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Abstract

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories
which can be made finite to all orders in perturbation theory, based on the principle of re-
duction of couplings. The latter consists in searching for renormalization group invariant
relations among parameters of a renormalizable theory holding to all orders in perturba-
tion theory. FUTs have proven very successful so far. In particular, they predicted the top
quark mass one and half years before its experimental discovery, while around five years
before the Higgs boson discovery a particular FUT was predicting the light Higgs boson
in the mass range ∼ 121 − 126 GeV, in striking agreement with the discovery at LHC.
Here we review the basic properties of the supersymmetric theories and in particular finite
theories resulting from the application of the method of reduction of couplings in their di-
mensionless and dimensionful sectors. Then we analyse the phenomenologically favoured
FUT, based on SU(5). This particular FUT leads to a finiteness constrained version of
the MSSM, which naturally predicts a relatively heavy spectrum with coloured supersym-
metric particles above 2.7 TeV, consistent with the non-observation of those particles at
the LHC. The electroweak supersymmetric spectrum starts below 1 TeV and large parts
of the allowed spectrum of the lighter might be accessible at CLIC. The FCC-hh will be
able to fully test the predicted spectrum.
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1 Introduction

In 2012 the discovery of a new particle at the LHC was announced [1, 2]. Within the-
oretical and experimental uncertainties the new particle is compatible with predictions
for the Higgs boson of the Standard Model (SM) [3, 4], constituting a milestone in the
quest for understanding the physics of electroweak symmetry breaking (EWSB). However,
taking the experimental results and the respective uncertainties into account, also many
models beyond the SM can accomodate the data. Furthermore, the hierarchy problem,
the neutrino masses, the Dark Matter, the over twenty free parameters of the model, just
to name some questions, ask for a more fundamental theory to answer some, if not all, of
those.

Therefore, one of the main aims of this fundamental theory is to relate these free
parameters, or rephrasing it, to achieve a reduction of these parameters in favour of a
smaller number (or ideally only one). This reduction is usually based in the introduction
of a larger symmetry, rendering the theory more predictive. Very good examples are
the Grand Unified Theories (GUTs) [5–9] and their supersymmetric extensions [10, 11].
The case of minimal SU(5) is one example, where the number of couplings is reduced to
one due to the corresponding unification. Data from LEP [12] suggested that a N = 1
global supersymmetry (SUSY) [10,11] is required in order for the prediction to be viable.
Relations among the Yukawa couplings are also suggested in GUTs. For example, the
SU(5) predicts the ratio of the tau to the bottom mass Mτ/Mb [13] in the SM. GUTs
introduce, however, new complications such as the different ways of breaking this larger
symmetry as well as new degrees of freedom.

A way to relate the Yukawa and the gauge sector, in other words achieving Gauge -
Yukawa Unification (GYU) [14–16] seems to be a natural extension of the GUTs. The
possibility that N = 2 SUSY [17] plays such a role is highly limited due to the prediction
of light mirror fermions. Other phenomenological drawbacks appear in composite models
and superstring theories.

A complementary approach is to search for all-loop Renormalization Group Invariant
(RGI) relations [18,19] which hold below the Planck scale and are preserved down to the
unification scale [14–16, 20–25]. With this approach Gauge - Yukawa unification (GYU)
is possible. A remarkable point is that, assuming finiteness at one-loop in N = 1 gauge
theories, RGI relations that guarantee finiteness to all orders in perturbation theory can
be found [27–29].

The above approach seems to need SUSY as an essential ingredient. However the
breaking of SUSY has to be understood too, since it provides the SM with several predic-
tions for its free parameters. Actually, the RGI relation searches have been extended to
the soft SUSY breaking (SSB) sector [25, 30–32] relating parameters of mass dimension
one and two. This is indeed possible to be done on the RGI surface which is defined by
the solution of the reduction equations.
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Applying the reduction of couplings method to N = 1 SUSY theories has led to very
interesting phenomenological developments. Previously, an appealing “universal” set of
soft scalar masses was assumed in the SSB sector of SUSY theories, given that, apart from
economy and simplicity, (1) they are part of the constraints that preserve finiteness up to
two loops [34,35], (2) they are RGI up to two loops in more general SUSY gauge theories,
subject to the condition known as P = 1/3Q [30] and (3) they appear in the attractive
dilaton dominated SUSY breaking superstring scenarios [36–38]. However, further studies
exhibited problems all due to the restrictive nature of the “universality” assumption for
the scalar masses. For instance, (a) in Finite Unified Theories (FUTs) the universality
predicts that the lightest SUSY particle is a charged particle, namely the superpartner
of the τ lepton τ̃ , (b) the MSSM with universal soft scalar masses is inconsistent with
the attractive radiative electroweak symmetry breaking and, worst of all, (c) the universal
soft scalar masses lead to charge and/or colour breaking minima deeper than the standard
vacuum [39]. Therefore, there have been attempts to relax this constraint without loosing
its attractive features. First, an interesting observation was made that in N = 1 GYU
theories there exists a RGI sum rule for the soft scalar masses at lower orders; at one
loop for the non-finite case [40] and at two loops for the finite case [42]. The sum rule
manages to overcome the above unpleasant phenomenological consequences. Moreover, it
was proven [41] that the sum rule for the soft scalar masses is RGI to all orders for both the
general and the finite case. Finally, the exact β-function for the soft scalar masses in the
Novikov-Shifman-Vainstein-Zakharov (NSVZ) scheme [43–45] for the softly broken SUSY
QCD has been obtained [41]. The use of RGI both in the dimensionful and dimensionless
sector, together with the above mentioned sum rule, allows for the construction of realistic
and predictive N = 1 all-loop finite SU(5) SUSY GUTs, also with interesting predictions,
as was shown in Refs. [20] and [14,22,26,32,33,46–48].

