α ≡ m̂2

α for 1 ≤ α ≤ Q

are independent parameters and the reduction of the remaining parameters

ĝi = ĝi(g), (i = 1, ..., N),

ĥa =
P∑
b=1

f ba(g)hb, (a = P + 1, ..., L),

m̂2
α =

Q∑
β=1

eβα(g)m2
β +

P∑
a,b=1

kabα (g)hahb, (α = Q+ 1, ...,M)

(2.30)
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is consistent with the RG equations (2.27,2.28). It turns out that the following relations should
be satisfied

βg
∂ĝi
∂g

= βi, (i = 1, ..., N),

βg
∂ĥa
∂g

+
P∑
b=1

γhb
∂ĥa
∂hb

= γha , (a = P + 1, ..., L),

βg
∂m̂2

α

∂g
+

P∑
a=1

γha
∂m̂2

α

∂ha
+

Q∑
β=1

γm
2

β

∂m̂2
α

∂m2
β

= γm
2

α , (α = Q+ 1, ...,M).

(2.31)

Using Eqs. (2.29) and (2.30), the above relations reduce to

βg
df ba
dg

+
P∑
c=1

f ca

[
γh,bc +

L∑
d=P+1

γh,dc f bd

]
− γh,ba −

L∑
d=P+1

γh,da f bd = 0,

(a = P + 1, ..., L; b = 1, ..., P ),

βg
deβα
dg

+

Q∑
γ=1

eγα

[
γm

2,β
γ +

M∑
δ=Q+1

γm
2,δ

γ eβδ

]
− γm2,β

α −
M∑

δ=Q+1

γm
2,d

α eβδ = 0,

(α = Q+ 1, ...,M ; β = 1, ..., Q),

βg
dkabα
dg

+ 2
P∑
c=1

(
γh,ac +

L∑
d=P+1

γh,dc fad

)
kcbα +

Q∑
β=1

eβα

[
γm

2,ab
β +

L∑
c,d=P+1

γm
2,cd

β fac f
b
d

+2
L∑

c=P+1

γm
2,cb

β fac +
M∑

δ=Q+1

γm
2,d

β kabδ

]
−

[
γm

2,ab
α +

L∑
c,d=P+1

γm
2,cd

α fac f
b
d

+2
L∑

c=P+1

γm
2,cb

α fac +
M∑

δ=Q+1

γm
2,δ

α kabδ

]
= 0,

(α = Q+ 1, ...,M ; a, b = 1, ..., P ) .

(2.32)

The above relations ensure that the irreducible vertex function of the reduced theory

ΓR
[
Φ’s; g;h1, ..., hP ;m2

1, ...,m
2
Q;µ

]
≡

Γ
[
Φ’s; g, ĝ1(g)..., ĝN(g);h1, ..., hP , ĥP+1(g, h), ..., ĥL(g, h);

m2
1, ...,m

2
Q, m̂

2
Q+1(g, h,m2), ..., m̂2

M(g, h,m2);µ
] (2.33)
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has the same renormalization group flow as the original one.
The assumption that the reduced theory is perturbatively renormalizable means that the

functions ĝi, f
b
a, e

β
α and kabα , defined in Eq. (2.30), should be expressed as a power series in the

primary coupling g:

ĝi = g
∞∑
n=0

ρ
(n)
i gn, f ba = g

∞∑
n=0

ηb(n)
a gn

eβα =
∞∑
n=0

ξβ(n)
α gn, kabα =

∞∑
n=0

χab(n)
α gn.

(2.34)

The above expansion coefficients can be found by inserting these power series into Eqs. (2.31),
(2.32) and requiring the equations to be satisfied at each order of g. It should be noted that
the existence of a unique power series solution is a non-trivial matter: It depends on the theory
as well as on the choice of the set of independent parameters.

It should also be noted that in the case that there are no independent mass-dimension 1
parameters (ĥ) the reduction of these terms take naturally the form

ĥa =
L∑
b=1

f ba(g)M,

where M is a mass-dimension 1 parameter which could be a gaugino mass that corresponds to
the independent (gauge) coupling. Furthermore, if there are no independent mass-dimension 2
parameters (m̂2), the corresponding reduction takes the analogous form

m̂2
a =

M∑
b=1

eba(g)M2.

2.4 Reduction of Couplings of Soft Breaking Terms in

N = 1 Suspersymmetric Theories

The method of reducing the dimensionless couplings was extended [41,44], as we have discussed
in the introduction, to the soft supersymmetry breaking (SSB) dimensionful parameters of
N = 1 supersymmetric theories. In addition it was found [45, 46] that RGI SSB scalar masses
in Gauge-Yukawa unified models satisfy a universal sum rule.

Consider the superpotential given by

W =
1

2
µij Φi Φj +

1

6
Cijk Φi Φj Φk , (2.35)
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along with the Lagrangian for SSB terms

− LSSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2
(m2)ji φ

∗ iφj +
1

2
M λλ+ H.c., (2.36)

where the φi are the scalar parts of the chiral superfields Φi, λ are the gauginos and M their
unified mass.

Let us recall (see Eqs.(2.15-2.17)) that the one-loop β-function of the gauge coupling g is
given by [32–36]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (2.37)

the β-function of Cijk is given by

βijkC =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i , (2.38)

and, at one-loop level, the anomalous dimension γ(1) i
j of the chiral superfield is

γ(1) i
j =

1

32π2

[
Cikl Cjkl − 2 g2C2(Ri)δ

i
j

]
. (2.39)

Then, the N = 1 non-renormalization theorem [28,29,31] ensures there are no extra mass and
cubic-interaction-term renormalizations, implying that the β-functions of Cijk can be expressed
as linear combinations of the anomalous dimensions γij.

Here we assume that the reduction equations admit power series solutions of the form

Cijk = g
∑
n=0

ρijk(n)g
2n . (2.40)

In order to obtain higher-loop results instead of knowledge of explicit β-functions, which anyway
are known only up to two-loops, relations among β-functions are required.

Judicious use of the spurion technique, [31, 47–50] leads to the following all-loop relations
among SSB β-functions (in an obvious notation), [51,53–57,111]

βM = 2O
(
βg
g

)
, (2.41)

βijkh = γilh
ljk + γjl h

ilk + γkl h
ijl

− 2 (γ1)il C
ljk − 2 (γ1)jl C

ilk − 2 (γ1)kl C
ijl , (2.42)
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(βm2)ij =

[
∆ +X

∂

∂g

]
γij , (2.43)

where

O =

(
Mg2 ∂

∂g2
− hlmn ∂

∂C lmn

)
, (2.44)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn ∂

∂C lmn
, (2.45)

(γ1)ij = Oγij, (2.46)

C̃ijk = (m2)ilC
ljk + (m2)jlC

ilk + (m2)kl C
ijl . (2.47)

The assumption, following [55], that the relation among couplings

hijk = −M(Cijk)′ ≡ −MdCijk(g)

d ln g
, (2.48)

is RGI and furthermore, the use of the all-loop gauge β-function of Novikov et al. [58–60] given
by

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C2(G)

1− g2C2(G)/8π2

]
, (2.49)

lead to the all-loop RGI sum rule [61] (assuming (m2)ij = m2
jδ
i
j),

m2
i +m2

j +m2
k = |M |2

{
1

1− g2C2(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2

}
+
∑
l

m2
l T (Rl)

C2(G)− 8π2/g2

d lnCijk

d ln g
.

(2.50)

Surprisingly enough, the all-loop result of Eq.(2.50) coincides with the superstring result for
the finite case in a certain class of orbifold models [46, 62,63] if

d lnCijk

d ln g
= 1 ,

as discussed in ref. [19].
Let us now see how the all-loop results on the SSB β-functions, Eqs.(2.41)-(2.47), lead to

all-loop RGI relations. We assume:
(a) the existence of a RGI surfaces on which C = C(g), or equivalently that the expression

dCijk

dg
=
βijkC
βg

(2.51)
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holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hijk = −MdC(g)ijk

d ln g
(2.52)

holds too in all-orders.
Then one can prove [64,65], that the following relations are RGI to all-loops (note that in both
(a) and (b) assumptions above we do not rely on specific solutions of these equations)

M = M0
βg
g
, (2.53)

hijk = −M0 β
ijk
C , (2.54)

bij = −M0 β
ij
µ , (2.55)

(m2)ij =
1

2
|M0|2 µ

dγij
dµ

, (2.56)

where M0 is an arbitrary reference mass scale to be specified shortly. The assumption that

Ca
∂

∂Ca
= C∗a

∂

∂C∗a
(2.57)

for a RGI surface F (g, Cijk, C∗ijk) leads to

d

dg
=

(
∂

∂g
+ 2

∂

∂C

dC

dg

)
=

(
∂

∂g
+ 2

βC
βg

∂

∂C

)
, (2.58)

where Eq.(2.51) has been used. Now let us consider the partial differential operator O in
Eq.(2.44) which, assuming Eq.(2.48), becomes

O =
1

2
M

d

d ln g
. (2.59)

In turn, βM given in Eq.(2.41), becomes

βM = M
d

d ln g

(βg
g

)
, (2.60)

which by integration provides us [64,66] with the generalized, i.e. including Yukawa couplings,
all-loop RGI Hisano - Shifman relation [54]

M =
βg
g
M0 , (2.61)
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where M0 is the integration constant and can be associated to the unification scale MU in GUTs
or to the gravitino mass m3/2 in a supergravity framework. Therefore, Eq.(2.61) becomes the
all-loop RGI Eq.(2.53). Note that βM using Eqs.(2.60) and (2.61) can be written as

βM = M0
d

dt
(βg/g) . (2.62)

Similarly

(γ1)ij = Oγij =
1

2
M0

dγij
dt

. (2.63)

Next, from Eq.(2.48) and Eq.(2.61) we obtain

hijk = −M0 β
ijk
C , (2.64)

while βijkh , given in Eq.(2.42) and using Eq.(2.63), becomes [64]

βijkh = −M0
d

dt
βijkC , (2.65)

which shows that Eq.(2.64) is all-loop RGI. In a similar way Eq.(2.55) can be shown to be
all-loop RGI.

Finally we would like to emphasize that under the same assumptions (a) and (b) the sum
rule given in Eq.(2.50) has been proven [61] to be all-loop RGI, which (using Eq.(2.61)) gives us
a generalization of Eq.(2.56) to be applied in considerations of non-universal soft scalar masses,
which are necessary in many cases including the MSSM.

Having obtained the Eqs.(2.53)-(2.56) from Eqs.(2.41)-(2.47) with the assumptions (a) and
(b), we would like to conclude the present section with some remarks. First it is worth noting
the difference, say in first order in g, among the possibilities to consider specific solution of the
reduction equations or just assume the existence of a RGI surface, which is a weaker assumption.
So in the case we consider the reduction equation (2.51) without relying on a specific solution,
the sum rule of Eq.(2.50) reads

m2
i +m2

j +m2
k = |M |2d lnCijk

d ln g
, (2.66)

and we find that
d lnCijk

d ln g
=

g

Cijk

dCijk

dg
=

g

Cijk

βijkC
βg

, (2.67)

which is clearly model dependent. However assuming a specific power series solution of the
reduction equation, as in Eq.(2.3), which in first order in g is just a linear relation among Cijk

and g, we obtain that
d lnCijk

d ln g
= 1 (2.68)
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and therefore the sum rule of Eq.(2.66) becomes model independent. We should also emphasize
that in order to show [55] that the relation

(m2)ij =
1

2

g2

βg
|M |2

dγij
dg

, (2.69)

which using Eq.(2.61) becomes Eq.(2.56), is RGI to all-loops a specific solution of the reduction
equations has to be required. As it has already been pointed out above such a requirement is
not necessary in order to obtain the all-loop RG invariance of the sum rule of Eq.(2.50).

As it was emphasized in ref. [64] the set of the all-loop RGI relations (2.53)-(2.56) is the one
obtained in the Anomaly Mediated SB Scenario [67–72], by fixing the M0 to be m3/2, which is
the natural scale in the supergravity framework.

A final remark concerns the resolution of the fatal problem of the anomaly induced scenario
in the supergravity framework, i.e. the negative mass squared for sleptons, leading to tachyonic
sleptons. Here, the problem is solved thanks to the sum rule of Eq.(2.50), as it will become
clear in the next section. Other solutions have been provided by introducing Fayet-Iliopoulos
terms [73].
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Chapter 3

Reduction of Couplings in the
Standard Model and Predictions

The first application of the idea of reduction of couplings in realistic models was presented in
the celebrated paper [26]. We encourage the reader to study the original article and here we
limit ourselves to an introduction, comments and updated remarks of the authors presented in
the book “Reduction of couplings and its application in particle physics, Finite theories, Higgs
and top mass predictions” [74].

Even today, more than twenty years after the first paper on reduction of couplings in the
Standard Model the original motivation for applying this method to this Model has not become
obsolete, neither by time nor by new insight. The theoretical predictions originating from the
Standard Model are in extremely good agreement with experiment. Two decades of precision
measurement and precision calculation yielded essentially on all available observables a truly
astonishing coincidence [75]. And, yet there is no convincing explanation why the number of
families is three; why the mass scales –the Planck mass and the electroweak breaking scale–
differ so much in magnitude, why the Higgs mass is so small compared to the Planck scale.
And, quite generally, there is also no explanation for the mixing of the families.

Reduction of couplings offers a way to understand at least to some degree masses and mixings
of charged leptons and quarks and the mass of the Higgs particle. It extends the well known
case of closed renormalization orbits due to symmetry to other, more general ones. Which
structure these orbits have had to be learned, i.e. deduced from the relevant renormalization
group equation in the specific model. In particular, one had to take into account the different
behaviour of abelian versus non-abelian gauge groups and of the Higgs self-coupling, say in the
ultraviolet region. If asymptotic expansions should make sense in the transition from a non-
perturbative theory to a perturbative version it should be possible to rely on common ultraviolet
asymptotic freedom. One also has to respect gross features coming from phenomenology. In
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mathematical terms this is the problem of integrating partial differential equations by imposing
suitable boundary conditions (originating from physical requirements): partial reduction.

Perhaps the most important and not obvious result of the entire analysis is the fact that
reduction of couplings (even the version of “partial reduction”) is extremely sensitive to the
model. If one accepts the integration “paths” as derived in the relevant papers, the ordinary
Standard Model can neither support a mass of the top quark nor of the Higgs particle as
large as they have been found experimentally. There is an apparent mismatch among the the
reduced Standard Model predictions and the experimental findings of the top and Higgs masses.
Renormalization group improvements of the original theoretical predictions were concerning
essentially the QCD sector, which was taken into account in the reduction. Whereas the
differences originating from the other couplings turned out to be negligibly small. Hence it
became clear that other model classes are to be studied and further constraining principles had
to be found. This will be the subject of Chapters 4 and 5.

In ref. [26] within the context of the Standard Model with one Higgs doublet and n families
the principle of reduction of couplings was applied. For simplicity mixing of the families was
assumed to be absent: the Yukawa couplings are diagonal and real. For the massless model
reduction solutions can be found to all orders of perturbation theory as power series in the “pri-
mary” coupling, thus superseding fixed point considerations based on one-loop approximations.
Due to the different asymptotic behaviour of the SU(3), SU(2) and U(1) couplings the space of
solutions is clearly structured and permits reduction in very distinct ways only. Since reducing
the gauge couplings relative to each other is either inconsistent or phenomenologically not ac-
ceptable, αs (the largest coupling) has been chosen as the expansion parameter –the primary
coupling– and thus UV-asymptotic freedom as the relevant regime. This allows to neglect in
the lowest order approximation the other gauge couplings and to take their effect into account
as corrections.

