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Abstract

The method of reduction of couplings developed by W. Zimmermann, combined with supersymmetry, 
can lead to realistic quantum field theories, where the gauge and Yukawa sectors are related. It is the basis 
to find all-loop Finite Unified Theories, where the β-function vanishes to all-loops in perturbation theory. 
It can also be applied to the Minimal Supersymmetric Standard Model, leading to a drastic reduction in 
the number of parameters. Both Finite Unified Theories and the reduced MSSM lead to successful pre-
dictions for the masses of the third generation of quarks and the Higgs boson, and also predict a heavy 
supersymmetric spectrum, consistent with the non-observation of supersymmetry so far.
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1. Introduction

Although the Standard Model (SM) has been very successful in describing elementary parti-
cles and its interactions, it has been known for some time that it must be the low energy limit 
of a more fundamental theory. This quest for a theory beyond the Standard Model (BSM) has 
expanded in various directions. The usual, and very efficient, way of reducing the number of free 
parameters of a theory to render it more predictive, is to introduce a symmetry. Grand Unified 
Theories (GUTs) are very good examples of such a procedure. First by unifying (approximately) 
the gauge couplings in a larger symmetry group, the case of minimal SU(5), it was possible to 
reduce the gauge couplings by one and give a prediction for one of them. By adding a further 
symmetry, namely N = 1 global supersymmetry it was possible to make the prediction viable. 
Unfortunately, requiring more gauge symmetry does not seem to help, since additional compli-
cations are introduced due to new degrees of freedom, for instance in the ways and channels of 
breaking the symmetry.

A possible way to look for relations among unrelated parameters is the method of reduction of 
couplings [1]. This method, as its name proclaims, reduces the number of couplings in a theory 
by relating either all or a number of couplings to a single coupling denoted as the “primary 
coupling”. This method might help to identify hidden symmetries in a system, but it is also 
possible to have reduction of couplings in systems where there is no apparent symmetry. The 
reduction of couplings is based on the assumption that both the original and the reduced theory 
are renormalizable and that there exist renormalization group invariant (RGI) relations among 
parameters.

In our studies [2–7] we have used the reduction of couplings method to look for a more 
fundamental theory, complemented with the assumption of Grand Unification and N = 1 super-
symmetry. The method relies on assuming RGI relations that hold below the Planck scale down 
to the GUT scale. It leads to the unification of the Gauge and Yukawa (GYU) sectors of the 
theory at a higher scale, sectors which in the SM are unrelated. An impressive aspect of the RGI 
relations is that one can guarantee their validity to all-orders in perturbation theory by studying 
the uniqueness of the resulting relations at one-loop, as was proven in the early days of the pro-
gramme of reduction of couplings. Even more remarkable is the fact that it is possible to find RGI 
relations among couplings that guarantee finiteness to all-orders in perturbation theory [8–10]. 
The reduction of couplings applied to N = 1 SU(5) SUSY GUTs has proven very successful by 
predicting correctly, among others, the top quark mass in the finite and minimal cases [5].

The above mentioned principles have only been applied in supersymmetric GUTs for reasons 
that will be clear in the following sections. The conjecture of Gauge Yukawa Unification through 
RGI is by no means in conflict with other interesting proposals (see also ref. [11]), but it rather 
uses all of them, hopefully in a more successful perspective. For instance, the use of SUSY 
GUTs comprises the demand of the cancellation of quadratic divergences in the SM. Similarly, 
the very interesting conjectures about the infrared fixed points are generalized in our proposal, 
since searching for RGI relations among various couplings corresponds to searching for fixed 
points [12] of the coupled differential equations obeyed by the various couplings of a theory.