This paper is organised as follows. In Section 2 we review the theoretical basis of
the method of the reduction of couplings, which is extended in the subsection 2.1 to
the dimensionful parameters. Section 3 is devoted to Finiteness in the dimensionless
sector of a SUSY theory in some detail. In Section 4 we discuss the implications of
the method of reduction of couplings in the SUSY breaking sector of an N = 1 SUSY
theory including the finite case. Then in Section 5 we review the best Finite Unified
Model selected previously on the basis of agreement with the known experimental data
at the time [33]. The current set-up of experimental constraints and predictions is briefly
reviewed in Section 6 and applied to our best Finite Unified Model in Section 7, including
in particular the latest improvements in the prediction of the light Higgs boson mass (as
implemented in FeynHiggs). Our conclusions can be found in Section 8.
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2 Theoretical basis

In this section we outline the idea of reduction of couplings. Any RGI relation among
couplings (which does not depend on the renormalization scale µ explicitly) can be ex-
pressed, in the implicit form Φ(g1, · · · , gA) = const., which has to satisfy the partial
differential equation (PDE)

µ
dΦ

dµ
= ~∇ · ~β =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (1)

where βa is the β-function of ga. This PDE is equivalent to a set of ordinary differential
equations, the so-called reduction equations (REs) [18,19,49],

βg
dga
dg

= βa , a = 1, · · · , A , (2)

where g and βg are the primary coupling and its β-function, and the counting on a does not
include g. Since maximally (A− 1) independent RGI “constraints” in the A-dimensional
space of couplings can be imposed by the Φa’s, one could in principle express all the
couplings in terms of a single coupling g. However, a closer look to the set of Eqs. (2)
reveals that their general solutions contain as many integration constants as the number
of equations themselves. Thus, using such integration constants we have just traded an
integration constant for each ordinary renormalized coupling, and consequently, these
general solutions cannot be considered as reduced ones. The crucial requirement in the
search for RGE relations is to demand power series solutions to the REs,

ga =
∑
n

ρ(n)a g2n+1 , (3)

which preserve perturbative renormalizability. Such an ansatz fixes the corresponding
integration constant in each of the REs and picks up a special solution out of the general
one. Remarkably, the uniqueness of such power series solutions can be decided already at
the one-loop level [18, 19, 49]. To illustrate this, let us assume that the β-functions have
the form

βa =
1

16π2
[
∑

b,c,d 6=g
β(1) bcda gbgcgd +

∑
b6=g

β(1) ba gbg
2] + · · · ,

βg =
1

16π2
β(1)g g3 + · · · ,

(4)

where · · · stands for higher order terms, and β
(1) bcd
a ’s are symmetric in b, c, d. We then

assume that the ρ
(n)
a ’s with n ≤ r have been uniquely determined. To obtain ρ

(r+1)
a ’s, we
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insert the power series (3) into the REs (2) and collect terms of O(g2r+3) and find∑
d6=g

M(r)da ρ
(r+1)
d = lower order quantities ,

where the r.h.s. is known by assumption, and

M(r)da = 3
∑
b,c 6=g

β(1) bcda ρ
(1)
b ρ(1)c + β(1) da − (2r + 1)β(1)g δda , (5)

0 =
∑

b,c,d 6=g
β(1) bcda ρ

(1)
b ρ(1)c ρ

(1)
d +

∑
d6=g

β(1) da ρ
(1)
d − β

(1)
g ρ(1)a , (6)

Therefore, the ρ
(n)
a ’s for all n > 1 for a given set of ρ

(1)
a ’s can be uniquely determined

if detM(n)da 6= 0 for all n ≥ 0.
As it will be clear later by examining specific examples, the various couplings in SUSY

theories have the same asymptotic behaviour. Therefore, searching for a power series
solution of the form (3) to the REs (2) is justified. This is not the case in non-SUSY
theories, although the deeper reason for this fact is not fully understood.

The possibility of coupling unification described in this section is without any doubt
attractive, because the “completely reduced” theory contains only one independent cou-
pling, but it can be unrealistic. Therefore, one often would like to impose fewer RGI
constraints, and this is the idea of partial reduction [50,51].

2.1 Reduction of dimension one and two parameters

The reduction of couplings was originally formulated for massless theories on the basis of
the Callan-Symanzik equation [18,19]. The extension to theories with massive parameters
is not straightforward if one wants to keep the generality and the rigor on the same
level as for the massless case; one has to fulfill a set of requirements coming from the
renormalization group equations, the Callan-Symanzik equations etc. along with the
normalization conditions imposed on irreducible Green’s functions [52]. There has been a
lot of progress in this direction starting from ref. [25], where it was assumed that a mass-
independent renormalization scheme could be employed so that all the RG functions have
only trivial dependencies on dimensional parameters and then the mass parameters were
introduced similarly to couplings (i.e. as a power series in the couplings). This choice
was justified later in [31, 53] where the scheme independence of the reduction principle
has been proven generally, i.e it was shown that apart from dimensionless couplings, pole
masses and gauge parameters, the model may also involve coupling parameters carrying
a dimension and masses. Therefore here, to simplify the analysis, we follow Ref. [25] and
we, too, use a mass-independent renormalization scheme.
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We start by considering a renormalizable theory which contain a set of (N + 1) di-
mension zero couplings, (ĝ0, ĝ1, ..., ĝN ), a set of L parameters with mass-dimension one,(
ĥ1, ..., ĥL

)
, and a set of M parameters with mass-dimension two,

(
m̂2

1, ..., m̂
2
M

)
. The

renormalized irreducible vertex function Γ satisfies the RG equation

DΓ
[
Φ′s; ĝ0, ĝ1, ..., ĝN ; ĥ1, ..., ĥL; m̂2

1, ..., m̂
2
M ;µ

]
= 0 , (7)

where

D = µ
∂

∂µ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γha
∂

∂ĥa
+

M∑
α=1

γm
2

α

∂

∂m̂2
α

+
∑
J

ΦIγ
φI
J

δ

δΦJ
, (8)

where µ is the energy scale, while βi are the β-functions of the various dimensionless
couplings gi, ΦI are the various matter fields and γm

2

α , γha and γφIJ are the mass, trilinear
coupling and wave function anomalous dimensions, respectively (where I enumerates the
matter fields). In a mass independent renormalization scheme, the γ’s are given by

γha =
L∑
b=1

γh,ba (g0, g1, ..., gN )ĥb,

γm
2

α =

M∑
β=1

γm
2,β

α (g0, g1, ..., gN )m̂2
β +

L∑
a,b=1

γm
2,ab

α (g0, g1, ..., gN )ĥaĥb,

(9)

where γh,ba , γm
2,β

α and γm
2,ab

α are power series of the g’s (which are dimensionless) in per-
turbation theory.