In the matter sector (leptons, quarks, Higgs) discrete solutions emerge for the reduced
couplings which permit essentially only the Higgs self-coupling and the Yukawa coupling to
the top quark to be non-vanishing. Stability considerations (Liapunov’s theory) show how
the power series solutions are embedded in the set of the general solutions. Couplings of the
massless model were converted into masses in the tree approximation of the spontaneously
broken model. For three generations one finds mH = 61 GeV, mt = 81 GeV with an error of
about 10-15%.

Reduction of couplings is based on the requirement that all reduced couplings vanish simul-
taneously upon reduction of the primary coupling. This is clearly only possible if the couplings
considered have the same asymptotic behavior or have vanishing β-functions. Hence in the
Standard model, based on SU(3) × SU(2) × U(1) straightforward reduction cannot be real-
ized. Since however the strong coupling αs is, say at the W -mass, considerably larger than
the weak and electromagnetic coupling one may put those equal to zero, reduce within the
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system of quantum chromodynamics including the Higgs and the Yukawa couplings and sub-
sequently take into account electroweak corrections as a kind of perturbation. This is called
“partial reduction”. In [27] a new perturbation method was developed and then applied using
the updated experimental values of the strong coupling and the Weinberg angle at the time.

In asymptotically free theories the β-functions usually go to zero with some power of the
couplings involved. Thus, reduction equations are singular for vanishing coupling and require a
case by case study at this singular point. In particular this is true for the reduction equations
of Yukawa and Higgs couplings when reducing to αs. It was shown in the paper that for the
non-trivial reduction solution (i.e. only the top Yukawa coupling and the Higgs coupling do not
vanish) one can de-singularize the system by a variable transformation and thereafter go over
to a partial differential equation which is easier to solve than the ordinary differential equations
one started with. The reduction solutions of the perturbed system are then in one-to-one
correspondence with the unperturbed ones.

In terms of mass values the non-trivial reduction yields mt = 91.3 GeV, mH = 64.3 GeV.
These mass values are at the same time the upper bound for the trivial reduction, where the
Higgs mass is a function of the top mass. Here is used as definition for “trivial” that the ratios
of top-Yukawa coupling and Higgs coupling with respect to αs go to zero for the weak coupling
limit αs going to zero.

Still there are corrections to the above values:
1. The above mass values depend on the SM parameters, in particular the strong coupling
constant αs and sin θW . Since the values of αs and sin θW were updated, the above predictions
had to be updated, too.
2. Two-loop corrections could be important.
3. In ref. [26] the difference of the physical mass (pole mass) and the mass defined in the MS
scheme has been ignored. In ref. [76] all these corrections are included. It was found that the
correction coming from the MS to the pole mass transition increases mt by about 4%, while
mH is increased by about 1%. The two-loop effect is non-negligible especially for mt : +2% for
mt and 0.2% for mH . Taking into account all these corrections it was found

mt = 98.6± 9.2 GeV,mH = 64.5± 1.5 GeV, (3.1)

where the 1991 values of MZ , αs(MZ), sin2 θW (MZ) and αem(MZ) were used. Even with
updated values it was found [74] that the change of the prediction is negligible. Obviously, this
prediction is inconsistent with the experimental observations.

An optimistic point of view is that the failure of the reduction of couplings programme in
the SM shows that it is not the final theory but only a very interesting part of it and therefore
we have to search further for the ultimate theory.
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Chapter 4

Finiteness

The principle of finiteness requires perhaps some more motivation to be considered and generally
accepted these days than when it was first envisaged. It is however interesting to note that in
the early days of field theory the feeling was quite different. Probably the well known Dirac’s
phrase that “...divergencies are hidden under the carpet” is representative of the views of that
time. In recent years we have a more relaxed attitude towards divergencies. Most theorists
believe that the divergencies are signals of the existence of a higher scale, where new degrees
of freedom are excited. Even accepting this dogma, we are naturally led to the conclusion that
beyond the unification scale, i.e. when all interactions have been taken into account in a unified
scheme, the theory should be completely finite. In fact, this is one of the main motivations
and aims of string, non-commutative geometry, and quantum group theories, which include
also gravity in the unification of the interactions. In our work on reduction of couplings and
finiteness we restricted ourselves to unifying only the known gauge interactions, based on a
lesson of the history of Elementary Particle Physics (EPP) that if a nice idea works in physics,
usually it is realised in its simplest form.

4.1 The idea behind finiteness

Finiteness is based on the fact that it is possible to find renormalization group invariant (RGI)
relations among couplings that keep finiteness in perturbation theory, even to all orders. Ac-
cepting finiteness as a guiding principle in constructing realistic theories of EPP, the first thing
that comes to mind is to look for an N = 4 supersymmetric unified gauge theory, since any
ultraviolet (UV) divergencies are absent in these theories. However nobody has managed so far
to produce realistic models in the framework of N = 4 SUSY. In the best of cases one could
try to do a drastic truncation of the theory like the orbifold projection of refs. [77,82], but this
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is already a different theory than the original one. The next possibility is to consider an N = 2
supersymmetric gauge theory, whose beta-function receives corrections only at one-loop. Then
it is not hard to select a spectrum to make the theory all-loop finite. However a serious obsta-
cle in these theories is their mirror spectrum, which in the absence of a mechanism to make it
heavy, does not permit the construction of realistic models. Therefore, we are naturally led to
consider N = 1 supersymmetric gauge theories, which can be chiral and in principle realistic.

Let us be clear at this point and state that in our approach (ultra violet, UV) finiteness
means the vanishing of all the β-functions, i.e. the non-renormalization of the coupling con-
stants, in contrast to a complete (UV) finiteness where even field amplitude renormalization
is absent. Before our work the studies on N = 1 finite theories were following two directions:
(a) construction of finite theories up to two-loops examining various possibilities to make them
phenomenologically viable, (b) construction of all-loop finite models without particular empha-
sis on the phenomenological consequences. The success of our work was that we constructed
the first realistic all-loop finite model, based on the theorem presented in the Sect. 4.2, realis-
ing in this way an old theoretical dream of field theorists. Equally important was the correct
prediction of the top quark mass one and half year before the experimental discovery. It was
the combination of these two facts that motivated us to continue with the study of N = 1 finite
theories. It is worth noting that nobody expected at the time such a heavy mass for the top
quark. Given that the analysis of the experimental data changes over time, the comparison of
our original prediction with the updated analyses will be discussed later.

4.2 Finiteness in N=1 Supersymmetric Gauge Theories

Let us, once more, consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory
based on a group G with gauge coupling constant g. The superpotential of the theory is given
by (see Eq.(2.10))

W =
1

2
mij φi φj +

1

6
Cijk φi φj φk . (4.1)

The N = 1 non-renormalization theorem, ensuring the absence of mass and cubic-interaction-
term infinities, leads to wave-function infinities. The one-loop β-function is given by (see
Eq.(2.15)

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (4.2)

the β-function of Cijk by (see Eq. (2.16))

βijk =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i (4.3)
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and the one-loop wave function anomalous dimensions by (see Eq. (2.17 ))

γ(1)i
j =

1

32π2
[Cikl Cjkl − 2 g2C2(R)δij ] . (4.4)

As one can see from Eqs. (4.2) and (4.4), all the one-loop β-functions of the theory vanish

if β
(1)
g and γ(1)i

j vanish, i.e. ∑
i

T (Ri) = 3C2(G) , (4.5)

CiklCjkl = 2δijg
2C2(Ri) , (4.6)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry are dis-
cussed in [86], and the analysis of the anomaly-free and no-charge renormalization requirements
for these theories can be found in [87]. A very interesting result is that the conditions (4.5,4.6)
are necessary and sufficient for finiteness at the two-loop level [32–36].

In case SUSY is broken by soft terms, the requirement of finiteness in the one-loop soft
breaking terms imposes further constraints among themselves [88]. In addition, the same set of
conditions that are sufficient for one-loop finiteness of the soft breaking terms render the soft
sector of the theory two-loop finite [89].

The one- and two-loop finiteness conditions of Eqs. (4.5,4.6) restrict considerably the pos-
sible choices of the irreducible representations (irreps) Ri for a given group G as well as the
Yukawa couplings in the superpotential (4.1). Note in particular that the finiteness conditions
cannot be applied to the minimal supersymmetric standard model (MSSM), since the presence
of a U(1) gauge group is incompatible with the condition (4.5), due to C2[U(1)] = 0. This
naturally leads to the expectation that finiteness should be attained at the grand unified level
only, the MSSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that SUSY (most proba-
bly) can only be broken due to the soft breaking terms. Indeed, due to the unacceptability of
gauge singlets, F-type spontaneous symmetry breaking [90] terms are incompatible with finite-
ness, as well as D-type [91] spontaneous breaking which requires the existence of a U(1) gauge
group.

A natural question to ask is what happens at higher loop orders. The answer is contained
in a theorem [92, 93] which states the necessary and sufficient conditions to achieve finiteness
at all orders. Before we discuss the theorem let us make some introductory remarks. The
finiteness conditions impose relations between gauge and Yukawa couplings. To require such
relations which render the couplings mutually dependent at a given renormalization point is
trivial. What is not trivial is to guarantee that relations leading to a reduction of the couplings
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hold at any renormalization point. As we have seen (see Eq. (2.51)), the necessary and also
sufficient, condition for this to happen is to require that such relations are solutions to the REs

βg
dCijk
dg

= βijk (4.7)

and hold at all orders. Remarkably, the existence of all-order power series solutions to (4.7)
can be decided at one-loop level, as already mentioned.

Let us now turn to the all-order finiteness theorem [92, 93], which states under which con-
ditions an N = 1 supersymmetric gauge theory can become finite to all orders in perturbation
theory, that is attain physical scale invariance. It is based on (a) the structure of the super-
current in N = 1 supersymmetric gauge theory [94–96], and on (b) the non-renormalization
properties of N = 1 chiral anomalies [92, 93, 97–99]. Details of the proof can be found in
refs. [92, 93] and further discussion in Refs. [97–101]. Here, following mostly Ref. [101] we
present a comprehensible sketch of the proof.

Consider an N = 1 supersymmetric gauge theory, with simple Lie group G. The content
of this theory is given at the classical level by the matter supermultiplets Si, which contain a
scalar field φi and a Weyl spinor ψia, and the vector supermultiplet Va, which contains a gauge
vector field Aaµ and a gaugino Weyl spinor λaα.

Let us first recall certain facts about the theory:
(1) A massless N = 1 supersymmetric theory is invariant under a U(1) chiral transformation
R under which the various fields transform as follows

A′µ = Aµ, λ′α = exp(−iθ)λα

φ′ = exp(−i2
3
θ)φ, ψ′α = exp(−i1

3
θ)ψα, · · ·

(4.8)

The corresponding axial Noether current JµR(x) is

JµR(x) = λ̄γµγ5λ+ · · · (4.9)

is conserved classically, while in the quantum case is violated by the axial anomaly

∂µJ
µ
R = r (εµνσρFµνFσρ + · · · ) . (4.10)

From its known topological origin in ordinary gauge theories [102–104], one would expect
the axial vector current JµR to satisfy the Adler-Bardeen theorem and receive corrections only
at the one-loop level. Indeed it has been shown that the same non-renormalization theorem
holds also in supersymmetric theories [97–99]. Therefore

r = ~β(1)
g . (4.11)
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(2) The massless theory we consider is scale invariant at the classical level and, in general, there
is a scale anomaly due to radiative corrections. The scale anomaly appears in the trace of the
energy momentum tensor Tµν , which is traceless classically. It has the form

T µµ = βgF
µνFµν + · · · (4.12)

(3) Massless, N = 1 supersymmetric gauge theories are classically invariant under the su-
persymmetric extension of the conformal group – the superconformal group. Examining the
superconformal algebra, it can be seen that the subset of superconformal transformations con-
sisting of translations, SUSY transformations, and axial R transformations is closed under
SUSY, i.e. these transformations form a representation of SUSY. It follows that the conserved
currents corresponding to these transformations make up a supermultiplet represented by an
axial vector superfield called the supercurrent J ,

J ≡
{
J ′µR , Q

µ
α, T

µ
ν , ...

}
, (4.13)

where J ′µR is the current associated to R invariance, Qµ
α is the one associated to SUSY invariance,

and T µν the one associated to translational invariance (energy-momentum tensor).
The anomalies of the R current J ′µR , the trace anomalies of the SUSY current, and the

energy-momentum tensor, form also a second supermultiplet, called the supertrace anomaly

S = {Re S, Im S, Sα} =
{
T µµ , ∂µJ

′µ
R , σ

µ

αβ̇
Q̄β̇
µ + · · ·

}
where T µµ is given in Eq.(4.12) and

∂µJ
′µ
R = βgε

µνσρFµνFσρ + · · · (4.14)

σµ
αβ̇
Q̄β̇
µ = βgλ

βσµναβFµν + · · · (4.15)

(4) It is very important to note that the Noether current defined in (4.9) is not the same as
the current associated to R invariance that appears in the supercurrent J in (4.13), but they
coincide in the tree approximation. So starting from a unique classical Noether current JµR(class),

the Noether current JµR is defined as the quantum extension of JµR(class) which allows for the

validity of the non-renormalization theorem. On the other hand J ′µR , is defined to belong to the
supercurrent J , together with the energy-momentum tensor. The two requirements cannot be
fulfilled by a single current operator at the same time.

Although the Noether current JµR which obeys (4.10) and the current J ′µR belonging to
the supercurrent multiplet J are not the same, there is a relation [92, 93] between quantities
associated with them

r = βg(1 + xg) + βijkx
ijk − γArA (4.16)
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where r was given in Eq. (4.11). The rA are the non-renormalized coefficients of the anomalies
of the Noether currents associated to the chiral invariances of the superpotential, and –like r–
are strictly one-loop quantities. The γA’s are linear combinations of the anomalous dimensions
of the matter fields, and xg, and xijk are radiative correction quantities. The structure of Eq.
(4.16) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the β-functions at one-loop, implies that the Yukawa
couplings λijk must be functions of the gauge coupling g. To find a similar condition to all
orders it is necessary and sufficient for the Yukawa couplings to be a formal power series in g,
which is solution of the REs (4.7).

We can now state the theorem for all-order vanishing β-functions [93].

Theorem:
Consider an N = 1 supersymmetric Yang-Mills theory, with simple gauge group. If the

following conditions are satisfied

1. There is no gauge anomaly.

2. The gauge β-function vanishes at one-loop

β(1)
g = 0 =

∑
i

T (Ri)− 3C2(G). (4.17)

3. There exist solutions of the form

Cijk = ρijkg, ρijk ∈ IC (4.18)

to the conditions of vanishing one-loop matter fields anomalous dimensions

γ(1)i
j = 0 =

1

32π2
[ Cikl Cjkl − 2 g2 C2(R)δij]. (4.19)

4. These solutions are isolated and non-degenerate when considered as solutions of vanishing
one-loop Yukawa β-functions:

βijk = 0. (4.20)

Then, each of the solutions (4.18) can be uniquely extended to a formal power series in g,
and the associated super Yang-Mills models depend on the single coupling constant g with a
β-function which vanishes at all-orders.