Although supersymmetry seems to be an essential feature for a successful realization of the 
above programme, its breaking has to be understood too. The search for RGI relations has been 
extended to the soft supersymmetry breaking sector (SSB) of these theories [7,13], which in-
volves parameters of dimension one and two. This is indeed possible to be done on the RGI 
surface which is defined by the solution of the reduction equations.
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Applying the reduction of couplings method to N = 1 SUSY theories has led to very inter-
esting phenomenological developments. Previously an appealing “universal” set of soft scalar 
masses was assumed in the SSB sector of supersymmetric theories, given that apart from econ-
omy and simplicity (1) they are part of the constraints that preserve finiteness up to two-loops 
[14,15], (2) they are RGI up to two-loops in more general supersymmetric gauge theories, subject 
to the condition known as P = 1/3 Q [13] and (3) they appear in the attractive dilaton dominated 
supersymmetry breaking superstring scenarios [16]. However, further studies exhibited problems 
all due to the restrictive nature of the “universality” assumption for the soft scalar masses. For 
instance, (a) in Finite Unified Theories (FUTs) the universality predicts that the lightest super-
symmetric particle is a charged particle, namely the superpartner of the τ lepton τ̃ , (b) the MSSM 
with universal soft scalar masses is inconsistent with the attractive radiative electroweak symme-
try breaking, and worst of all, (c) the universal soft scalar masses lead to charge and/or color
breaking minima deeper than the standard vacuum [17]. Therefore, there have been attempts to 
relax this constraint without loosing its attractive features. First an interesting observation was 
made that in N = 1 Gauge-Yukawa unified theories there exists a RGI sum rule for the soft scalar 
masses at lower orders; at one-loop for the non-finite case [18] and at two-loops for the finite case 
[19]. The sum rule manages to overcome the above unpleasant phenomenological consequences. 
Moreover it was proven [20] that the sum rule for the soft scalar masses is RGI to all-orders for 
both the general as well as for the finite case. Finally, the exact β-function for the soft scalar 
masses in the Novikov–Shifman–Vainstein–Zakharov (NSVZ) scheme [21] for the softly broken 
supersymmetric QCD has been obtained [20]. The use of RGI both in the dimensionful and di-
mensionless sector, together with the above mentioned sum rule, allows for the construction of 
realistic and predictive N = 1 all-loop finite SU(5) SUSY GUTS, as well as a reduced version 
of the MSSM, also with interesting predictions, as we will show [5,6,2,22–28].

2. Unification of couplings by the RGI method

In this section we will briefly outline the method of reduction of couplings. Any RGI relation 
among couplings (which does not depend on the renormalization scale μ explicitly) can be ex-
pressed in the implicit form �(g1, · · · , gA) = const., which has to satisfy the partial differential 
equation (PDE)

μ
d�

dμ
= �∇ · �β =

A∑
a=1

βa

∂�

∂ga

= 0 , (1)

where βa is the β-function of ga . This PDE is equivalent to a set of ordinary differential equa-
tions, the so-called reduction equations (REs) [1],

βg

dga

dg
= βa , a = 1, · · · ,A , (2)

where g and βg are the primary coupling and its β-function, and the counting on a does not 
include g. Since maximally (A − 1) independent RGI “constraints” in the A-dimensional space 
of couplings can be imposed by the �a’s, one could in principle express all the couplings in 
terms of a single coupling g. The strongest requirement is to demand power series solutions to 
the REs,

ga =
∑

ρ(n)
a g2n+1 , (3)
n



322 S. Heinemeyer et al. / Nuclear Physics B 927 (2018) 319–338
which formally preserve perturbative renormalizability. Remarkably, the uniqueness of such 
power series solutions can be decided already at the one-loop level [1]. To illustrate this, let 
us assume that the β-functions have the form

βa = 1

16π2 [
∑

b,c,d �=g

β(1) bcd
a gbgcgd +

∑
b �=g

β(1) b
a gbg

2] + · · · ,

βg = 1

16π2 β(1)
g g3 + · · · , (4)

where · · · stands for higher order terms, and β(1) bcd
a ’s are symmetric in b, c, d . We then assume 

that the ρ(n)
a ’s with n ≤ r have been uniquely determined. To obtain ρ(r+1)

a ’s, we insert the power 
series (3) into the REs (2) and collect terms of O(g2r+3) and find∑

d �=g

M(r)da ρ
(r+1)
d = lower order quantities ,

where the r.h.s. is known by assumption, and

M(r)da = 3
∑

b,c �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c + β(1) d
a − (2r + 1)β(1)

g δd
a , (5)

0 =
∑

b,c,d �=g

β(1) bcd
a ρ

(1)
b ρ(1)

c ρ
(1)
d +

∑
d �=g

β(1) d
a ρ

(1)
d − β(1)

g ρ(1)
a . (6)

Therefore, the ρ(n)
a ’s for all n > 1 for a given set of ρ(1)

a ’s can be uniquely determined if 
detM(n)da �= 0 for all n ≥ 0.

As it will be clear later by examining specific examples, the various couplings in supersym-
metric theories have easily the same asymptotic behavior. Therefore searching for a power series 
solution of the form (3) to the REs (2) is justified. This is not the case in non-supersymmetric 
theories, although the deeper reason for this fact is not fully understood.

The possibility of coupling unification described in this section is without any doubt attractive 
because the “completely reduced” theory contains only one independent coupling, but it can be 
unrealistic. Therefore, one often would like to impose fewer RGI constraints, and this is the idea 
of partial reduction [29].