We look for a reduced theory where

g ≡ g0, ha ≡ ĥa for 1 ≤ a ≤ P , m2
α ≡ m̂2

α for 1 ≤ α ≤ Q

are independent parameters and the reduction of the parameters left

ĝi = ĝi(g), (i = 1, ..., N),

ĥa =
P∑
b=1

f ba(g)hb, (a = P + 1, ..., L),

m̂2
α =

Q∑
β=1

eβα(g)m2
β +

P∑
a,b=1

kabα (g)hahb, (α = Q+ 1, ...,M)

(10)

6



is consistent with the RG equations (7,8). It turns out that the following relations should
be satisfied

βg
∂ĝi
∂g

= βi, (i = 1, ..., N),

βg
∂ĥa
∂g

+

P∑
b=1

γhb
∂ĥa
∂hb

= γha , (a = P + 1, ..., L),

βg
∂m̂2

α

∂g
+

P∑
a=1

γha
∂m̂2

α

∂ha
+

Q∑
β=1

γm
2

β

∂m̂2
α

∂m2
β

= γm
2

α , (α = Q+ 1, ...,M).

(11)

Using Eqs. (9) and (10), the above relations reduce to

βg
df ba
dg

+

P∑
c=1

f ca

[
γh,bc +

L∑
d=P+1

γh,dc f bd

]
− γh,ba −

L∑
d=P+1

γh,da f bd = 0,

(a = P + 1, ..., L; b = 1, ..., P ),

βg
deβα
dg

+

Q∑
γ=1

eγα

γm2,β
γ +

M∑
δ=Q+1

γm
2,δ

γ eβδ

− γm2,β
α −

M∑
δ=Q+1

γm
2,d

α eβδ = 0,

(α = Q+ 1, ...,Mq β = 1, ..., Q),

βg
dkabα
dg

+ 2

P∑
c=1

(
γh,ac +

L∑
d=P+1

γh,dc fad

)
kcbα +

Q∑
β=1

eβα

γm2,ab
β +

L∑
c,d=P+1

γm
2,cd

β fac f
b
d

+2

L∑
c=P+1

γm
2,cb

β fac +

M∑
δ=Q+1

γm
2,d

β kabδ

−
γm2,ab

α +
L∑

c,d=P+1

γm
2,cd

α fac f
b
d

+2

L∑
c=P+1

γm
2,cb

α fac +

M∑
δ=Q+1

γm
2,δ

α kabδ

 = 0,

(α = Q+ 1, ...,M ; a, b = 1, ..., P ) .

(12)

The above relations ensure that the irreducible vertex function of the reduced theory

ΓR
[
Φ’s; g;h1, ..., hP ;m2

1, ...,m
2
Q;µ

]
≡

Γ
[
Φ’s; g, ĝ1(g)..., ĝN (g);h1, ..., hP , ĥP+1(g, h), ..., ĥL(g, h);

m2
1, ...,m

2
Q, m̂

2
Q+1(g, h,m

2), ..., m̂2
M (g, h,m2);µ

] (13)

has the same renormalization group flow as the original one.
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The assumptions that the reduced theory is perturbatively renormalizable means that
the functions ĝi, f

b
a, eβα and kabα , defined in (10), should be expressed as a power series in

the primary coupling g:

ĝi = g
∞∑
n=0

ρ
(n)
i gn, f ba = g

∞∑
n=0

ηb(n)a gn

eβα =

∞∑
n=0

ξβ(n)α gn, kabα =

∞∑
n=0

χab(n)α gn.

(14)

The above expansion coefficients can be found by inserting these power series into Eqs. (11),
(12) and requiring the equations to be satisfied at each order of g. It should be noted that
the existence of a unique power series solution is a non-trivial matter: It depends on the
theory as well as on the choice of the set of independent parameters.

It should also be noted that in the case that there are no independent mass-dimension
one parameters (ĥ) the reduction of these terms take naturally the form

ĥa =

L∑
b=1

f ba(g)M,

where M is a mass-dimension one parameter which could be a gaugino mass which corre-
sponds to the independent (gauge) coupling. In case, on top of that, there are no indepen-
dent mass-dimension two parameters (m̂2), the corresponding reduction takes analogous
form

m̂2
a =

M∑
b=1

eba(g)M2.

3 Finiteness in N = 1 Supersymmetric Gauge

Theories

Let us consider a chiral, anomaly free, N = 1 globally SUSY gauge theory based on a
group G with gauge coupling constant g. The superpotential of the theory is given by

W =
1

2
mij φi φj +

1

6
Cijk φi φj φk , (15)

where mij and Cijk are gauge invariant tensors and the matter field φi transforms ac-
cording to the irreducible representation Ri of the gauge group G. The renormalization
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constants associated with the superpotential (15), assuming that SUSY is preserved, are

φ0i = (Zji )
(1/2) φj , (16)

m0
ij = Zi

′j′

ij mi′j′ , (17)

C0
ijk = Zi

′j′k′

ijk Ci′j′k′ . (18)

The N = 1 non-renormalization theorem [54–56] ensures that there are no mass and
cubic-interaction-term infinities and therefore

Zi
′j′k′

ijk Z
1/2 i′′

i′ Z
1/2 j′′

j′ Z
1/2 k′′

k′ = δi
′′

(i δ
j′′

j δ
k′′

k) ,

Zi
′j′

ij Z
1/2 i′′

i′ Z
1/2 j′′

j′ = δi
′′

(i δ
j′′

j) .
(19)

As a result the only surviving possible infinities are the wave-function renormalization
constants Zji , i.e. one infinity for each field. The one-loop β-function of the gauge coupling
g is given by [57]

β(1)g =
dg

dt
=

g3

16π2
[
∑
i

l(Ri)− 3C2(G) ] , (20)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir invariant of
the adjoint representation of the gauge group G. The β-functions of Cijk, by virtue of the
non-renormalization theorem, are related to the anomalous dimension matrix γij of the
matter fields φi as:

βijk =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i . (21)

At one-loop level γij is [57]

γ
i(1)
j =

1

32π2
[Cikl Cjkl − 2 g2C2(R)δij ], (22)

where C2(R) is the quadratic Casimir invariant of the representation Ri, and Cijk = C∗ijk.
Since dimensional coupling parameters such as masses and couplings of cubic scalar field
terms do not influence the asymptotic properties of a theory on which we are interested
here, it is sufficient to take into account only the dimensionless SUSY couplings such as g
and Cijk. So we neglect the existence of dimensional parameters and assume furthermore
that Cijk are real so that C2

ijk are always positive numbers.
As one can see from Eqs. (20) and (22), all the one-loop β-functions of the theory

vanish if β
(1)
g and γ

(1)
ij vanish, i.e. ∑

i

`(Ri) = 3C2(G) , (23)

9



CiklCjkl = 2δijg
2C2(Ri) , (24)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry
are discussed in [58], and the analysis of the anomaly-free and no-charge renormalization
requirements for these theories can be found in [59]. A very interesting result is that
the conditions (23,24) are necessary and sufficient for finiteness at the two-loop level
[57,60–63].

In case SUSY is broken by soft terms, the requirement of finiteness in the one-loop
soft breaking terms imposes further constraints among themselves [34]. In addition, the
same set of conditions that are sufficient for one-loop finiteness of the soft breaking terms
renders the soft sector of the theory two-loop finite [35].

The one- and two-loop finiteness conditions (23,24) restrict considerably the possible
choices of the irreducible representations (irreps) Ri for a given group G as well as the
Yukawa couplings in the superpotential (15). Note in particular that the finiteness condi-
tions cannot be applied to the minimal SUSY standard model (MSSM), since the presence
of a U(1) gauge group is incompatible with the condition (23), due to C2[U(1)] = 0. This
naturally leads to the expectation that finiteness should be attained at the grand unified
level only, the MSSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that SUSY (most
probably) can only be broken due to the soft breaking terms. Indeed, due to the un-
acceptability of gauge singlets, F-type spontaneous symmetry breaking [64] terms are
incompatible with finiteness, as well as D-type [65] spontaneous breaking which requires
the existence of a U(1) gauge group.

A natural question to ask is what happens at higher-loop orders. The answer is con-
tained in a theorem [28,66] which states the necessary and sufficient conditions to achieve
finiteness at all orders. Before we discuss the theorem let us make some introductory re-
marks. The finiteness conditions impose relations between gauge and Yukawa couplings.
To require such relations which render the couplings mutually dependent at a given renor-
malization point is trivial. What is not trivial is to guarantee that relations leading to
a reduction of the couplings hold at any renormalization point. As we have seen, the
necessary and also sufficient condition for this to happen is to require that such relations
are solutions to the REs

βg
dCijk
dg

= βijk (25)

and hold at all orders. Remarkably, the existence of all-order power series solutions to
(25) can be decided at one-loop level, as already mentioned.

Let us now turn to the all-order finiteness theorem [28,66], which states the conditions
under which an N = 1 SUSY gauge theory can become finite to all orders in the sense of
vanishing β-functions, that is of physical scale invariance. It is based on (a) the structure of
the supercurrent in N = 1 SUSY gauge theory [67–69], and on (b) the non-renormalization
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properties of N = 1 chiral anomalies [27,28,66,70,71]. Details on the proof can be found in
refs. [28,66] and further discussion in Refs. [27, 29,70–72]. Here, following mostly Ref. [72]
we present a comprehensible sketch of the proof.

Consider an N = 1 SUSY gauge theory, with simple Lie group G. The content of this
theory is given at the classical level by the matter supermultiplets Si, which contain a
scalar field φi and a Weyl spinor ψia, and the vector supermultiplet Va, which contains a
gauge vector field Aaµ and a gaugino Weyl spinor λaα.

Let us first recall certain facts about the theory:
(1) A massless N = 1 SUSY theory is invariant under a U(1) chiral transformation R
under which the various fields transform as follows

A′µ = Aµ, λ′α = exp(−iθ)λα

φ′ = exp(−i2
3
θ)φ, ψ′α = exp(−i1

3
θ)ψα, · · ·

(26)

The corresponding axial Noether current JµR(x) is

JµR(x) = λ̄γµγ5λ+ · · · (27)

is conserved classically, while in the quantum case is violated by the axial anomaly

∂µJ
µ
R = r(εµνσρFµνFσρ + · · · ). (28)

From its known topological origin in ordinary gauge theories [73–75], one would expect
the axial vector current JµR to satisfy the Adler-Bardeen theorem and receive corrections
only at the one-loop level. Indeed it has been shown that the same non-renormalization
theorem holds also in SUSY theories [27,70,71]. Therefore

r = ~β(1)g . (29)

(2) The massless theory we consider is scale invariant at the classical level and, in general,
there is a scale anomaly due to radiative corrections. The scale anomaly appears in the
trace of the energy momentum tensor Tµν , which is traceless classically. It has the form

Tµµ = βgF
µνFµν + · · · (30)

(3) Massless, N = 1 SUSY gauge theories are classically invariant under the SUSY exten-
sion of the conformal group – the superconformal group. Examining the superconformal
algebra, it can be seen that the subset of superconformal transformations consisting of
translations, SUSY transformations, and axial R transformations is closed under SUSY,
i.e. these transformations form a representation of SUSY. It follows that the conserved
currents corresponding to these transformations make up a supermultiplet represented by
an axial vector superfield called the supercurrent J ,

J ≡ {J ′µR , Q
µ
α, T

µ
ν , ...}, (31)

11



where J ′µR is the current associated to R invariance, Qµα is the one associated to SUSY
invariance, and Tµν the one associated to translational invariance (energy-momentum ten-
sor).