It is important to note a few things: The requirement of isolated and non-degenerate solu-
tions guarantees the existence of a unique formal power series solution to the reduction equa-
tions. The vanishing of the gauge β function at one-loop, β

(1)
g , is equivalent to the vanishing of
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the R current anomaly (4.10). The vanishing of the anomalous dimensions at one-loop implies
the vanishing of the Yukawa couplings β functions at that order. It also implies the vanishing
of the chiral anomaly coefficients rA. This last property is a necessary condition for having β
functions vanishing at all orders.1

Proof:
Insert βijk as given by the REs into the relationship (4.16). Since these chiral anomalies

vanish, we get for βg an homogeneous equation of the form

0 = βg(1 +O(~)). (4.21)

The solution of this equation in the sense of a formal power series in ~ is βg = 0, order by order.
Therefore, due to the REs (4.7), βijk = 0 too.

Thus we see that finiteness and reduction of couplings are intimately related. Since an
equation like eq. (4.16) is lacking in non-supersymmetric theories, one cannot extend the validity
of a similar theorem in such theories.

A very interesting development was done in ref [111]. Based on the all-loop relations among
the beta-functions of the soft supersymmetry breaking terms and those of the rigid supersym-
metric theory with the help of the differential operators, discussed in Sect. 2.4, it was shown
that certain RGI surfaces can be chosen, so as to reach all-loop finiteness of the full theory.
More specifically it was shown that on certain RGI surfaces the partial differential operators ap-
pearing in Eqs. (2.41,2.42) acting on the beta- and gamma-functions of the rigid theory can be
transformed to total derivatives. Then the all-loop finiteness of the beta and gamma functions
of the rigid theory can be transferred to the beta functions of the soft supersymmetry break-
ing terms. Therefore a totally all-loop finite N = 1 SUSY gauge theory can be constructed,
including the soft supersymmetry breaking terms.

1There is an alternative way to find finite theories [105–107,110].
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Chapter 5

Reduction of Couplings in
Phenomenologically Viable Models

In this chapter we apply the idea of reduction of couplings to phenomenologically viable super-
symmetric models. These models make clear predictions for the top and bottom quark masses.
Confronting the models with the experimental values allows to restrict the parameter space
and to single out the viable models. The full set of experimental constraints for a subset of
these models will then be discussed in Chapter 6.

5.1 Finite Unified Models

From the classification of theories with vanishing one-loop gauge β-function [112], one can easily
see that there exist only two candidate possibilities to construct SU(5) GUTs with three gen-
erations. These possibilities require that the theory should contain as matter fields the chiral
supermultiplets 5, 5, 10, 10, 24 with the multiplicities (6, 9, 4, 1, 0) or (4, 7, 3, 0, 1), respec-
tively. Only the second one contains a 24-plet which can be used to provide the spontaneous
symmetry breaking (SB) of SU(5) down to SU(3)×SU(2)×U(1). For the first model one has
to incorporate another way, such as the Wilson flux breaking mechanism in higher dimensional
theories, to achieve the desired SB of SU(5) [18,19]. Therefore, for a self-consistent field theory
discussion we would like to concentrate only on the second possibility.

The particle content of the models we will study consists of the following supermultiplets:
three (5 + 10), needed for each of the three generations of quarks and leptons, four (5 + 5)
and one 24 considered as Higgs supermultiplets. When the gauge group of the finite GUT is
broken the theory is no longer finite, and we will assume that we are left with the MSSM.

Therefore, a predictive Gauge-Yukawa unified SU(5) model which is finite to all orders, in
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addition to the requirements mentioned already, should also have the following properties:

1. The one-loop anomalous dimensions are diagonal, i.e., γ(1)i
j ∝ δji .

2. The three fermion generations, in the irreducible representations 5i,10i (i = 1, 2, 3),
should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs
quintet and anti-quintet, which couple to the third generation.

In the following we discuss two versions of the all-order finite model: the model of Ref. [18,
19], which will be labeled A, and a slight variation of this model (labeled B), which can also be
obtained from the class of the models suggested in Ref. [56,57] with a modification to suppress
non-diagonal anomalous dimensions [46].

The superpotential which describes the two models, before the reduction of couplings takes
place, is of the form [18,19,46,113,114]

W =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4 (5.1)

+gd23 10253H4 + gd32 10352H4 +
4∑

a=1

gfa Ha 24Ha +
gλ

3
(24)3 ,

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and anti-quintets.
The main difference between model A and model B is that two pairs of Higgs quintets and

anti-quintets couple to the 24 in B, so that it is not necessary to mix them with H4 and H4 in
order to achieve the triplet-doublet splitting after the symmetry breaking of SU(5) [46]. Thus,
although the particle content is the same, the solutions to Eqs. (4.3,4.4) and the sum rules are
different, which will be reflected in the phenomenology, discussed in Sect. 6.2.

5.1.1 FUT A

This model was introduced and examined first in refs [18,19]. After the reduction of couplings
the symmetry of the superpotential W (Eq. (5.1)), is enhanced. For model A one finds that
the superpotential has the Z7 × Z3 × Z2 discrete symmetry with the charge assignment shown
in Tab. 5.1, and with the following superpotential

WA =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gf4 H4 24H4 +

gλ

3
(24)3 . (5.2)

33



51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z7 4 1 2 1 2 4 5 3 6 -5 -3 -6 0 0 0

Z3 0 0 0 1 2 0 1 2 0 -1 -2 0 0 0 0

Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Table 5.1: Charges of the Z7 × Z3 × Z2 symmetry for Model FUT A.

The non-degenerate and isolated solutions to γ
(1)
i = 0 for model FUT A , which are the

boundary conditions for the Yukawa couplings at the GUT scale, are:

(gu1 )2 =
8

5
g2 , (gd1)2 =

6

5
g2 , (gu2 )2 = (gu3 )2 =

8

5
g2 , (5.3)

(gλ)2 =
15

7
g2 , (gd2)2 = (gd3)2 =

6

5
g2 , (gf4 )2 = g2

(gu23)2 = (gd23)2 = (gd32)2 = (gf2 )2 = (gf3 )2 = (gf1 )2 = 0 .

In the dimensionful sector, the sum rule gives us the following boundary conditions at the GUT
scale for this model [46]:

m2
Hu + 2m2

10 = m2
Hd

+m2
5 +m2

10 = M2 , (5.4)

and thus we are left with only three free parameters, namely m5 ≡ m53
, m10 ≡ m103 and M .

5.1.2 FUT B

This model was introduced and was presented its first study in ref [46]. Also in the case of FUT
B the symmetry is enhanced after the reduction of couplings. The superpotential has now a
Z4 × Z4 × Z4 symmetry with charges shown in Tab. 5.2 and with the following superpotential

WB =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4

+ gd23 10253H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 , (5.5)

For this model the non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu1 )2 =
8

5
g2 , (gd1)2 =

6

5
g2 , (gu2 )2 = (gu3 )2 = (gu23)2 =

4

5
g2 ,
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51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z4 1 0 0 1 0 0 2 0 0 0 -2 0 0 0 0

Z4 0 1 0 0 1 0 0 2 0 3 0 -2 0 -3 0

Z4 0 0 1 0 0 1 0 0 2 3 0 0 -2 -3 0

Table 5.2: Charges of the Z4 × Z4 × Z4 symmetry for Model FUT B.

(gd2)2 = (gd3)2 = (gd23)2 = (gd32)2 =
3

5
g2 , (5.6)

(gλ)2 =
15

7
g2 , (gf2 )2 = (gf3 )2 =

1

2
g2 , (gf1 )2 = (gf4 )2 = 0 ,

and from the sum rule we obtain [46]:

m2
Hu + 2m2

10 = M2 , m2
Hd
− 2m2

10 = −M
2

3
, m2

5 + 3m2
10 =

4M2

3
, (5.7)

i.e., in this case we have only two free parameters m10 ≡ m103 and M for the dimensionful
sector.

As already mentioned, after the SU(5) gauge symmetry breaking we assume we have the
MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate mass
terms that allow to perform a rotation of the Higgs sector [18,19,113–115], in such a way that
only one pair of Higgs doublets, coupled mostly to the third family, remains light and acquire
vacuum expectation values. To avoid fast proton decay the usual fine tuning to achieve doublet-
triplet splitting is performed. Notice that, although similar, the mechanism is not identical to
minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the MSSM,
with the boundary conditions for the third family given by the finiteness conditions, while the
other two families are basically decoupled.

5.1.3 Predictions for Quark Masses

We will now examine the prediction of such all-loop Finite Unified theories with SU(5) gauge
group for the third generation quark masses (for the reasons expressed above). An extension
to three families, and the generation of quark mixing angles and masses in Finite Unified
Theories has been addressed in [116], where several examples are given. These extensions are
not discussed here.
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Since the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions
do not restrict the renormalization properties at low energies, and all it remains are boundary
conditions on the gauge and Yukawa couplings (5.3) or (5.6), the relation

hijk = −MCijk + ... = −Mρijk(0)g +O(g5) ,

which follow from Eq.(2.52) and the power series solution Eq.(2.40) and the soft scalar-mass
sum rule [46,117,118]

( m2
i +m2

j +m2
k )/MM † = 1 +

g2

16π2
∆(2) +O(g4) , (5.8)

where the g2 term is given by

∆(2) = −2
∑
l

[
m2
l

MM † −
1

3

]
T (Rl) ,

all taken at MGUT, as applied in the two models. Thus we examine the evolution of these
parameters according to their RGEs up to two-loops for dimensionless parameters and at one-
loop for dimensionful ones with the relevant boundary conditions. Below MGUT their evolution
is assumed to be governed by the MSSM. We further assume a unique SUSY breaking scale
MSUSY (which we define as the geometrical average of the stop masses) and therefore below
that scale the effective theory is just the SM. This allows to evaluate observables at or below
the electroweak scale.

In the following, we review the derivation of the prediction for the third generation of quark
masses that allows for a direct comparison with experimental data and to determine the models
that are in good agreement with the observed quark mass values [119–121].

In Fig. 5.1 we show the FUT A and FUT B predictions for the top pole mass, Mtop, and
the running bottom mass at the scale MZ , mbot(MZ), as a function of the unified gaugino mass
M , for the two cases µ < 0 and µ > 0. The running bottom mass is used to avoid the large
QCD uncertainties inherent to the pole mass. In the evaluation of the bottom mass mbot, we
have included the corrections coming from bottom squark-gluino loops and top squark-chargino
loops [122]. The prediction is compared to the experimental values [123]1

mb(MZ) = 2.83± 0.10 GeV . (5.9)

and
mexp
t = (173.2± 0.9) GeV . (5.10)

1 These values correspond to the experimental measurements at the time of the original evaluation. However,
the small change to the current values would not change the phenomenological analysis in a relevant way.
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Figure 5.1: The bottom quark mass at the Z boson scale (upper) and top quark pole mass
(lower plot) are shown as function of M for both models and both signs of µ.
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One can see that the value of mb depends strongly on the sign of µ due to the above mentioned
radiative corrections involving SUSY particles. For both models A and B the values for µ > 0
are above the central experimental value, with mb(MZ) ∼ 4.0 − 5.0 GeV. For µ < 0, on
the other hand, model B shows overlap with the experimentally measured values, mb(MZ) ∼
2.5− 2.8 GeV. For model A we find mb(MZ) ∼ 1.5− 2.6 GeV, and there is only a small region
of allowed parameter space at large M where we find agreement with the experimental value
at the two σ level. Therefore, the experimental determination of mb(MZ) clearly selects the
negative sign of µ.

Now we turn to the top quark mass. The predictions for the top quark mass Mt are
∼ 183 GeV and ∼ 172 GeV in the models A and B respectively, as shown in the lower plot
of Fig. 5.1. (Here it should be kept in mind that theoretical values for Mt may suffer from a
correction of ∼ 4% [118,124,125]). One can see clearly that model B is singled out. In addition
the value of tan β is found to be tan β ∼ 54 and ∼ 48 for models A and B, respectively. Thus
from the comparison of the predictions of the two models with experimental data only FUT
B with µ < 0 survives.

5.2 Reduction of Couplings in the Minimal Supersym-

metric SU(5) GUT

In this section we consider the partial reduction of couplings in the minimal N = 1 super-
symmetric gauge model based on the group SU(5) according to refs [20, 41] The three gen-
erations of quarks and leptons are accommodated by three chiral superfields in ΨI(10) and
ΦI(5), where I runs over the three generations. A Σ(24) is used to break SU(5) down to
SU(3)C×SU(2)L×U(1)Y, and H(5) and H(5) to describe the two Higgs superfields appropri-
ate for electroweak symmetry breaking [126,127]. Note that the Finite Unified Models discussed
in Sect. 5.1 contain four (5 + 5̄) to describe the Higgs superfields appropriate for electroweak
symmetry breaking instead of one set of (5+5̄) used here in the minimal N = 1 supersymmetric
SU(5) version. This minimality makes the present version asymptotically free (negative βg)
instead of finite at one loop, which was the case of the models in Sect. 5.1. The superpotential
of the model is [126,127]

W =
gt
4
εαβγδτ Ψ

(3)
αβΨ

(3)
γδHτ +

√
2gb Φ(3)αΨ

(3)
αβH

β
+
gλ
3

Σβ
αΣγ

βΣα
γ + gf H

α
Σβ
αHβ

+
µΣ

2
Σγ
αΣα

γ + +µH H
α
Hα ,

(5.11)
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where α, β, . . . are the SU(5) indices, and we have suppressed the Yukawa couplings of the first
two generations. The Lagrangian containing the SSB terms is

−Lsoft = m2
HuĤ

∗αĤα +m2
Hd
Ĥ
∗
αĤ

α

+m2
ΣΣ̂† αβ Σ̂β

α +
∑
I=1,2,3

[m2
ΦI Φ̂

∗ (I)
α Φ̂(I)α

+ m2
ΨI Ψ̂

† (I)αβΨ̂
(I)
βα ] + { 1

2
Mλλ+BHĤ

α

Ĥα +BΣΣ̂α
βΣ̂β

α + hf Ĥ
α

Σ̂β
αĤβ

+
hλ
3

Σ̂β
αΣ̂γ

βΣ̂α
γ +

ht
4
εαβγδτ Ψ̂

(3)
αβΨ̂

(3)
γδ Ĥτ +

√
2hb Φ̂(3)αΨ̂

(3)
αβĤ

β

+ h.c. } ,

(5.12)

where a hat is used to denote the scalar component of each chiral superfield.
The RG functions of this model may be found in refs. [109, 128, 129], and we employ the

usual normalization of the RG functions, dA/d lnµ = [β(1)(A) or γ(1)(A)]/16π2 + . . . , where
. . . are higher orders, and µ is the renormalization scale:

β(1)(g) = −3g3 , β(1)(gt) = [−96

5
g2 + 9 g2

t +
24

5
g2
f + 4 g2

b ] gt ,

β(1)(gb) = [−84

5
g2 + 3 g2

t +
24

5
g2
f + 10 g2

b ] gb ,

β(1)(gλ) = [−30 g2 +
63

5
g2
λ + 3 g2

f ] gλ ,

β(1)(gf ) = [−98

5
g2 + 3 g2

t + 4 g2
b +

53

5
g2
f +

21

5
g2
λ ] gf , γ

(1)(M) = −6g2M ,

γ(1)(µΣ) = [−20g2 + 2g2
f +

42

5
g2
λ ]µΣ , γ(1)(µH) = [−48

5
g2 +

48

5
g2
f + 4g2

b + 3g2
t ]µH ,

γ(1)(BH) = [−48

5
g2 +

48

5
g2
f + 4g2

b + 3g2
t ]BH

+ [
96

5
g2M +

96

5
hfgf + 8gbhb + 6gtht]µH ,

γ(1)(BΣ) = [−20g2 + 2g2
f +

42

5
g2
λ ]BΣ + [ 40g2M + 4hfgf +

84

5
gλhλ]µΣ ,

γ(1)(ht) = [−96

5
g2 + 9 g2

t +
24

5
g2
f + 4 g2

b ]ht

+ [
192

5
Mg2 + 18htgt + 8hbgb +

48

5
hfgf ] gt ,

γ(1)(hb) = [−84

5
g2 + 3 g2

t +
24

5
g2
f + 10 g2

b ]hb

+ [
168

5
Mg2 + 6htgt + 20hbgb +

48

5
hfgf ] gb ,

γ(1)(hλ) = [−30 g2 +
63

5
g2
λ + 3 g2

f ]hλ + [ 60Mg2 +
126

5
hλgλ + 6hfgf ] gλ ,
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γ(1)(hf ) = [−98

5
g2 + 3 g2

t + 4 g2
b +

53

5
g2
f +

21

5
g2
λ ]hf

+ [
196

5
Mg2 + 6htgt + 8hbgb +

42

5
hλgλ +

106

5
hfgf ] gf ,

γ(1)(m2
Hd

) = −96

5
g2M2 +

48

5
g2
f (m

2
Hu +m2

Hd
+m2

Σ)

+ 8g2
b (m

2
Hd

+m2
Ψ3 +m2

Φ3) +
48

5
h2
f + 8h2

b ,

γ(1)(m2
Hu) = −96

5
g2M2 +

48

5
g2
f (m

2
Hu +m2

Hd
+m2

Σ3) + 6g2
t (m

2
Hu + 2m2

Ψ3) +
48

5
h2
f + 6h2

t ,

γ(1)(m2
Σ) = −40g2M2 + 2g2

f (m
2
Hu +m2

Hd
+m2

Σ) +
126

5
g2
λm

2
Σ + 2h2

f +
42

5
h2
λ ,

γ(1)(m2
Φ3) = −96

5
g2M2 + 8g2

b (m
2
Hd

+m2
Ψ3 +m2

Φ3) + 8h2
b ,

γ(1)(m2
Ψ3) = −144

5
g2M2 + 6g2

t (m
2
Hu + 2m2

Ψ3) + 4g2
b (m

2
Hd

+m2
Ψ3 +m2

Φ3) + 6h2
t + 4h2

b ,

γ(1)(m2
Φ1,2) = −96

5
g2M2 , γ(1)(m2

Ψ1,2) = −144

5
g2M2 , (5.13)

where g stands for the gauge coupling.

The reduction solution is found as follows. We require that the reduced theory should contain
the minimal number of the SSB parameters that are consistent with perturbative renormalizabi-
lity. We will find that the set of the perturbatively unified SSB parameters significantly differ
from the so-called universal SSB parameters.

Without loss of generality, one can assume that the gauge coupling g is the primary cou-
pling. Note that the reduction solutions in the dimension-zero sector is independent of the
dimensionful sector (under the assumption of a mass independent renormalization scheme).
It has been found [128] that there exist two asymptotically free (AF) solutions that make a
Gauge-Yukawa Unification possible in the present model:

a : gt =

√
2533

2605
g +O(g3) , gb =

√
1491

2605
g +O(g3) , gλ = 0 , gf =

√
560

521
g +O(g3) ,

b : gt =

√
89

65
g +O(g3) , gb =

√
63

65
g +O(g3) , gλ = 0 , gf = 0 ,

(5.14)

where the higher order terms denote uniquely computable power series in g. It has been also
found that the two solutions in (5.14) describe the boundaries of an asymptotically free RG-
invariant surface in the space of the couplings, on which gλ and gf can be different from zero.
This observation has enabled us to obtain a partial reduction of couplings for which the gλ and
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gf can be treated as (non-vanishing) independent parameters without loosing AF. Later we
have found [130] that the region on the AF surface consistent with the proton decay constraint
has to be very close to the solution a. Therefore, we assume in the following discussion that
we are exactly at the boundary defined by the solution a 2.

In the dimensionful sector, we seek the reduction of the parameters in the form of Eqs.
(2.30). First, one can realize that the supersymmetric mass parameters, µΣ and µH , and the
gaugino mass parameter M cannot be reduced; that is, there is no solution in the desired form.
Therefore, they should be treated as independent parameters. We find the following lowest
order reduction solution:

BH =
1029

521
µHM , BΣ = −3100

521
µΣM , (5.15)

ht = −gtM , hb = −gbM , hf = −gf M , hλ = 0 ,

m2
Hu = −569

521
M2 , m2

Hd
= −460

521
M2 , m2

Σ =
1550

521
M2 ,

m2
Φ3 =

436

521
M2 , m2

Φ1,2 =
8

5
M2 , m2

Ψ3 =
545

521
M2 , m2

Ψ1,2 =
12

5
M2 .

(5.16)

So, the gaugino mass parameter M plays a similar role as the gravitino mass m2/3 in super-
gravity coupled GUTs and characterizes the scale of the supersymmetry–breaking.

In addition to the µΣ, µH and M , it is possible to include also BH and BΣ as independent
parameters without changing the one-loop reduction solution (5.16).

The prediction of the minimal supersymmetric SU(5) GUT, following the Gauge-Yukawa
Unification of the solution a in Eqs (5.14) is:

Mt ' 1.8× 102 GeV , Mb ' 5.4 GeV , α3(MZ) ' 0.12 ,

MGUT ' 1.7× 1016 GeV , αGUT ' 0.040 , tan β(MSUSY) ' 48 ,

where Mt and Mb are the physical top and bottom quark masses. These values suffer from
corrections coming from different sources such as threshold effects, which are partly taken into
account and estimated in Ref. [130]. In Ref. [41], Tab. 1, also the prediction of the specific
model for several SSB parameters can be found. Just for completeness we mention that the
input parameters for the above prediction were:

α1(MZ) = 0.0169 , α2(MZ) = 0.0337 , ατ (MZ) = 8.005× 10−6

while the SUSY scale was fixed at 500 GeV.
The present model has very good chances to survive the recent experimental constraints. A

more detailed examination is in order to determine its viability.

2 Note that gλ = 0 is inconsistent, but gλ <∼ 0.005 has to be fulfilled to satisfy the proton decay constraint
[130]. We expect that the inclusion of a small gλ will not affect the prediction of the perturbative unification of
the SSB parameters.
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5.3 Gauge-Yukawa Unification in other Supersymmetric

GUTs by Reducing the Couplings

5.3.1 Asymptotically Non-Free Pati-Salam Model

In this section a model is discussed, where a partial reduction of couplings is achieved, which
however is not based on a single gauge group, but on a product of simple groups. In order for
the RGI method for the gauge coupling unification to work, the gauge couplings should have
the same asymptotic behavior. Recall that this common behavior is absent in the standard
model with three families. A way to achieve a common asymptotic behavior of all the different
gauge couplings is to embed SU(3)C × SU(2)L × U(1)Y to some non-abelian gauge group, as
it was done in the previous sections. However, in this case still a major rôle in the GYU is
due to the group theoretical aspects of the covering GUT. Here we would like to examine the
power of RGI method by considering theories without covering GUTs. We found [131] that the
minimal phenomenologically viable model is based on the gauge group of Pati and Salam [132]–
GPS ≡ SU(4) × SU(2)R × SU(2)L. We recall that N = 1 supersymmetric models based on
this gauge group have been studied with renewed interest because they could in principle be
derived from superstrings [133,134].

In our supersymmetric, Gauge-Yukawa unified model based on GPS [131], three generations
of quarks and leptons are accommodated by six chiral supermultiplets, three in (4,2,1) and

three (4,1,2), which we denote by Ψ(I)µ iR and Ψ
(I)iL
µ , (I runs over the three generations, and

µ, ν (= 1, 2, 3, 4) are the SU(4) indices while iR , iL (= 1, 2) stand for the SU(2)L,R indices.)
The Higgs supermultiplets in (4,2,1), (4,2,1) and (15,1,1) are denoted by Hµ iR , Hµ iR

and Σµ
ν , respectively. They are responsible for the spontaneous symmetry breaking (SSB) of

SU(4) × SU(2)R down to SU(3)C × U(1)Y . The SSB of U(1)Y × SU(2)L is then achieved by
the nonzero VEV of hiRiL which is in (1,2,2). In addition to these Higgs supermultiplets,
we introduce Gµ

ν iRiL
(15,2,2), φ (1,1,1) and Σ

′µ
ν (15,1,1). The Gµ

ν iRiL
is introduced to

realize the SU(4) × SU(2)R × SU(2)L version of the Georgi-Jarlskog type ansatz [135] for
the mass matrix of leptons and quarks while φ is supposed to mix with the right-handed
neutrino supermultiplets at a high energy scale. With these things in mind, we write down the
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superpotential of the model W , which is the sum of the following superpotentials:

WY =
3∑

I,J=1

gIJ Ψ
(I)iR
µ Ψ(J)µ iL hiRiL ,

WGJ = gGJ Ψ
(2)iR
µ Gµ

ν iRjL
Ψ(2)ν jL ,

WNM =
∑
I=1,2,3

gIφ εiRjR Ψ
(I)iR
µ Hµ jR φ ,

WSB = gH Hµ iR Σµ
ν H

ν iR +
gΣ

3
Tr [ Σ3 ] +

gΣ′

2
Tr [ (Σ′)2 Σ ] ,

WTDS =
gG
2
εiRjRεiLjL Tr [ GiRiL ΣGjRjL ] ,

WM = mh h
2 +mGG

2 +mφ φ
2 +mH H H +mΣ Σ2 +mΣ′ (Σ

′)2 .

Although W has the parity, φ→ −φ and Σ′ → −Σ′, it is not the most general potential, but,
as we already mentioned, this is not a problem in N = 1 SUSY theories.

We denote the gauge couplings of SU(4)× SU(2)R × SU(2)L by α4 , α2R and α2L, respec-
tively. The gauge coupling for U(1)Y , α1, normalized in the usual GUT inspired manner, is
given by 1/α1 = 2/5α4 + 3/5α2R . In principle, the primary coupling can be any one of the
couplings. But it is more convenient to choose a gauge coupling as the primary one because
the one-loop β functions for a gauge coupling depends only on its own gauge coupling. For
the present model, we use α2L as the primary one. Since the gauge sector for the one-loop
β functions is closed, the solutions of the fixed point equations (2.22) are independent on the

Yukawa and Higgs couplings. One easily obtains ρ
(1)
4 = 8/9 , ρ

(1)
2R = 4/5, so that the RGI

relations (2.26) at the one-loop level become

α̃4 =
α4

α2L

=
8

9
, α̃1 =

α1

α2L

=
5

6
. (5.17)

The solutions in the Yukawa-Higgs sector strongly depend on the result of the gauge sector.
After slightly involved algebraic computations, one finds that most predictive solutions contain
at least three vanishing ρ

(1)
i ’s. Out of these solutions, there are two that exhibit the most

predictive power and moreover they satisfy the neutrino mass relation mντ > mνµ , mνe . For the

first solution we have ρ
(1)
1φ = ρ

(1)
2φ = ρ

(1)
Σ = 0, while for the second solution, ρ

(1)
1φ = ρ

(1)
2φ = ρ

(1)
G = 0,
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and one finds that for the cases above the power series solutions (2.26) take the form

α̃GJ '
{

1.67− 0.05α̃1φ + 0.004α̃2φ − 0.90α̃Σ + · · ·
2.20− 0.08α̃2φ − 0.05α̃G + · · · ,

α̃33 '
{

3.33 + 0.05α̃1φ + 0.21α̃2φ − 0.02α̃Σ + · · ·
3.40 + 0.05α̃1φ − 1.63α̃2φ − 0.001α̃G + · · · ,

α̃3φ '
{

1.43− 0.58α̃1φ − 1.43α̃2φ − 0.03α̃Σ + · · ·
0.88− 0.48α̃1φ + 8.83α̃2φ + 0.01α̃G + · · · ,

α̃H '
{

1.08− 0.03α̃1φ + 0.10α̃2φ − 0.07α̃Σ + · · ·
2.51− 0.04α̃1φ − 1.68α̃2φ − 0.12α̃G + · · · ,

α̃Σ '
{
−−−
0.40 + 0.01α̃1φ − 0.45α̃2φ − 0.10α̃G + · · · ,

α̃Σ′ '
{

4.91− 0.001α̃1φ − 0.03α̃2φ − 0.46α̃Σ + · · ·
8.30 + 0.01α̃1φ + 1.72α̃2φ − 0.36α̃G + · · · ,

α̃G '
{

5.59 + 0.02α̃1φ − 0.04α̃2φ − 1.33α̃Σ + · · ·
− − − .

(5.18)

We have assumed that the Yukawa couplings gIJ except for g33 vanish. They can be included
into RGI relations as small perturbations, but their numerical effects will be rather small.

The number NH of the Higgses lighter than MSUSY could vary from one to four while the
number of those to be taken into account above MSUSY is fixed at four. We have assumed
here that NH = 1. The dependence of the top mass on MSUSY in this model is shown in
Fig. 5.2. One can see that for any reasonable supersymmetry breaking scale in the TeV region
the experimentally found top quark mass cannot be reproduced within this model.

5.3.2 Asymptotically Non-Free SO(10) Model

In this section a model based on SO(10) is discussed, which also admits a partial reduction
of couplings [136]. We denote the hermitean SO(10)-gamma matrices by Γα , α = 1, · · · , 10.
The charge conjugation matrix C satisfies C = C−1 , C−1 ΓTα C = − Γα, and the Γ11 is
defined as Γ11 ≡ (−i)5 Π10

α=1Γα with (Γ11)2 = 1. The chiral projection operators are given
by P± = 1

2
( 1± Γ11).

In SO(10) GUTs [137–139], three generations of quarks and leptons are accommodated by
three chiral supermultiplets in 16 which we denote by

ΨI(16) with P+ ΨI = ΨI , (5.19)

44



Figure 5.2: The values for Mt predicted by the Pati-Salam model for different MSUSY scales.

where I runs over the three generations and the spinor index is suppressed. To break SO(10)
down to SU(3)C × SU(2)L × U(1)Y, we use the following set of chiral superfields:

S{αβ}(54) , A[αβ](45) , φ(16) , φ(16) . (5.20)

The two SU(2)L doublets which are responsible for the spontaneous symmetry breaking (SSB)
of SU(2)L × U(1)Y down to U(1)EM are contained in Hα(10). We further introduce a singlet
ϕ which after the SSB of SO(10) will mix with the right-handed neutrinos so that they will
become superheavy.

The superpotential of the model is given by

W = WY +WSB +WHS +WNM +WM , (5.21)

where

WY =
1

2

3∑
I,J=1

gIJ ΨI CΓα ΨJ Hα ,

WSB =
gφ
2
φΓ[αβ] φ A[αβ] +

gS
3!