The anomalies of the R current J ′µR , the trace anomalies of the SUSY current, and
the energy-momentum tensor, form also a second supermultiplet, called the supertrace
anomaly

S = {Re S, Im S, Sα} =

{Tµµ , ∂µJ
′µ
R , σ

µ

αβ̇
Q̄β̇µ + · · · }

where Tµµ is given in Eq.(30) and

∂µJ
′µ
R = βgε

µνσρFµνFσρ + · · · (32)

σµ
αβ̇
Q̄β̇µ = βgλ

βσµναβFµν + · · · (33)

(4) It is very important to note that the Noether current defined in (27) is not the same
as the current associated to R invariance that appears in the supercurrent J in (31),
but they coincide in the tree approximation. So starting from a unique classical Noether
current JµR(class), the Noether current JµR is defined as the quantum extension of JµR(class)

which allows for the validity of the non-renormalization theorem. On the other hand J ′µR ,
is defined to belong to the supercurrent J , together with the energy-momentum tensor.
The two requirements cannot be fulfilled by a single current operator at the same time.

Although the Noether current JµR which obeys (28) and the current J ′µR belonging
to the supercurrent multiplet J are not the same, there is a relation [28, 66] between
quantities associated with them

r = βg(1 + xg) + βijkx
ijk − γArA (34)

where r was given in Eq.(29). The rA are the non-renormalized coefficients of the anoma-
lies of the Noether currents associated to the chiral invariances of the superpotential, and
–like r– are strictly one-loop quantities. The γA’s are linear combinations of the anoma-
lous dimensions of the matter fields, and xg, and xijk are radiative correction quantities.
The structure of equality (34) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the β-functions at one loop, implies that the
Yukawa couplings Cijk must be functions of the gauge coupling g. To find a similar
condition to all orders it is necessary and sufficient for the Yukawa couplings to be a
formal power series in g, which is solution of the REs (25).

We can now state the theorem for all-order vanishing β-functions.

Theorem:
Consider an N = 1 SUSY Yang-Mills theory, with simple gauge group. If the following

conditions are satisfied:

12



1. There is no gauge anomaly.

2. The gauge β-function vanishes at one loop

β(1)g = 0 =
∑
i

l(Ri)− 3C2(G). (35)

3. There exist solutions of the form

Cijk = ρijkg, ρijk ∈ IC (36)

to the conditions of vanishing one-loop matter fields anomalous dimensions

γ
i (1)
j = 0

=
1

32π2
[ Cikl Cjkl − 2 g2 C2(R)δij ].

(37)

4. These solutions are isolated and non-degenerate when considered as solutions of
vanishing one-loop Yukawa β-functions:

βijk = 0. (38)

Then, each of the solutions (36) can be uniquely extended to a formal power series in
g, and the associated super Yang-Mills models depend on the single coupling constant g
with a β function which vanishes at all orders.

It is important to note a few things: The requirement of isolated and non-degenerate
solutions guarantees the existence of a unique formal power series solution to the reduction

equations. The vanishing of the gauge β function at one loop, β
(1)
g , is equivalent to the

vanishing of the R current anomaly (28). The vanishing of the anomalous dimensions
at one loop implies the vanishing of the Yukawa couplings β functions at that order. It
also implies the vanishing of the chiral anomaly coefficients rA. This last property is a
necessary condition for having β functions vanishing at all orders.1

Proof:
Insert βijk as given by the REs into the relationship (34) between the axial anomalies

coefficients and the β-functions. Since these chiral anomalies vanish, we get for βg an
homogeneous equation of the form

0 = βg(1 +O(~)). (39)

The solution of this equation in the sense of a formal power series in ~ is βg = 0, order
by order. Therefore, due to the REs (25), βijk = 0 too.

Thus we see that finiteness and reduction of couplings are intimately related. Since
an equation like Eq.(34) is lacking in non-SUSY theories, one cannot extend the validity
of a similar theorem in such theories.

1There is an alternative way to find finite theories [76].
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4 The SSB sector of reduced N = 1 SUSY and

Finite Theories

As we have seen in subsection 2.1, the method of reducing the dimensionless couplings has
been extended [25], to the soft SUSY breaking (SSB) dimensionful parameters of N = 1
SUSY theories. In addition it was found [40] that RGI SSB scalar masses in GYU models
satisfy a universal sum rule.

Consider the superpotential given by (15) along with the Lagrangian for SSB terms

−LSSB =
1

6
hijk φiφjφk +

1

2
bij φiφj

+
1

2
(m2)ji φ

∗ iφj +
1

2
M λλ+ h.c.,

where the φi are the scalar parts of the chiral superfields Φi , λ are the gauginos and M
their unified mass.

We assume that the reduction equations admit power series solutions of the form

Cijk = g
∑
n

ρijk(n)g
2n . (40)

If we knew higher-loop β-functions explicitly, we could follow the same procedure and
find higher-loop RGI relations among SSB terms. However, the β-functions of the soft
scalar masses are explicitly known only up to two loops. In order to obtain higher-loop
results some relations among β-functions are needed.

In the case of finite theories we assume that the gauge group is a simple group and the
one-loop β-function of the gauge coupling g vanishes. According to the finiteness theorem
of Refs. [28, 66] and the assumption given in (40), the theory is then finite to all orders

in perturbation theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish.

The one- and two-loop finiteness for hijk can be achieved by [35]

hijk = −MCijk + · · · = −Mρijk(0) g +O(g5) , (41)

where . . . stand for higher order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the lowest

order coefficients ρijk(0) and also (m2)ij satisfy the diagonality relations

ρipq(0)ρ
jpq
(0) ∝ δ

j
i for all p and q and (m2)ij = m2

jδ
i
j , (42)

respectively. Then we find the following soft scalar-mass sum rule [16,42,77]

( m2
i +m2

j +m2
k )/MM † = 1 +

g2

16π2
∆(2) +O(g4) (43)
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for i, j, k with ρijk(0) 6= 0, where ∆(2) is the two-loop correction

∆(2) = −2
∑
l

[(m2
l /MM †)− (1/3)] T (Rl), (44)

which vanishes for the universal choice in accordance with the previous findings of Ref. [35]
(in the above relation T (Rl) is the Dynkin index of the Rl irrep).