Tr S3 +
gA
2

Tr A2 S ,

WHS =
gHS

2
Hα S{αβ}Hβ , W

I
NM =

3∑
I=1

gINM ΨI φϕ ,
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WM =
mH

2
H2 +mϕ ϕ

2 +mφ φφ+
mS

2
S2 +

mA

2
A2 , (5.22)

and Γ[αβ] = i(ΓαΓβ−ΓβΓα)/2. As in the case of the SU(5) minimal model, the superpotential is
not the most general one, but this does not contradict the philosophy of the coupling unification
by the reduction method. WSB is responsible for the SSB of SO(10) down to SU(3)C×SU(2)W×
U(1)Y , and this can be achieved without breaking supersymmetry, while WHS is responsible
for the triplet-doublet splitting of H. The right-handed neutrinos obtain a superheavy mass
through WNM after the SSB, and the Yukawa couplings for the leptons and quarks are contained
in WY . We assume that there exists a choice of soft supersymmetry breaking terms so that all
the vacuum expectation values necessary for the desired SSB corresponds to the minimum of
the potential.

Given the supermultiplet content and the superpotential W , we can compute the β functions
of the model. The gauge coupling of SO(10) is denoted by g, and our normalization of the β

functions is as usual, i.e., dgi/d lnµ = β
(1)
i /16π2 +O(g5), where µ is the renormalization scale.

We find:

β(1)
g = 7 g3 ,

β(1)
gT

= gT

(
14g2

T +
27

5
g2
HS + g2

3NM −
63

2
g2

)
,

β(1)
gφ

= gφ

(
53gφ2 +

48

5
g2
A +

1

2
g2

1NM +
1

2
g2

2NM +
1

2
g2

3NM −
77

2
g2

)
,

β
(1)
S = gS

(
84

5
g2
S + 12g2

A +
3

2
g2
HS − 60g2

)
,

β
(1)
A = gA

(
16g2

φ +
28

5
g2
S +

116

5
g2
A +

1

2
g2
HS − 52g2

)
,

β
(1)
HS = gHS

(
8g2

T +
28

5
g2
S + 4g2

A +
113

10
g2
HS − 38g2

)
,

β
(1)
1NM = g1NM

(
45

2
g2
φ + 9g2

1NM +
17

2
g2

2NM +
17

2
g2

3NM −
45

2
g2

)
,

β
(1)
2NM = g2NM

(
45

2
g2
φ +

17

2
g2

1NM + 9g2
2NM +

17

2
g2

3NM −
45

2
g2

)
,

β
(1)
3NM = g3NM

(
5g2

T +
45

2
g2
φ +

17

2
g2

1NM +
17

2
g2

2NM + 9g2
3NM −

45

2
g2

)
.

(5.23)

We have assumed that the Yukawa couplings gIJ except for gT ≡ g33 vanish. They can be
included as small perturbations. Needless to say that the soft susy breaking terms do not alter
the β functions above.
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We find that there exist two independent solutions, A and B, that have the most predictive
power, where we have chosen the SO(10) gauge coupling as the primary coupling:

ρT =

{
163/60 ' 2.717
0

, ρφ =

{
5351/9180 ' 0.583
1589/2727 ' 0.583

,

ρS =

{
152335/51408 ' 2.963
850135/305424 ' 2.783

, ρA =

{
31373/22032 ' 1.424
186415/130896 ' 1.424

,

ρHS =

{
7/81 ' 0.086
170/81 ' 2.099

, ρ1NM = ρ2NM =

{
191/204 ' 0.936
191/303 ' 0.630

,

ρ3NM =

{
0
191/303 ' 0.630

for

{
A
B

. (5.24)

Clearly, the solution B has less predictive power because ρT = 0. So, we consider below only
the solution A, in which the coupling α3NM should be regarded as a small perturbation because
ρ3NM = 0.

Given this solution it is possible to show, as in the case of SU(5), that the ρ’s can be
uniquely computed in any finite order in perturbation theory.

The corrections to the reduced couplings coming from the small perturbations up to and
including terms of O(α̃2

3NM) are:

α̃T = ( 163/60− 0.108 · · · α̃3NM + 0.482 · · · α̃2
3NM + · · · ) + · · · ,

α̃φ = ( 5351/9180 + 0.316 · · · α̃3NM + 0.857 · · · α̃2
3NM + · · · ) + · · · ,

α̃S = ( 152335/51408 + 0.573 · · · α̃3NM + 5.7504 · · · α̃2
3NM + · · · ) + · · · ,

α̃A = ( 31373/22032− 0.591 · · · α̃3NM − 4.832 · · · α̃2
3NM + · · · ) + · · · ,

α̃HS = (7/81− 0.00017 · · · α̃3NM + 0.056 · · · α̃2
3NM + · · · ) + · · · ,

α̃1NM = α̃2NM = ( 191/204− 4.473 · · · α̃3NM + 2.831 · · · α̃2
3NM + · · · ) + · · · ,

(5.25)

where · · · indicates higher order terms which can be uniquely computed. In the partially
reduced theory defined above, we have two independent couplings, α and α3NM (along with the
Yukawa couplings αIJ , I, J 6= T ).

At the one-loop level, Eq. (5.25) defines a line parametrized by α̃3NM in the 7 dimensional
space of couplings. A numerical analysis shows that this line blows up in the direction of α̃S
at a finite value of α̃3NM [136]. So if we require α̃S to remain within the perturbative regime
(i.e., gS ≤ 2, which means α̃S ≤ 8 because αGUT ∼ 0.04), the α̃3NM should be restricted to be
below ∼ 0.067. As a consequence, the value of α̃T is also bounded

2.714 ≤ α̃T ≤ 2.736 . (5.26)
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This defines GYU boundary conditions holding at the unification scale MGUT in addition to
the group theoretical one, αT = αt = αb = ατ . The value of α̃T is practically fixed so that
we may assume that α̃T = 163/60 ' 2.72, which is the unperturbed value.

Figure 5.3: Top quark mass prediction versus MSUSY for α̃T = 2.717.

Fig. 5.3 shows the prediction for the top quark mass in this model for different values of the
supersymmetry breaking scaleMSUSY. While the value for the top quark mass predicted is below
its infrared value (∼ 189 GeV) [136], it is above the experimental value [140]. Consequently,
also this particular model has difficulties to meet the experimental data on the top quark mass,
despite the theoretical uncertainties involved.
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5.4 Finite SU(N)3 Unification

We continue examining the possibility of constructing realistic FUTs based on product
gauge groups. Consider an N = 1 supersymmetric theory, with gauge group SU(N)1 ×
SU(N)2 × · · · × SU(N)k, with nf copies (number of families) of the supersymmetric multi-
plets (N,N∗, 1, . . . , 1) + (1, N,N∗, . . . , 1) + · · · + (N∗, 1, 1, . . . , N). The one-loop β-function
coefficient in the renormalization-group equation of each SU(N) gauge coupling is simply given
by

b =

(
−11

3
+

2

3

)
N + nf

(
2

3
+

1

3

)(
1

2

)
2N = −3N + nfN . (5.27)

This means that nf = 3 is the only solution of Eq.(5.27) that yields b = 0. Since b = 0 is a
necessary condition for a finite field theory, the existence of three families of quarks and leptons
is natural in such models, provided the matter content is exactly as given above.

The model of this type with best phenomenology is the SU(3)3 model discussed in Ref. [141],
where the details of the model are given. It corresponds to the well-known example of SU(3)C×
SU(3)L × SU(3)R [142–145], with quarks transforming as

q =

d u h
d u h
d u h

 ∼ (3, 3∗, 1), qc =

dc dc dc

uc uc uc

hc hc hc

 ∼ (3∗, 1, 3), (5.28)

and leptons transforming as

λ =

N Ec ν
E N c e
νc ec S

 ∼ (1, 3, 3∗). (5.29)

Switching the first and third rows of qc together with the first and third columns of λ, we obtain
the alternative left-right model first proposed in Ref. [145] in the context of superstring-inspired
E6.

In order for all the gauge couplings to be equal at an energy scale, MGUT, the cyclic symmetry
Z3 must be imposed, i.e.

q → λ→ qc → q, (5.30)

where q and qc are given in eq. (5.28) and λ in eq. (5.29). Then, the first of the finiteness
conditions (4.5) for one-loop finiteness, namely the vanishing of the gauge β-function is satisfied.

Next let us consider the second condition, i.e. the vanishing of the anomalous dimensions of
all superfields, eq. (4.6). To do that first we have to write down the superpotential. If there is
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just one family, then there are only two trilinear invariants, which can be constructed respecting
the symmetries of the theory, and therefore can be used in the superpotential as follows

f Tr(λqcq) +
1

6
f ′ εijkεabc(λiaλjbλkc + qciaq

c
jbq

c
kc + qiaqjbqkc), (5.31)

where f and f ′ are the Yukawa couplings associated to each invariant. Quark and leptons
obtain masses when the scalar parts of the superfields (Ñ , Ñ c) obtain vacuum expectation
values (vevs),

md = f〈Ñ〉, mu = f〈Ñ c〉, me = f ′〈Ñ〉, mν = f ′〈Ñ c〉. (5.32)

With three families, the most general superpotential contains 11 f couplings, and 10 f ′

couplings, subject to 9 conditions, due to the vanishing of the anomalous dimensions of each
superfield. The conditions are the following∑

j,k

fijk(fljk)
∗ +

2

3

∑
j,k

f ′ijk(f
′
ljk)
∗ =

16

9
g2δil , (5.33)

where

fijk = fjki = fkij, (5.34)

f ′ijk = f ′jki = f ′kij = f ′ikj = f ′kji = f ′jik. (5.35)

Quarks and leptons receive masses when the scalar part of the superfields Ñ1,2,3 and Ñ c
1,2,3

obtain vevs as follows

(Md)ij =
∑
k

fkij〈Ñk〉, (Mu)ij =
∑
k

fkij〈Ñ c
k〉, (5.36)

(Me)ij =
∑
k

f ′kij〈Ñk〉, (Mν)ij =
∑
k

f ′kij〈Ñ c
k〉. (5.37)

We will assume that the below MGUT we have the usual MSSM 3, with the two Higgs
doublets coupled maximally to the third generation. Therefore we have to choose the linear
combinations Ñ c =

∑
i aiÑ

c
i and Ñ =

∑
i biÑi to play the role of the two Higgs doublets, which

will be responsible for the electroweak symmetry breaking. This can be done by choosing
appropriately the masses in the superpotential [114], since they are not constrained by the
finiteness conditions. We choose that the two Higgs doublets are predominately coupled to the
third generation. Then these two Higgs doublets couple to the three families differently, thus

3For details of how the spontaneous breaking of SU(3)3 to MSSM can be achieved see refs [146,147] and refs
therein.
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providing the freedom to understand their different masses and mixings. The remnants of the
SU(3)3 FUT are the boundary conditions on the gauge and Yukawa couplings, i.e. Eq.(5.33),
the h = −MC relation, and the soft scalar-mass sum rule eq. (5.8) at MGUT, which, when
applied to the present model, takes the form

m2
Hu +m2

t̃c +m2
q̃ = M2 = m2

Hd
+m2

b̃c
+m2

q̃ , (5.38)

where t̃c, b̃c, and q̃ are the scalar parts of the corresponding superfields.
Concerning the solution to Eq.(5.33) we consider two versions of the model:

I) An all-loop finite model with a unique and isolated solution, in which f ′ vanishes, which
leads to the following relations

f 2 = f 2
111 = f 2

222 = f 2
333 =

16

9
g2 . (5.39)

As for the lepton masses, since all f ′ couplings have been fixed to be zero at this order, in
principle they would be expected to appear radiatively induced by the scalar lepton masses
appearing in the SSB sector of the theory. However, due to the finiteness conditions they
cannot appear radiatively and remain as a problem for further study.
II) A two-loop finite solution, in which we keep f ′ non-vanishing and we use it to introduce the
lepton masses. The model in turn becomes finite only up to two-loops since the corresponding
solution of Eq.(5.33) is not an isolated one any more, i.e. it is a parametric one. In this case
we have the following boundary conditions for the Yukawa couplings

f 2 = r

(
16

9

)
g2 , f ′2 = (1− r)

(
8

3

)
g2 , (5.40)

where r is a free parameter which parametrizes the different solutions to the finiteness condi-
tions. As for the boundary conditions of the soft scalars, we have the universal case.

Below MGUT all couplings and masses of the theory run according to the RGEs of the MSSM.
Thus we examine the evolution of these parameters according to their RGEs up to two-loops
for dimensionless parameters and at one-loop for dimensionful ones imposing the corresponding
boundary conditions. We further assume a unique SUSY breaking scale MSUSY and below that
scale the effective theory is just the SM.

We compare our predictions with the experimental value of mexp
t

4 and recall that the
theoretical values for mt suffer from a correction of ∼ 4% [118, 124, 125]. In the case of the
bottom quark, we take again the value evaluated at MZ , see Eq. (5.9). In the case of model
I, the predictions for the top quark mass (in this case mb is an input) mt are ∼ 183 GeV for
µ < 0, which is above the experimental value, and there are no solutions for µ > 0.

4 As before, these values correspond to the experimental measurements at the time of the original evaluation.
Again, the small change to the current values would not change the phenomenological analysis in a relevant
way.

51



Figure 5.4: The figures show the values for the top and bottom quark masses for the FUT model
SU(3)3, with µ < 0, vs the parameter r. The thicker horizontal line is the experimental central
value, and the lighter green and orange ones are the one and two sigma limits respectively. The
red points are the ones that satisfy the B-physics constraints, as discussed in Chapter 6.

For the two-loop model II, we look for the values of the parameter r which comply with
the experimental limits given above for top and bottom quarks masses. In the case of µ > 0,
for the bottom quark, the values of r lie in the range 0.15 . r . 0.32. For the top mass, the
range of values for r is 0.35 . r . 0.6. From these values we can see that there is a very small
region where both top and bottom quark masses are in the experimental range for the same
value of r. In the case of µ < 0 the situation is similar, although slightly better, with the range
of values 0.62 . r . 0.77 for the bottom mass, and 0.4 . r . 0.62 for the top quark mass. In
the above mentioned analysis, the masses of the new particles h’s and E’s of all families were
taken to be at the MGUT scale.

Taking into account new thresholds for these exotic particles below MGUT we find a wider
phenomenologically viable parameter space [148]. This can be seen in Fig. 5.4, where we took
only one down-like exotic particle decoupling at 1014 GeV, below than the usual MSSM.

In this case, for r ∼ 0.5 ∼ 0.62 we have reasonable agreement with experimental data
for both top and bottom quark masses, where the red points in the figure are the ones that
satisfy the B-physics constraints (at the time of the analysis) [149]. The above analysis shows
that it is worth returning with a fresh examination of this model taking into account all new
experimental constraints.
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5.5 Reduction of Couplings in the MSSM

In this section we are working in the framework of MSSM, assuming though the existence of a
covering GUT.

The analysis of the partial reduction of couplings in this framework was first done in refs [150,
151].

The superpotential of the MSSM (where again we restrict ourselves to the third generation
of fermions) is defined by

W = YtH2Qt
c + YbH1Qb

c + YτH1Lτ
c + µH1H2 , (5.41)

where Q,L, t, b, τ,H1, H2 are the usual superfields of MSSM, while the SSB Lagrangian is given
by

−LSSB =
∑
φ

m2
φφ̂
∗φ̂+

[
m2

3Ĥ1Ĥ2 +
3∑
i=1

1

2
Miλiλi + h.c

]
+
[
htĤ2Q̂t̂c + hbĤ1Q̂b̂c + hτĤ1L̂τ̂ c + h.c.

]
,

(5.42)

where φ̂ represents the scalar component of all superfields, λ refers to the gaugino fields while
all hatted fields refer to the scalar components of the corresponding superfield. The Yukawa
Yt,b,τ and the trilinear ht,b,τ couplings refer to the third generator only, neglecting the first two
generations.

Let us start with the dimensionless couplings, i.e. gauge and Yukawa. As a first step we
consider only the strong coupling and the top and bottom Yukawa couplings, while the other
two gauge couplings and the tau Yukawa will be treated as corrections. Following the above
line, we reduce the Yukawa couplings in favour of the strong coupling α3

Y 2
i

4π
≡ αi = G2

iα3, i = t, b,

and using the RGE for the Yukawa, we get

G2
i =

1

3
, i = t, b.

This system of the top and bottom Yukawa couplings reduced with the strong one is dictated
by (i) the different running behaviour of the SU(2) and U(1) coupling compared to the strong
one [26] and (ii) the incompatibility of applying the above reduction for the tau Yukawa since
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the corresponding G2 turns negative [152]. Adding now the two other gauge couplings and the
tau Yukawa in the RGE as corrections, we obtain

G2
t =

1

3
+

71

525
ρ1 +

3

7
ρ2 +

1

35
ρτ , G2

b =
1

3
+

29

525
ρ1 +

3

7
ρ2 −

6

35
ρτ (5.43)

where

ρ1,2 =
g2

1,2

g2
3

=
α1,2

α3

, ρτ =
g2
τ

g2
3

=

Y 2
τ

4π
α3

(5.44)

Note that the corrections in Eq.(5.43) are taken at the GUT scale and under the assumption
that

d

dg3

(
Y 2
t,b

g2
3

)
= 0.

Let us comment on our assumption above, which led to the Eq.(5.43). In practice we
assume that even including the corrections from the rest of the gauge as well as the tau Yukawa
couplings, at the GUT scale the ratio of the top and bottom couplings αt,b over the strong
coupling are still constant, i.e. their scale dependence is negligible. Or, rephrasing it, our
assumption can be understood as a requirement that in the ultraviolet (close to the GUT scale)
the ratios of the top and bottom Yukawa couplings over the strong coupling become least
sensitive against the change of the renormalization scale. This requirement sets the boundary
condition at the GUT scale, given in Eq.(5.43). Alternatively one could follow the systematic
method to include the corrections to a non-trivially reduced system developed in ref. [27], but
considering two reduced systems: the first one consisting of the “top, bottom” couplings and
the second of the “strong, bottom” ones.

In the next order the corrections are assumed to be in the form

αi = G2
iα3 + J2

i α
2
3, i = t, b.

Then, the coefficients Ji are given by

J2
i =

1

4π

17

24
, i = t, b

for the case where only the strong gauge and the top and bottom Yukawa couplings are active,
while for the case where the other two gauge and the tau Yukawa couplings are added as
corrections we obtain

J2
t =

1

4π

Nt

D
, J2

b =
1

4π

Nb

5D
,
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where

D =257250(196000 + 44500ρ1 + 2059ρ2
1 + 200250ρ2 + 22500ρ1ρ2 + 50625ρ2

2−
33375ρτ − 5955ρ1ρτ − 16875ρ2ρτ − 1350ρ2

τ ),

Nt =− (−35714875000− 10349167500ρ1 + 21077903700ρ2
1 + 9057172327ρ3

1+

481651575ρ4
1 − 55566000000ρ2 + 2857680000ρ1ρ2 + 34588894725ρ2

1ρ2+

5202716130ρ3
1ρ2 + 3913875000ρ2

2 + 8104595625ρ1ρ
2
2 + 11497621500ρ2

1ρ
2
2+

27047671875ρ3
2 + 1977918750ρ1ρ

3
2 + 7802578125ρ4

2 + 3678675000ρτ+

1269418500ρ1ρτ − 2827765710ρ2
1ρτ − 1420498671ρ3

1ρτ + 7557637500ρ2ρτ−
2378187000ρ1ρ2ρτ − 4066909425ρ2

1ρ2ρτ − 1284018750ρ2
2ρτ − 1035973125ρ1ρ

2
2ρτ−

2464171875ρ3
2ρτ + 1230757500ρ2

τ + 442136100ρ1ρ
2
τ − 186425070ρ2

1ρ
2
τ+

1727460000ρ2ρ
2
τ + 794232000ρ1ρ2ρ

2
τ + 973518750ρ2

2ρ
2
τ−

325804500ρ3
τ − 126334800ρ1ρ

3
τ − 412695000ρ2ρ

3
τ − 32724000ρ4

τ ),

Nb =− (−178574375000− 71734162500ρ1 + 36055498500ρ2
1 + 13029194465ρ3

1+

977219931ρ4
1 − 277830000000ρ2 − 69523650000ρ1ρ2 + 72621383625ρ2

1ρ2+

10648126350ρ3
1ρ2 + 19569375000ρ2

2 + 13062459375ρ1ρ
2
2 + 25279672500ρ2

1ρ
2
2+

135238359375ρ3
2 + 16587281250ρ1ρ

3
2 + 39012890625ρ4

2 + 58460062500ρτ+

35924411250ρ1ρτ − 13544261325ρ2
1ρτ − 2152509435ρ3

1ρτ − 13050843750ρ2ρτ+

45805646250ρ1ρ2ρτ − 75889125ρ2
1ρ2ρτ − 24218578125ρ2

2ρτ + 17493046875ρ1ρ
2
2ρτ−

1158046875ρ3
2ρτ − 36356775000ρ2

τ − 26724138000ρ1ρ
2
τ − 4004587050ρ2

1ρ
2
τ−

97864200000ρ2ρ
2
τ − 22359847500ρ1ρ2ρ

2
τ − 39783656250ρ2

2ρ
2
τ + 25721797500ρ3

τ+

3651097500ρ1ρ
3
τ + 11282287500ρ2ρ

3
τ + 927855000ρ4

τ ).

We move now to the dimension-1 parameters of the SSB Lagrangian, namely the trilinear
couplings ht,b,τ of the SSB Lagrangian, Eq. (5.42). Again, following the pattern in the Yukawa
reduction, in the first stage we reduce ht,b, while hτ will be treated as a correction.

hi = ciYiM3 = ciGiM3g3, i = t, b,

where M3 is the gluino mass. Using the RGE for the two h we get

ct = cb = −1,
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where we have also used the 1-loop relation between the gaugino mass and the gauge coupling
RGE

2Mi
dgi
dt

= gi
dMi

dt
, i = 1, 2, 3.

Adding the other two gauge couplings as well as the tau Yukawa hτ as correction we get

ct = −AAAbb + AtbBB

AbtAtb − AbbAtt
, cb = −AAAbt + AttBB

AbtAtb − AbbAtt
,

where

Att = G2
b −

16

3
− 3ρ2 −

13

15
ρ1, AA =

16

3
+ 3ρ2

2 +
13

15
ρ2

1

Abb = G2
t + ρτ −

16

3
− 3ρ2 −

7

15
ρ1, BB =

16

3
+ 3ρ2

2 +
7

15
ρ2

1 + ρhτρ
1/2
τ

Atb = G2
b , Abt = G2

t , ρhτ =
hτ
g3M3

.

(5.45)

Finally we consider the soft squared masses m2
φ of the SSB Lagrangian. Their reduction,

according to the discussion in Sect. 2.3, takes the form

m2
i = ciM

2
3 , i = Q, u, d,Hu, Hd. (5.46)

The 1-loop RGE for the scalar masses reduce to the following algebraic system (where we have
added the corrections from the two gauge couplings, the tau Yukawa and hτ )

−12cQ = Xt +Xb −
32

3
− 6ρ3

2 −
2

15
ρ3

1 +
1

5
ρ1S,

−12cu = 2Xt −
32

3
− 32

15
ρ3

1 −
4

5
ρ1S,

−12cd = 2Xb −
32

3
− 8

15
ρ3

1 +
2

5
ρ1S,

−12cHu = 3Xt − 6ρ3
2 −

6

5
ρ3

1 +
3

5
ρ1S,

−12cHd = 3Xb +Xτ − 6ρ3
2 −

6

5
ρ3

1 −
3

5
ρ1S,

where

Xt = 2G2
t (cHu + cQ + cu) + 2c2

tG
2
t ,

Xb = 2G2
b (cHd + cQ + cd) + 2c2

bG
2
b ,

Xτ = 2ρτcHd + 2ρ2
hτ ,

S = cHu − cHd + cQ − 2cu + cd.
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Solving the above system for the coefficients cQ,u,d,Hu,Hd we get

cQ =− cQNum

Dm

, cu = −1

3

cuNum

Dm

, cd = −cdNum

Dm

,

cHu =− 2

3

cHuNum

Dm

, cHd = −cHdNum

Dm

,

where

Dm =4(6480 + 6480G2
b + 6480G2

t + 6300G2
bG

2
t + ρ1(1836 + 1836G2

b + 1836G2
t + 1785G2

bG
2
t )+

ρτ
[
1080 + 540G2

b + 1080G2
t + 510G2

bG
2
t + 252ρ1 + 99G2

bρ1 + 252G2
tρ1 + 92G2

bG
2
tρ1

]
),

cQNum =2160FQ +G2
b(−360Fd − 360FHd + 1800FQ) +G2

t (−360FHu + 1800FQ − 360Fu)+

G2
bG

2
t (−300Fd − 300FHd − 300FHu + 1500FQ − 300Fu)+

ρ1(−36Fd + 36FHd − 36FHu + 576FQ + 72Fu)+

G2
bρ1(−138Fd − 66FHd − 36FHu + 474FQ + 72Fu)+

G2
tρ1(−36Fd + 36FHd − 138FHu + 474FQ − 30Fu)+

G2
bG

2
tρ1(−120Fd − 50FHd − 120FHu + 390FQ − 15Fu)+

ρτ
[
360FQ +G2

b(−60Fd + 120FQ) +G2
t (−60FHu + 300FQ − 60Fu)+

G2
bG

2
t (−50Fd − 20FHu + 100FQ − 20Fu) + ρ1(−6Fd − 6FHu + 78FQ + 12Fu)+

G2
bρ1(−11Fd + 22FQ) +G2

tρ1(−6Fd − 20FHu + 64FQ − 2Fu)+

G2
bG

2
tρ1(−9Fd − 4FHu + 18FQ − 3Fu)

]
,

cuNum =6480Fu + 6480FuG
2
b +G2

t (−2160FHu − 2160FQ + 4320Fu)+

G2
bG

2
t (360Fd + 360FHd − 2160FHu − 1800FQ + 4140Fu)+

ρ1(432Fd − 432FHd + 432FHu + 432FQ + 972Fu)+

G2
bρ1(432Fd − 432FHd + 432FHu + 432FQ + 972Fu)+

G2
tρ1(432Fd − 432FHd − 180FHu − 180FQ + 360Fu)+

G2
bG

2
tρ1(522Fd − 318FHd − 192FHu − 90FQ + 333Fu)+

ρτ
[
1080Fu + 540G2

bFu +G2
t (−360FHu − 360FQ + 720Fu)+

G2
bG

2
t (60Fd − 180FHu − 120FQ + 330Fu) + ρ1(72Fd + 72FHu + 72FQ + 108Fu)+

G2
bρ1(36FHu + 27Fu) + 72G2

tρ1(Fd − 12FHu − 12FQ + 24Fu)+

G2
bG

2
tρ1(9Fd + 4FHu − 18FQ + 3Fu)

]
,
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cdNum =2160Fd +G2
b(1440Fd − 720FHd − 720FQ) + 2160FdG

2
t+

G2
bG

2
t (1380Fd − 720FHd + 120FHu − 600FQ + 120Fu)+

ρ1(540Fd + 72FHd − 72FHu − 72FQ + 144Fu)+

G2
bρ1(336Fd − 132FHd − 72FHu − 276FQ + 144Fu)+

G2
tρ1(540Fd + 72FHd − 72FHu − 72FQ + 144Fu)+

G2
bG

2
tρ1(321Fd − 134FHd − 36FHu − 240FQ + 174Fu)+

ρτ
[
360Fd +G2

b(60Fd − 120FQ) + 360FdG
2
t +G2

bG
2
t (50Fd + 20FHu − 100FQ + 20Fu)+

ρ1(72Fd − 12FHu − 12FQ + 24Fu) +G2
bρ1(11Fd − 22FQ)+

G2
tρ1(72Fd − 12FHu − 12FQ + 24Fu) +G2

bG
2
tρ1(9Fd + 4FHu − 18FQ + 3Fu)

]
,

cHuNum =3240FHu + 3240FHuG
2
b +G2

t (1620FHu − 1620FQ − 1620Fu)+

G2
bG

2
t (270Fd + 270FHd + 1530FHu − 1350FQ − 1620Fu)+

ρ1(−162Fd + 162FHd + 756FHu − 162FQ + 324Fu)+

G2
bρ1(−162Fd + 162FHd + 756FHu − 162FQ + 324Fu)+

G2
tρ1(−162Fd + 162FHd + 297FHu − 621FQ − 135Fu)+

G2
bG

2
tρ1(−81Fd + 234FHd + 276FHu − 540FQ − 144Fu)+

ρτ
[
540FHu + 270FHuG

2
b +G2

t (270FHu − 270FQ − 270Fu)+

G2
bG

2
t (45Fd + 120FHu − 90FQ − 135Fu) + ρ1(−27Fd + 99FHu − 27FQ + 54Fu)+

G2
bρ1(36FHu + 27Fu − 27Fd) +G2

tρ1(36FHu − 90FQ − 9Fu)+

G2
bG

2
tρ1(9Fd + 4FHu − 18FQ + 3Fu)

]
,

cHdNum =2160FHd +G2
b(−1080Fd + 1080FHd − 1080FQ) + 2160FHdG

2
t+

G2
bG

2
t (−1080Fd + 1020FHd + 180FHu − 900FQ + 180Fu)+

ρ1(108Fd + 504FHd + 108FHu + 108FQ − 216Fu)+

G2
bρ1(−198Fd + 198FHd + 108FHu − 198FQ − 216Fu)+

G2
tρ(108Fd1 + 504FHd + 108FHu + 108FQ − 216Fu)+

G2
bG

2
tρ1(−201Fd + 184FHd + 156FHu − 150FQ − 159Fu)
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and

FQ = 2c2
tG

2
t + 2c2

bG
2
b −

32

3
− 6ρ3

2 −
2

15
ρ3

1,

Fu = 4c2
tG

2
t −

32

3
− 32

15
ρ3

1,

Fd = 4c2
bG

2
b −

32

3
− 8

15
ρ3

1,

FHu = 6c2
tG

2
t − 6ρ3

2 −
6

5
ρ3

1,

FHd = 6c2
bG

2
b + 2ρ2

hτ − 6ρ3
2 −

6

5
ρ3

1,

while G2
t,b, ρ1,2,τ and ρhτ has been defined in Eqs.(5.43,5.44,5.45) respectively. For our com-

pletely reduced system, i.e. g3, Yt, Yb, ht, hb, the coefficients of the soft masses become

cQ = cu = cd =
2

3
, cHu = cHd = −1/3,

obeying the celebrated sum rules

m2
Q +m2

u +m2
Hu

M2
3

= cQ + cu + cHu = 1,
m2
Q +m2

d +m2
Hd

M2
3

= cQ + cd + cHd = 1.