Making use of the spurion technique [56, 78–81], it is possible to find the following
all-loop relations among SSB β-functions, [82–87]

βM = 2O
(
βg
g

)
, (45)

βijkh = γilh
ljk + γj lh

ilk + γklh
ijl

− 2γi1lC
ljk − 2γj1lC

ilk − 2γk1 lC
ijl , (46)

(βm2)ij =

[
∆ +X

∂

∂g

]
γij , (47)

O =

(
Mg2

∂

∂g2
− hlmn ∂

∂C lmn

)
, (48)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn

∂

∂C lmn
, (49)

where (γ1)
i
j = Oγij , Clmn = (C lmn)∗, and

C̃ijk = (m2)ilC
ljk + (m2)j lC

ilk + (m2)klC
ijl . (50)

Assuming, following [83], that the relation

hijk = −M(Cijk)′ ≡ −MdCijk(g)

d ln g
, (51)

among couplings is all-loop RGI and using the all-loop gauge β-function of Novikov et
al. [43–45] given by

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C(G)

1− g2C(G)/8π2

]
, (52)

the all-loop RGI sum rule [41] was found:

m2
i +m2

j +m2
k = |M |2{ 1

1− g2C(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2
d lnCijk

d ln g
.

(53)

15



In addition the exact-β-function for m2 in the NSVZ scheme has been obtained [41] for
the first time and is given by

βNSVZ
m2

i
=

[
|M |2{ 1

1− g2C(G)/(8π2)

d

d ln g
+

1

2

d2

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2
d

d ln g

]
γNSVZ
i .

(54)

Surprisingly enough, the all-loop result (53) coincides with the superstring result for the
finite case in a certain class of orbifold models [42] if d lnCijk/d ln g = 1.

4.1 All-loop RGI Relations in the SSB Sector

Let us now see how the all-loop results on the SSB β-functions, Eqs. (45)-(50), lead to
all-loop RGI relations. We make two assumptions:
(a) the existence of an RGI surface on which C = C(g), or equivalently that

dCijk

dg
=
βijkC
βg

(55)

holds, i.e. reduction of couplings is possible, and
(b) the existence of an RGI surface on which

hijk = −MdC(g)ijk

d ln g
(56)

holds, too, in all orders.
Then one can prove, [88, 89], that the following relations are RGI to all loops (note

that in both (a) and (b) assumptions above we do not rely on specific solutions of these
equations)

M = M0
βg
g
, (57)

hijk = −M0β
ijk
C , (58)

bij = −M0β
ij
µ , (59)

(m2)i j =
1

2
|M0|2µ

dγi j
dµ

(60)

where M0 is an arbitrary reference mass scale to be specified shortly. The assumption
that

Cα
∂

∂Cα
= C∗α

∂

∂Cα
(61)
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for an RGI surface F (g, Cijk, C∗ijk) leads to

d

dg
=
( ∂
∂g

+ 2
∂

∂C

dC

dg

)
=
( ∂
∂g

+ 2
βC
βg

∂

∂C

)
, (62)

where Eq.(55) has been used. Now let us consider the partial differential operator O in
Eq.(48) which, assuming Eq.(51) becomes

O =
1

2
M

d

d ln g
. (63)

In turn, βM given in Eq.(45) becomes

βM = M
d

d ln g
(
βg
g

) , (64)

which by integration provides us [88, 90] with the generalized, i.e. including Yukawa
couplings, all-loop RGI Hisano - Shifman relation [82]

M =
βg
g
M0 , (65)

where M0 is the integration constant and can be associated to the unification scale MU

in GUTs or to the gravitino mass m3/2 in a supergravity framework. Therefore, Eq.(65)
becomes the all-loop RGE Eq.(57). Note that βM using Eqs. (64) and (65) can be written
as

βM = M0
d

dt
(βg/g) . (66)

Similarly

(γ1)
i
j = Oγi j =

1

2
M0

dγi j
dt

. (67)

Next, form Eq.(51) and (65) we obtain

hijk = −M0β
ijk
C , (68)

while βijkh , given in Eq.(46) and using Eq.(67), becomes [88]

βijkh = M0
d

dt
βijkC (69)

which shows that Eq.(68) is all-loop RGI. In a similar way Eq.(59) can be shown to be
all-loop RGI.

Finally, we would like to emphasize that under the same assumptions (a) and (b) the
sum rule given in Eq.(53) has been proven [41] to be all-loop RGI, which (using Eq.(65))
gives us a generalization of Eq.(60) to be applied in considerations of non-universal soft
scalar masses, which are necessary in many cases. Moreover, the sum rule holds also in
the more general cases, discussed in subsection 2.1, according to which exact relations
among the squared scalar and gaugino masses can be found.
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5 A successful Finite Unified Theory

We review an all-loop FUT with SU(5) as gauge group, where the reduction of couplings
has been applied to the third generation of quarks and leptons. This FUT was selected
previously on the basis of agreement with the known experimental data at the time [33]
and was predicting the Higgs mass to be in the range 121 − 126 GeV almost five years
before the discovery. The particle content of the model we will study, which we denote
SU(5)-FUT consists of the following supermultiplets: three (5 + 10), needed for each
of the three generations of quarks and leptons, four (5 + 5) and one 24 considered as
Higgs supermultiplets. When the gauge group of the finite GUT is broken the theory is
no longer finite, and we will assume that we are left with the MSSM [15,20–24].

A predictive GYU SU(5) model which is finite to all orders, in addition to the require-
ments mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δji .

2. Three fermion generations in the irreducible representations 5i,10i (i = 1, 2, 3) which
obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs
quintet and anti-quintet, which couple to the third generation.

After the reduction of couplings the symmetry is enhanced, leading to the following
superpotential [42, 91]

W =

3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4 (70)

+ gd23 10253H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 .

The non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu1 )2 =
8

5
g2 , (gd1)2 =

6

5
g2 , (gu2 )2 = (gu3 )2 =

4

5
g2 , (71)

(gd2)2 = (gd3)2 =
3

5
g2 , (gu23)

2 =
4

5
g2 , (gd23)

2 = (gd32)
2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf2 )2 = (gf3 )2 =

1

2
g2 , (gf1 )2 = 0 , (gf4 )2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M
2

3
, m2

5
+ 3m2

10 =
4M2

3
, (72)

i.e., in this case we have only two free parameters m10 and M for the dimensionful sector.
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As already mentioned, after the SU(5) gauge symmetry breaking we assume we have
the MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate
mass terms that allow to perform a rotation of the Higgs sector [20, 24, 92–94], in such
a way that only one pair of Higgs doublets, coupled mostly to the third family, remains
light and acquires vacuum expectation values. To avoid fast proton decay the usual fine
tuning to achieve doublet-triplet splitting is performed, although the mechanism is not
identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken, we are left with the
MSSM, with the boundary conditions for the third family given by the finiteness condi-
tions, while the other two families are not restricted.