The selection of free parameters in this model, which tightly connected to the prediction
of the fermion masses, will be discussed in Sect. 6.3.1. Subsequently, the corresponding phe-
nomenological implications of the quark mass predictions are analyzed in 6.3.2.

5.6 Comments on the Gauge-Yukawa unification

Dimensionless sector. As has been already noted a natural extension of the GUT idea is
to find a way to relate the gauge and Yukawa sectors of a theory, that is to achieve GYU.
A symmetry which naturally relates the two sectors is supersymmetry, in particular N = 2
supersymmetry [153]. However, N = 2 supersymmetric theories have serious phenomenological
problems due to light mirror fermions. Also in superstring theories and in composite models
there exist relations among the gauge and Yukawa couplings, but both kind of theories have
phenomenological problems, which we are not going to address here.

There have been other attempts in the past to relate the gauge and Yukawa sectors in
the perturbative renormalizable framework of the SM and MSSM which we recall and update
for completeness here. One was proposed by Decker, Pestieau [154] and Veltman [155]. By
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requiring the absence of quadratic divergencies in the SM, they found a relationship among the
squared masses appearing in the Yukawa and in the gauge sectors of the theory. A very similar
relation is obtained by applying naively in the SM the general formula derived from demanding
spontaneous supersymmetry breaking via F-terms. In both cases a prediction for the top quark
was possible only when it was permitted experimentally to assume the MH � MW,Z with
the result Mt ' 69 GeV [155]. Otherwise there is only a quadratic relation among Mt and
MH . Taking this relationship in the former case and a version of naturalness into account, i.e.
that the quadratic corrections to the Higgs mass be at most equal to the physical mass, the
Higgs mass is found to be ∼ 260 GeV, for a top quark mass of around 176 GeV, in complete
disagreement with the recent findings at LHC [22–25].

Another well known relation among gauge and Yukawa couplings is the Pendleton-Ross
(P-R) infrared fixed point [156]. The P-R proposal, involving the Yukawa coupling of the
top quark gt and the strong gauge coupling α3, was that the ratio αt/α3, where αt = g2

t /4π,
has an infrared fixed point. This assumption predicted Mt ∼ 100 GeV. In addition, it has
been shown [157] that the P-R conjecture is not justified at two-loops, since the ratio αt/α3

diverges in the infrared. Another interesting conjecture, made by Hill [158,159], is that αt itself
develops a quasi-infrared fixed point, leading to the prediction Mt ∼ 280 GeV. The P-R and
Hill conjectures have been done in the framework of the SM. The same conjectures within the
MSSM lead to the following relations (see also ref. [160]):

Mt ≈ 140 GeV sin β (P-R), Mt ≈ 200 GeV sin β (Hill),

where tan β = vu/vd is the ratio of the two vacuum expectation values (vev’s) of the Higgs
fields of the MSSM. From theoretical considerations one can expect

1 < tan β < 50⇔ 1/
√

2 < sin β < 1.

This corresponds to

100 GeV < Mt < 140 GeV (P-R), 140 GeV < Mt < 200 GeV (Hill).

Thus, the MSSM P-R conjecture is ruled out, while within the MSSM, the Hill conjecture
predicts a well defined range for Mt, since the value of sin β is not fixed by other considera-
tions. The Hill model can accommodate the correct value of Mt ∼ 173 GeV for sin β ≈ 0.865
corresponding to tan β ≈ 1.7. Such small values, however, are strongly challenged if the newly
discovered Higgs particle is identified with the lightest MSSM Higgs boson [161–164]. Only a
very heavy scalar top spectrum with large mixing could accommodate such a small tan β value.

In the GUT models examined in this chapter following the philosophy of reduction of cou-
plings a general consequence concerning GYU is that in the lowest order in perturbation theory
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Figure 5.5: The dependence of the top mass Mt with κ2
t , at fixed MSUSY = 500 GeV. As we

can see, after κ2
t ∼ 2.0 the top mass goes to its infrared fixed point value. Taken from [125].

the gauge and Yukawa couplings at MGUT are related in the form

gi = κigGUT , i = 1, 2, 3, e, ..., τ, b, t, (5.47)

where gi (i = 1,...,t) stand for the gauge and Yukawa couplings, gGUT is the unified coupling
and we have neglected the Cabbibo-Kobayashi-Maskawa mixing of the quarks. Thus, Eq.(5.47)
corresponds to a set of boundary conditions on the renormalization group evolution for the
theory below MGUT , which in all cases is the MSSM. As we have seen in the previous sections
it is possible to obtain GYU in the third generation that can predict the bottom and top quark
masses in accordance with the experimental data in certain cases. This means that the top-
bottom hierarchy could be explained in the successful models, in a similar way as the hierarchy
of the gauge couplings of the SM can be explained if one assumes the existence of a unifying
gauge symmetry at MGUT . It is clear that the GYU scenario based on the reduction of couplings
in the dimensionaless sector of the theory is the most predictive scheme as far as the mass of
the top quark is concerned. It may be worth recalling the predictions for Mt of ordinary GUTs,
in particular of supersymmetric SU(5) and SO(10). The MSSM with SU(5) Yukawa boundary
unification allows Mt to be anywhere in the interval between 100-200 GeV for varying tan β,
which is a free parameter. Similarly, the MSSM with SO(10) Yukawa boundary conditions, i.e.
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t− b− τ Yukawa Unification, gives Mt in the interval 160-200 GeV. In addition in Ref. [130] we
have analyzed the infrared quasi-fixed-point behaviour of the Mt prediction in various models
in some detail. In particular it was found that the infrared value exhibits a stronger dependance
on tan β with increasing tan β, and its lowest value is ∼ 188 GeV.

This is demonstrated in Fig. 5.5, where the top quark mass prediction is shown as a function
of κ2

t , see Eq. 5.47. Comparing the infra-red fixed point value, reached for large κ2
t , with the

experimental value mt = (173.2± 0.9) GeV [21] one can conclude that the present data on Mt

cannot be explained from the infrared quasi-fixed-point behaviour alone (see Fig. 5.5) . An
estimate of the theoretical uncertainties involved in GYU has been done in ref. [130]. Although
a fresh look is in order in the case of the minimal N =1 supersymmetric SU(5), we can conclude
that the studies on the GYU of the asymptotically non-free supersymmetric Pati-Salam [131]
and asymptotically non-free SO(10) [136] models have ruled them out on the basis of the top
quark mass prediction.

It should be emphasized once more that only one of the Finite Unified models (discussed
in Sect. 5.1.2 and which will be further discussed in Sect. 6.2) not only predicted correctly the
top and bottom quark masses but in addition predicted the Higgs mass in striking agreement
with the recent findings at LHC [22–25].
Dimensionful sector. As we have seen in Chapter 2 in the dimensionful sector of a reduced
N = 1 supersymmetric theory and in the lowest in perturbation theory the dimensionless and
dimensionful parameters, defined in Eqs. (4.1) and (2.36) are related as follows

hijk = −MCijk, (5.48)(
m2
i +m2

j +m2
k

)
/MM † = 1, (5.49)

resulting from Eqs. (2.48) and (2.50) respectively. We also recall that the sum rule was intro-
duced in order to overcome the problems introduced by the universal relation and the scalar
and gaugino masses in finite models. The sum rule obviously enlarge the parameter space to
overcome the problems, but in the successful SU(5) FUT adds only one free parameter.

We would like to note though that in other models with reduced couplings, such as in the
minimal supersymmetric SU(5) discussed in Sect. 5.2 and in the MSSM with reduced couplings
discussed in Sect. 5.5, although the sum rule of Eq. (5.49) is satisfied, there exist in addition
exact relations among the scalar and gaugino masses; see Eqs. (5.15,5.16,5.46). This is not the
case in finite theories [45].

Therefore in ordinary (non-finite) theories the reduction of couplings leads to exact relations
among couplings as in the dimensionless sector.
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Chapter 6

Low Energy Phenomenology of the
Finite Unified Model and the Reduced
MSSM

In this chapter we confront the Finite Unified model and the reduced MSSM with current
phenomenological constraints. We review how the experimentally favoured parameter space
can be tested with current and future accelerator experiments.

6.1 Phenomenological Constraints

Here we outline the various constraints that are taken into account in our phenomenological
analysis. We first consider four types of flavour constraints, in which SUSY is known to have
significant impact1. Specifically, we consider the flavour observables BR(b → sγ), BR(Bs →
µ+µ−), BR(Bu → τν) and ∆MBs . It should be noted that for this review we have not used the
latest experimental and theoretical values. However, this has a minor impact on the presented
results. The uncertainties below are the linear combination of the experimental error and twice
the theoretical uncertainty in the MSSM. The constraints are:

• For the branching ratio BR(b → sγ) we take a value from the Heavy Flavor Averaging

1 Over the past years several “flavor anomalies” appeared. The most significant ones are given by the mea-
surements of R(K(∗) = BR(B → K(∗)µ+µ−)/BR(B → K(∗)e+e−)) and R(D(∗) = BR(B → D(∗)τν)/BR(B →
D(∗)µν)) as well as the measurement of P ′5 capturing the momentum dependance of the B → K∗µ+µ− de-
cay [140]. While (a combination of) these anomalies may turn out to be significant (see, e.g., Ref. [162]), our
models do not provide any solution to them. Consequently, they do not present an additional constraint on our
preferred parameter space.
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Group (HFAG) [163,164]:

BR(b→ sγ)exp

BR(b→ sγ)SM
= 1.089± 0.27 . (6.1)

• For the branching ratio BR(Bs → µ+µ−) we use a combination of CMS and LHCb
data [165–169]:

BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 . (6.2)

• For the Bu decay to τν we use the limit [164,170,171]:

BR(Bu → τν)exp

BR(Bu → τν)SM
= 1.39± 0.69 . (6.3)

• For ∆MBs we use [172,173]:
∆M exp

Bs

∆MSM
Bs

= 0.97± 0.2 . (6.4)

Since the quartic couplings in the Higgs potential are given by the SM gauge couplings,
the lightest Higgs boson mass is not a free parameter, but rather predicted in terms of other
parameters. Higher-order corrections are crucial for a precise prediction of Mh; see Refs. [174–
176] for reviews.

The discovery of a Higgs-like particle at ATLAS and CMS in July 2012 [22,177] can be inter-
preted as the discovery of the light CP-even Higgs boson of the MSSM Higgs spectrum [178–180].
The experimental average for the (SM) Higgs boson mass obtained at the LHC Run I is given
by [181]

M exp
H = 125.1± 0.3 GeV . (6.5)

More recent Run II measurements confirm this measurement. The uncertainty, however is dom-
inated by the theoretical accuracy for the prediction of Mh in the MSSM, which was estimated
to be at the level of 3 GeV [182–184]. It should be noted that this estimate is only valid if the
most accurate prediction of Mh is employed. For the following phenomenological analyses the
code FeynHiggs [182, 184, 185] (Version 2.14.0 beta) was used to predict the light Higgs mass.
The evaluation of the Higgs masses with FeynHiggs is based on the combination of a fixed
order diagrammatic calculation and a resummation of the (sub)leading logarithmic contribu-
tions at all orders of perturbation theory. This combination ensures a reliable evaluation of Mh

also for large SUSY scales. Refinements in the combination of the fixed order log resummed
calculation have been included w.r.t. previous versions [184]. They resulted in a more precise
Mh evaluation for high supersymmetric mass scales and also in a downward shift of Mh at the
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level of O(2 GeV) for large SUSY masses. For our analyses we used two estimates for the
theory uncertainty of 3(2) GeV. The a total uncertainty for Mh, combined of the experimental
and the theoretical uncertainty, is then given by

Mh = 125.1± 3.1 (2.1) GeV . (6.6)

We finally briefly comment on possible Cold Dark Matter (CDM) constraints. Since it is
well known that the lightest neutralino, being the Lightest SUSY Particle (LSP), is an excellent
candidate for CDM [186], one can in principle demand that the lightest neutralino is indeed
the LSP and parameters leading to a different LSP could be discarded. The current bound,
favoured by a joint analysis of WMAP/Planck and other astrophysical and cosmological data,
is at 2σ level given by [187,188]

ΩCDMh
2 = 0.1120± 0.0112 . (6.7)

However, in the analyzed parameter space the relic abundance turns out to be too high in
comparison with Eq. (6.7). Consequently, on a more general basis a mechanism is needed in
our models to reduce the CDM abundance in the early universe. This issue could, for instance,
be related to another problem, that of neutrino masses. Within the FUTs this type of masses
cannot be generated naturally, although a non-zero value for neutrino masses has clearly been
established [140]. However, the FUTs discussed here can, in principle, be easily extended by
introducing bilinear R-parity violating terms that preserve finiteness and introduce the desired
neutrino masses [189]. More generally, R-parity violation [190] would have a small impact on
the collider phenomenology presented here (apart from fact the SUSY search strategies could
not rely on a ‘missing energy’ signature), but remove the CDM bound of Eq. (6.7) completely.
Consequently, Eq. (6.7) was not taken into account in the analyses presented below.

Finally, we comment on the anomalous magnetic moment of the muon, (g − 2)µ (with
aµ ≡ (g − 2)µ/2). As will be shown in the numerical analysis, the resulting SUSY spectra
are relatively large. Consequently (despite the large values of tan β, see below) the models
gives only a negligible correction to the SM prediction. The comparison of the experimental
result and the SM value shows a deviation of ∼ 3.5σ [191–194]. Consequently, since the results
would be very close to the SM results, the models have the same level of difficulty with the aµ
measurement as the SM.

6.2 Numerical Analysis of the FUT

6.2.1 FUT Predictions for Future Colliders

As was discussed in Sect. 5.1, the experimental bounds on the mb(MZ) and the mt mass clearly
single out model B with µ < 0 as the only solution compatible with these constraints, which
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will simply be called FUT below.
The prediction for Mh of FUT with µ < 0 is shown in Fig. 6.1 (as presented in Ref. [195])

in a range for the unified gaugino mass 0.5 TeV . M . 9 TeV. The green points satisfy
the B-physics constraints as well, as discussed in Sect. 6.1. Here it should be kept in mind
that these predictions are subject to a theory uncertainty of 3 (2) GeV [182]. Older analyses,
including in particular less refined evaluations of the light Higgs mass, are given in Refs. [119,
120, 196]. However, since relatively heavy SUSY masses are favoured (see below) these less
refined evaluations cannot be considered as reliable.

Figure 6.1: The lightest Higgs boson mass, Mh, as a function of M for the choice µ < 0.
The green points are the ones that satisfy the B-physics constraints. Taken from Ref. [195].

The allowed values of the lightest Higgs boson mass limit the allowed supersymmet-
ric masses’ values, as shown in Fig. 6.2 [195]. In the left (right) plot we impose Mh =
125.1± 3.1 (2.1) GeV. In particular, very heavy coloured SUSY particles are favoured (nearly
independent of the Mh uncertainty), in agreement with the non-observation of those particles
at the LHC [197]. The only part that can be tested at the (HL-)LHC is the lower range of
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the neutral Higgs spectrum. For the tan β values favoured by our analysis, values up to 2 TeV
are projected to be in the range of the ATLAS/CMS searches via pp → H/A → τ+τ− [198],
which would cover the lower part of the spectrum. On the other hand, the allowed coloured
supersymmetric masses will remain unobservable at the (HL-)LHC, the ILC or CLIC. The lower
part of the electroweak spectrum could be accessible at CLIC with

√
s = 3 TeV The coloured

spectrum would be accessible, however, at the FCC-hh [199], as would be the full heavy Higgs
spectrum.

Figure 6.2: The (left,right) plots show the spectrum of the FUT model after imposing the
constraint Mh = 125.1 ± 3.1(2.1) GeV. The light (green) points are the various Higgs boson
masses; the dark (blue) points following are the two scalar top and bottom masses; the gray ones
are the gluino masses; then come the scalar tau masses in orange (light gray); the darker (red)
points to the right are the two chargino masses; followed by the lighter shaded (pink) points
indicating the neutralino masses. Taken from Ref. [195].

In Tab. 6.1 two example spectra of FUT are shown, which span the mass range of the
parameter space that is in agreement with the B-physics observables and the lightest Higgs
boson mass measurement. We show the lightest and the heaviest spectrum (based on mχ̃0

1
) for

δMh = 2.1 and δMh = 3.1. The Higgs boson masses are denoted as Mh, MH , MA and MH± .
mt̃1,2 , mt̃1,2 , mg̃ and mτ̃1,2 , are the scalar top, bottom, gluino and tau masses, respectively. mχ̃±1,2

and mχ̃0
1,2,3,4

stand for chargino and neutralino masses, respectively. As discussed above, only

the neutral Higgs spectrum of the “light spectrum” is in the range of the (HL-)LHC. Scalar taus
as well as the two lighter neutralinos would be accessible at CLIC. For the “heavy spectrum”
only the FCC-hh could test it.
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δMh = 2.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 123.1 1533 1528 1527 2800 3161 2745 3219 4077

heaviest 127.2 4765 4737 4726 10328 11569 10243 11808 15268

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 983 1163 1650 2414 900 1650 2410 2414 45

heaviest 4070 5141 6927 8237 3920 6927 8235 8237 46

δMh = 3.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 122.8 1497 1491 1490 2795 3153 2747 3211 4070

heaviest 127.9 4147 4113 4103 10734 12049 11077 12296 16046

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 1001 1172 1647 2399 899 647 2395 2399 44

heaviest 4039 6085 7300 8409 4136 7300 8406 8409 45

Table 6.1: Two example spectra of the FUT . All masses are in GeV and rounded to 1
(0.1) GeV (for the light Higgs mass).

6.2.2 FUT Conclusions

One can see that the predictions of FUT are impressive. But one could also add some comments
on the theoretical side. The developments on treating the problem of divergencies include string
and non-commutative theories, as well as N = 4 supersymmetric theories [79, 200], N = 8
supergravity [201–205] and the AdS/CFT correspondence [206]. It is interesting that the N = 1
FUT discussed here includes ideas that have survived phenomenological and theoretical tests,
as well as the ultraviolet divergence problem and solves it in a minimal way.

In our analysis of FUT [195] we included restrictions of third generation quark masses
and B-physics observables and it proved consistent with all the phenomenological constraints.
Compared to our previous analyses [119, 120, 196, 207–209], the improved evaluation of Mh

prefers a heavier (Higgs) spectrum and thus allows only a heavy supersymmetric spectrum.
The coloured spectrum easily escapes (HL-)LHC searches, but can likely be tested at the FCC-
hh. However, the lower part of the EW spectrum could be observable at CLIC.
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6.3 Numerical Analysis of the Reduced MSSM

In this section we analyze the particle spectrum predicted by the reduced MSSM [210]. We first
discuss the selection of free parameters, then apply constraints from fermion masses. Subse-
quently we apply the remaining constraints and discuss the observability at current and future
colliders.

6.3.1 Free Parameters of the Reduced MSSM

So far the relations among reduced parameters in terms of the fundamental ones derived in
Sect. 5.5 had a part which was RGI and a another part originating from the corrections, which
are scale dependent. In the analysis shown here we choose the unification scale to apply the
corrections to the RGI relations. It should be noted that we are assuming a covering GUT, and
thus unification of the three gauge couplings, as well as a unified gaugino mass M at that scale.
Also to be noted is that in the dimensionless sector of the theory, since Yτ cannot be reduced
in favour of the fundamental parameter α3, the mass of the τ lepton is an input parameter
and consequently ρτ , is an independent parameter too. At low energies, we fix the values of
ρτ and tan β using the mass of the tau lepton mτ (MZ) = 1.7462 GeV. For each value of ρτ
there is a corresponding value of tan β that gives the appropriate mτ (MZ). Then we use the
value found for tan β together with Gt,b, as obtained from the reduction equations and their
respective corrections, to determine the top and bottom quark masses. We require that both
the bottom and top masses are within 2σ of their experimental value, which singles out large
tan β values, tan β ∼ 42 − 47. Correspondingly, in the dimensionful sector of the theory the
ρhτ is a free parameter, since hτ cannot be reduced in favour of the fundamental parameter M
(the unified gaugino mass scale). µ is a free parameter, as it cannot be reduced in favour of M3

as discussed above. On the other hand m2
3 could be reduced, but here it is chosen to leave it

free. However, µ and m2
3 are restricted from the requirement of EWSB, and only µ is taken as

an independent parameter. Finally, the other parameter in the Higgs-boson sector, the CP-odd
Higgs-boson mass MA is evaluated from µ, as well as from m2

Hu
and m2

Hd
, which are obtained

from the reduction equations. In total we vary the parameters ρτ , ρhτ , M and µ.

6.3.2 Constraints from Fermion Masses

The first step of the numerical analysis concerns the top and the bottom quark masses. As
mentioned above, the variation of ρτ yields the values of mt (the top pole mass) andmb(MZ), the
running bottom quark mass at the Z boson mass scale, where scan points which are not within
2σ of the experimental data are neglected. This is shown in Fig. 6.3 [210]. The experimental
values are indicated by the horizontal lines and are taken to be [171] (the same comments on
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the experimental values as in Sect. 5.1.3 apply)

mt = 173.34± 1.52 GeV , mb(MZ) = 2.83± 0.1 GeV , (6.8)

with the uncertainties at the 2σ level. One can see that the scan yields many parameter points
that are in very good agreement with the experimental data. At the same time also the flavor
constraints, see Sect. 6.1 are applied and shown as green dots. One can see that they are in
good agreement with the measurements of the quark masses and give restrictions in the allowed
ranges of M (the common gaugino mass at the unification scale).

Figure 6.3: The left (right) plot shows our results within the reduced MSSM for the top (bottom)
quark mass. The horizontal lines indicate the experimental values as given in Eq. (6.8). Taken
from Ref. [210].

6.3.3 Predictions of the reduced MSSM for future colliders

As the next step the lightest MSSM Higgs-boson mass is evaluated. The prediction for Mh is
shown in Fig. 6.4 [210] as a function of M in the range 1 TeV <∼ M <∼ 6 TeV. The lightest
Higgs mass ranges in

Mh ∼ 124− 129 GeV , (6.9)
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where we discard the “spreaded” points with possibly lower masses, which result from a nu-
merical instability in the Higgs-boson mass calculation. One should keep in mind that these
predictions are subject to a theory uncertainty of 3(2) GeV, see Sect. 6.1. The red points corre-
spond to the full parameter scan, whereas the green points are the subset that is in agreement
with the B-physics observables as discussed above (which do not exhibit any numerical insta-
bility). The inclusion of the flavor observables shifts the lower bound for Mh up to ∼ 126 GeV.

The horizontal lines in Fig. 6.4 show the central value of the experimental measurement
(solid), the ±2.1 GeV uncertainty (dashed) and the ±3.1 GeV uncertainty (dot-dashed). The
requirement to obtain a light Higgs boson mass value in the correct range yields an upper limit
on M of about 5 (4) TeV for Mh = 125.1± 2.1 (3.1) GeV.

Naturally the Mh limit also sets an upper limit on the low-energy SUSY masses. This turns
the reduced MSSM into a highly predictive and testable theory. The full particle spectrum of
the reduced MSSM (where we restricted ourselves as before to the third generation of sfermions)
compliant with the B-physics observables is shown in Fig. 6.5 [210]. In the left (right) plot we
impose Mh = 125.1 ± 3.1 (2.1) GeV. Including the Higgs mass constraints in general favours
the somewhat higher part of the SUSY particle mass spectra. The tighter Mh range cuts off
the very high SUSY mass scales.

The Higgs spectrum will be fully testable at the HL-LHC, which for tan β >∼ 40 can explore
masses up to ∼ 2 TeV via the channel pp → H/A → τ+τ− [198]. However, such observations
would be in agreement also with a pure 2HDM, and additional observation of the SUSY particles
will be necessary to analyze the model.

The lighter SUSY particles are given by the electroweak spectrum, which starts around
∼ 1.3 TeV. They will mostly remain unobservable at the LHC and at future e+e− colliders
such as the ILC or CLIC, with only the very lower range mass range below ∼ 1.5 TeV might
be observable at CLIC (with

√
s = 3 TeV). The coloured mass spectrum starts at around

∼ 4 TeV, which will remain unobservable at the (HL-)LHC. However, the coloured spectrum
would be accessible at the FCC-hh [199]. This collider could definitely confirm the SUSY
spectrum of the reduced MSSM or rule out this model.

In Tab. 6.2 we show three example spectra of the reduced MSSM, which span the mass
range of the parameter space that is in agreement with the B-physics observables and the
Higgs-boson mass measurement (using the same notation as in Tab. 6.1). The rows labelled
“light” correspond to the spectrum with the smallest mχ̃0

1
value (which is independent of upper

limit in Mh). This point is an example for the lowest Mh values that we can reach in our scan.
As discussed above, the heavy Higgs boson spectrum starts above 1.4 TeV, which can be covered
at the HL-LHC. The coloured spectrum is found between ∼ 4 TeV and ∼ 6 TeV, outside the
range of the (HL-)LHC. The LSP has a mass of mχ̃0

1
= 1339, which might offer the possibility

of e+e− → χ̃0
1χ̃

0
1γ at CLIC. All other electroweak particles are too heavy to be produced at
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Figure 6.4: The lightest Higgs boson mass, Mh, as a function of M (the common gaugino mass
at the unification scale) in the reduced MSSM. The red points is the full model prediction. The
green points fulfill the B-physics constraints (see text). Taken from Ref. [210].

CLIC or the (HL-)LHC. “δMh = 2.1(3.1)” has the largest mχ̃0
1

for Mh ≤ 125.1 + 2.1(3.1) GeV.
While, following the mass relations in the reduced MSSM, the mass spectra are substantially
heavier than in the “light” case, one can also observe that the smaller upper limit on Mh results
in substantially lower upper limits on the various SUSY and Higgs-boson masses. In both cases
the heavy Higgs spectrum is within the reach of the HL-LHC, as mentioned above. However,
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Figure 6.5: The left (right) plot shows the spectrum of the reduced MSSM after imposing the
constraint Mh = 125.1± 3.1 (2.1) GeV. The points shown are in agreement with the B-physics
observables. The light (green) points on the left are the various Higgs boson masses. The dark
(blue) points following are the two scalar top and bottom masses, followed by the lighter (gray)
gluino mass. Next come the lighter (beige) scalar tau masses. The darker (red) points to the
right are the two chargino masses followed by the lighter shaded (pink) points indicating the
neutralino masses.

even in the case of δMh = 2.1 GeV, all SUSY particles are outside the reach of the (HL-)LHC
and CLIC. On the other hand, all spectra offer good possibilities for their discovery at the
FCC-hh [199], as discussed above.

6.3.4 Conclusions about the Reduced MSSM

The reduced MSSM naturally results in a light Higgs boson in the mass range measured at
the LHC. Only the Higgs sector can be tested at the HL-LHC. On the other hand, the rest
of the SUSY spectrum will remain (likely) unaccessible at the (HL-)LHC, ILC and CLIC,
where such a heavy spectrum also results in SM-like light Higgs boson, in agreement with
LHC measurements [211]. In other words, the model is naturally in full agreement with all
LHC measurements. It can be tested definitely at the FCC-hh, where large parts of the SUSY
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Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

light 126.2 1433 1433 1446 4052 4736 3989 4723 5789

δMh = 2.1 127.2 1570 1570 1572 5361 6289 5282 6279 7699

δMh = 3.1 128.1 1886 1886 1888 6762 7951 6653 7943 9683

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

light 1906 2066 2430 3867 1339 2430 3864 3866 42.6

δMh = 2.1 1937 2531 3299 5166 1833 3299 5114 5116 43.1

δMh = 3.1 3153 3490 4248 6464 2376 4248 6462 6464 45.2

Table 6.2: Three example spectra of the reduced MSSM. “light” has the smallest χ̃0
1 in our

sample, “δMh = 2.1(3.1)” has the largest mχ̃0
1

for Mh ≤ 125.1 + 2.1(3.1) GeV. All masses are
in GeV and rounded to 1 (0.1) GeV (for the light Higgs mass).

spectrum would be in the kinematic reach.
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Chapter 7

Conclusions

In the present review we have presented in some detail the ideas concerning the reduction of
independent parameters of various renormalizable theories, the theoretical tools which have
been developed to attack the problem and the background work on which they are based on.
Last but not least emphasis was given in presenting various models in which the reduction of
parameters has been theoretically explored and confronted with the experimental data.

The reduction of couplings principle, expressed via RGI relations among couplings, provides
us with a very interesting framework to search for more fundamental quantum field theories
in which a group of couplings are related to a primary one, thus reducing substantially the
number of free parameters of the theory, which might pave the way to search for the minimal
ultimate one of Nature.

The reduction of couplings supplemented with global N = 1 supersymmetry, leads to the-
ories where the dimensionless gauge, Yukawa and the dimensionful supersymmetry breaking
sectors are unified. An admirable success of this procedure is the construction of N = 1 Finite
Unified Theories, which solves probably the most basic problem of field theory, namely the
problem of UV divergencies, in a minimal way.

On the phenomenological side, the developed reduction of couplings machinery provides us
with strict selection rules in choosing realistic GUTs which lead to testable predictions. The
celebrated success of predicting the top-quark mass in FUTs [18–20] was extended to the correct
prediction of the Higgs boson mass, as well as a prediction for the supersymmetric spectrum of
the MSSM [119–121,207].

Furthermore it is possible to apply the reduction of couplings directly in the MSSM, again
decreasing substantially the number of free parameters and making the model more predictive
[150, 151, 195, 209, 210]. The two models selected by our analysis (FUT and reduced MSSM
presented in Chapters 5 and 6) share similar features and are in natural agreement with all
LHC measurements and searches. For the reduced MSSM the heavy Higgs particles will be
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accessible at the HL-LHC, while the supersymmetric particles will likely escape the detection
at the (HL-)LHC, as well as at ILC and CLIC. In the FUT case parts of the allowed spectrum
of the heavy Higgs bosons is accessible at the HL-LHC, and parts of the lighter scalar tau or
the lighter neutralinos might be accessible at CLIC. On the other hand, the FCC-hh will be
able to test the predicted parameter space for both models. The discovery of these particles
is the next big bet on the phenomenological side. On the theoretical side the challenge is to
develop a framework in which the above successes of the field theory models are combined with
gravity.
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