6 Phenomenological constraints

In this section we briefly review the relevant experimental constraints that we apply in
our phenomenological analysis.

6.1 Flavour Constraints

We consider four types of flavour constraints to apply to the SU(5)-FUT, where SUSY is
known to have significant impact. More specifically, we consider the flavour observables
BR(b → sγ), BR(Bs → µ+µ−), BR(Bu → τν) and ∆MBs .

2 The uncertainties are the
linear combination of the experimental error and twice the theoretical uncertainty in the
MSSM.3 In the case that no specific estimate is available, we use the SM uncertainty.

For the branching ratio BR(b→ sγ), we take a value from the Heavy Flavour Averaging
Group (HFAG) [95,96]

BR(b→ sγ)exp

BR(b→ sγ)SM
= 1.089± 0.27 . (73)

For the branching ratio BR(Bs → µ+µ−), a combination of CMS and LHCb data [97–101]
is used

BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 . (74)

For the Bu decay to τν we use the limit [96,102,103]

BR(Bu → τν)exp

BR(Bu → τν)SM
= 1.39± 0.69 , (75)

2We do not use the latest experimental and theoretical values here. However, this has a minor impact on
the general form of our results.

3We include the MSSM uncertainty also into the ratios of exp. data and SM prediction, to apply it readily
to our prediction of the ratio of our MSSM and SM calculation.
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while for ∆MBs [104,105]
∆M exp

Bs

∆MSM
Bs

= 0.97± 0.2 (76)

At the end of the phenomenological discussion we also comment on the cold dark
matter (CDM) density. It is well known that the lightest neutralino, being the lightest
SUSY particle (LSP), is an excellent candidate for CDM [106]. Consequently one can in
principle demand that the lightest neutralino is indeed the LSP and parameters leading
to a different LSP could be discarded.

The current bound, favoured by a joint analysis of WMAP/Planck and other astro-
physical and cosmological data, is at the 2σ level given by the range [107,108],

ΩCDMh
2 = 0.1120± 0.0112 . (77)

6.2 The light Higgs boson mass

The quartic couplings in the Higgs potential are given by the SM gauge couplings. As
a consequence, the lightest Higgs mass is not a free parameter, but rather predicted in
terms of the other parameters of the model. Higher order corrections are crucial for a
precise predictions of Mh, see Refs. [109–111] for reviews.

The discovery of a Higgs boson at ATLAS and CMS in July 2012 [112, 113] can be
interpreted as the discovery of the light CP-even Higgs boson of the MSSM Higgs spectrum
[114–116]. The experimental average for the (SM) Higgs boson mass is taken to be [117]

M exp
H = 125.1± 0.3 GeV , (78)

and adding in quadrature a 3 (2) GeV theory uncertainty [118–120] for the Higgs mass
caclulation in the MSSM we arrive at an allowing range of

Mh = 125.1± 3.1 (2.1) GeV . (79)

We used the code FeynHiggs [118, 120, 121] (version 2.14.0 beta) to predict the light-
est Higgs boson mass. The evaluation of the Higgs masses with FeynHiggs is based
on the combination of a Feynman-diagrammatic calculation and a resummation of the
(sub)leading and logarithms contributions of the (general) type of log (mt̃/mt) in all or-
ders of perturbation theory. This combination ensures a reliable evaluation of Mh also for
large SUSY scales. Several refinements in the combination of the fixed order log resummed
calculation have been included w.r.t. previous versions, see Ref. [120]. They resulted not
only in a more precise Mh evaluation for high SUSY mass scales, but in particular in a
downward shift of Mh at the level of O(2 GeV) for large SUSY masses.
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Figure 1: The bottom quark mass at the Z boson scale (left) and top quark pole mass (right)
are shown as function of M for both signs of µ.

7 Numerical analysis

In this section we will analyse the particle spectrum predicted in the SU(5)-FUT . Since
the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions do
not restrict the renormalization properties at low energies, and all it remains are boundary
conditions on the gauge and Yukawa couplings (71), the h = −MC (41) relation, and the
soft scalar-mass sum rule at MGUT.

In Fig.1 we show the SU(5)-FUT predictions for mt and mb(MZ) as a function of
the unified gaugino mass M , for the two cases µ < 0 and µ > 0. We use the experimental
value of the top quark pole mass as [103]4

mexp
t = (173.2± 0.9) GeV . (80)

The bottom mass is calculated at MZ to avoid uncertainties that come from running down
to the pole mass; the leading SUSY radiative corrections to the bottom and tau masses
have been taken into account [123]. We use the following value for the bottom mass at
MZ [103],

mb(MZ) = (2.83± 0.10) GeV. (81)

The bounds on the mb(MZ) and the mt mass clearly single out µ < 0, as the solution
most compatible with these experimental constraints.

As was already mentioned, for the lightest Higgs boson mass we used the code FeynHiggs
(2.14.0 beta). The prediction for Mh of SU(5)-FUT with µ < 0 is shown in Fig.2, in a

4 We did not include the latest LHC/Tevatron combination, leading to mexp
t = (173.34 ± 0.76) GeV [122],

which would have a negligible impact on our analysis.

21



Figure 2: The lightest Higgs mass, Mh, as a function of M for the FUT model with µ < 0. The
green points are the ones that satisfy the B-physics constraints.

range where the unified gaugino mass varies from 0.5 TeV .M . 9 TeV. The green points
include the B-physics constraints. One should keep in mind that these predictions are
subject to a theory uncertainty of 3(2) GeV [118]. Older analysis, including in particular
less refined evaluations of the light Higgs boson mass, are given in Refs. [46, 124,125].

The allowed values of the Higgs mas put a limit on the allowed values of the SUSY
masses, as can be seen in Fig.3. In the left (right) plot we impose Mh = 125.1 ±
3.1(2.1) GeV as discussed above. In particular very heavy coloured SUSY particles
are favoured (nearly independent of the Mh uncertainty), in agreement with the non-
observation of those particles at the LHC [126]. Overall, the allowed coloured SUSY
masses would remain unobservable at the (HL-)LHC, the ILC or CLIC. However, the
coloured spectrum would be accessible at the FCC-hh [127], as could the full heavy Higgs
boson spectrum. On the other hand, the lightest observable SUSY particle (LSOP) is the
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Figure 3: The left (right) plot shows the spectrum of the SU(5)-FUT (with µ < 0) model
after imposing the constraint Mh = 125.1 ± 3.1(2.1) GeV. The light (green) points are the
various Higgs boson masses, the dark (blue) points following are the two scalar top and bottom
masses, the gray ones are the gluino masses, then come the scalar tau masses in orange (light
gray), the darker (red) points to the right are the two chargino masses followed by the lighter
shaded (pink) points indicating the neutralino masses.

scalar tau. Some parts of the allowed spectrum of the lighter scalar tau or the lighter
charginos/neutralinos might be accessible at CLIC with

√
s = 3 TeV.

In Table 1 we show two example spectra of the SU(5)-FUT (with µ < 0) which span
the mass range of the parameter space that is in agreement with the B-physics observables
and the Higgs-boson mass measurement. We give the lightest and the heaviest spectrum
for δMh = 2.1 and δMh = 3.1, respectively. The four Higgs boson masses are denoted
as Mh, MH , MA and MH± . mt̃1,2

, mt̃1,2
, mg̃, mτ̃1,2 , are the scalar top, scalar bottom,

gluino and scalar tau masses, respectively. mχ̃±1,2
and mχ̃0

1,2,3,4
denote the chargino and

neutralino masses.

We find that no point of SU(5)-FUT (with µ < 0) fulfills the strict bound of Eq. (77).
(For our evaluation we have used the code MicroMegas [128–130].) Consequently, on a
more general basis a mechanism is needed in our model to reduce the CDM abundance in
the early universe. This issue could, for instance, be related to another problem, that of
neutrino masses. This type of masses cannot be generated naturally within the class of
finite unified theories that we are considering in this paper, although a non-zero value for
neutrino masses has clearly been established [103]. However, the class of FUTs discussed
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δMh = 2.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 123.1 1533 1528 1527 2800 3161 2745 3219 4077

heaviest 127.2 4765 4737 4726 10328 11569 10243 11808 15268

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 983 1163 1650 2414 900 1650 2410 2414 45

heaviest 4070 5141 6927 8237 3920 6927 8235 8237 46

δMh = 3.1 Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 122.8 1497 1491 1490 2795 3153 2747 3211 4070

heaviest 127.9 4147 4113 4103 10734 12049 11077 12296 16046

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 1001 1172 1647 2399 899 647 2395 2399 44

heaviest 4039 6085 7300 8409 4136 7300 8406 8409 45

Table 1: Two example spectra of the SU(5)-FUT (with µ < 0) . All masses are in GeV and
rounded to 1 (0.1) GeV (for the light Higgs mass).

here can, in principle, be easily extended by introducing bilinear R-parity violating terms
that preserve finiteness and introduce the desired neutrino masses [131–133]. R-parity
violation [134] would have a small impact on the collider phenomenology presented here
(apart from the fact that SUSY search strategies could not rely on a ‘missing energy’
signature), but remove the CDM bound of Eq. (77) completely. The details of such
a possibility in the present framework attempting to provide the models with realistic
neutrino masses will be discussed elsewhere. Other mechanisms, not involving R-parity
violation (and keeping the ‘missing energy’ signature), that could be invoked if the amount
of CDM appears to be too large, concern the cosmology of the early universe. For instance,
“thermal inflation” [135] or “late time entropy injection” [136] could bring the CDM
density into agreement with the WMAP measurements. This kind of modifications of the
physics scenario neither concerns the theory basis nor the collider phenomenology, but
could have a strong impact on the CDM bounds. (Lower values than those permitted by
Eq. (77) are naturally allowed if another particle than the lightest neutralino constitutes
CDM.)
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8 Conclusions

The MSSM is considered a very attractive candidate for describing physics beyond the
SM. However, the serious problem of the SM having too many free parameters is further
proliferated in the MSSM. Assuming a GUT beyond the scale of gauge coupling unifi-
cation, based on the idea that a Particle Physics Theory should be more symmetric at
higher scales, seems to fit to the MSSM. On the other hand, the unification scenario seems
to be unable to further reduce the number of free parameters.

Attempting to reduce the free parameters of a theory, a new approach was proposed in
Refs. [18, 19] based on the possible existence of RGI relations among couplings. Although
this approach could uncover further symmetries, its application opens new horizons too.
At least the Finite Unified Theories seem to be a very promising field for applying the
reduction approach. In the FUT case, the discovery of RGI relations among couplings
above the unification scale ensures at the same time finiteness to all orders.

The discussion in the previous sections of this paper shows that the predictions of the
particular FUT discussed here are impressive. In addition, one could add some comments
on a successful FUT from the theoretical side, too. The developments on treating the
problem of divergencies include string and non-commutative theories, as well as N = 4
SUSY theories [137,138], N = 8 supergravity [139–143] and the AdS/CFT correspondence
[144]. It is very interesting that the N = 1 FUT discussed here includes many ideas
which survived phenomenological and theoretical tests as well as the ultraviolet divergence
problem. It is actually solving that problem in a minimal way.

We concentrated our examination on the predictions of one particular SU(5) Finite
Unified Theory, including the restrictions of third generation quark masses and B-physics
observables. The model, SU(5)-FUT (with µ < 0), is consistent with all the phenomeno-
logical constraints. Compared to our previous analyses [46, 47, 124, 125], the improved
evaluation of Mh prefers a heavier (Higgs) spectrum and thus in general allows only a
very heavy SUSY spectrum. The coloured spectrum could easily escape the (HL-)LHC
searches, but can likely be tested at the FCC-hh. The lower part of the electroweak
spectrum could be accessible at CLIC.
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