3. Reduction of dimensionful parameters

The reduction of couplings was originally formulated for massless theories on the basis of 
the Callan–Symanzik equation [1]. The extension to theories with massive parameters is not 
straightforward if one wants to keep the generality and the rigor on the same level as for the 
massless case; one has to fulfill a set of requirements coming from the renormalization group 
equations, the Callan–Symanzik equations, etc. along with the normalization conditions imposed 
on irreducible Green’s functions [30]. See [31] for interesting results in this direction. Here, to 
simplify the situation, we would like to assume that a mass-independent renormalization scheme 
has been employed so that all the RG functions have only trivial dependencies of dimensional 
parameters [7].

To be general, we consider a renormalizable theory which contains a set of (N +1) dimension-
zero couplings, {ĝ0, ĝ1, . . . , ĝN }, a set of L parameters with dimension one, {ĥ1, . . . , ĥL}, and 
a set of M parameters with dimension two, {m̂2

1, . . . , m̂
2
M }. The renormalized irreducible vertex 

function satisfies the RG equation
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0 =D	[ �′s; ĝ0, ĝ1, . . . , ĝN ; ĥ1, . . . , ĥL; m̂2
1, . . . , m̂

2
M ;μ ] , (7)

D = μ
∂

∂μ
+

N∑
i=0

βi

∂

∂ĝi

+
L∑

a=1

γ h
a

∂

∂ĥa

+
M∑

α=1

γ m2

α

∂

∂m̂2
α

+
∑
J

�Iγ
φI

J

δ

δ�J

.

Since we assume a mass-independent renormalization scheme, the γ ’s have the form

γ h
a =

L∑
b=1

γ h,b
a (g0, . . . , gN)ĥb ,

γ m2

α =
M∑

β=1

γ m2,β
α (g0, . . . , gN)m̂2

β +
L∑

a,b=1

γ m2,ab
α (g0, . . . , gN)ĥaĥb , (8)

where γ h,b
a , γ m2,β

α and γ m2,ab
a are power series of the dimension-zero couplings g’s in perturba-

tion theory.
As in the massless case, we then look for conditions under which the reduction of parameters,

ĝi = ĝi (g) , (i = 1, . . . ,N) , (9)

ĥa =
P∑

b=1

f b
a (g)hb , (a = P + 1, . . . ,L) , (10)

m̂2
α =

Q∑
β=1

eβ
α(g)m2

β +
P∑

a,b=1

kab
α (g)hahb , (α = Q + 1, . . . ,M) , (11)

is consistent with the RG equation (1), where we assume that g ≡ g0, ha ≡ ĥa (1 ≤ a ≤ P)

and m2
α ≡ m̂2

α (1 ≤ α ≤ Q) are independent parameters of the reduced theory. We find that the 
following set of equations has to be satisfied:

βg

∂ĝi

∂g
= βi , (i = 1, . . . ,N) , (12)

βg

∂ĥa

∂g
+

P∑
b=1

γ h
b

∂ĥa

∂hb

= γ h
a , (a = P + 1, . . . ,L) , (13)

βg

∂m̂2
α

∂g
+

P∑
a=1

γ h
a

∂m̂2
α

∂ha

+
Q∑

β=1

γ m2

β

∂m̂2
α

∂m2
β

= γ m2

α , (α = Q + 1, . . . ,M) . (14)

Using eq. (7) for γ ’s, one finds that eqs. (12)–(14) reduce to

βg

df b
a

dg
+

P∑
c=1

f c
a [γ h,b

c +
L∑

d=P+1

γ h,d
c f b

d ] − γ h,b
a −

L∑
d=P+1

γ h,d
a f b

d = 0 , (15)

(a = P + 1, . . . ,L;b = 1, . . . ,P ) ,

βg

de
β
α

dg
+

Q∑
γ=1

eγ
α [γ m2,β

γ +
M∑

δ=Q+1

γ m2,δ
γ e

β
δ ] − γ m2,β

α −
M∑

δ=Q+1

γ m2,δ
α e

β
δ = 0 , (16)

(α = Q + 1, . . . ,M;β = 1, . . . ,Q) ,
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βg

dkab
α

dg
+ 2

P∑
c=1

( γ h,a
c +

L∑
d=P+1

γ h,d
c f a

d )kcb
α +

Q∑
β=1

eβ
α [γ m2,ab

β +
L∑

c,d=P+1

γ
m2,cd
β f a

c f b
d

+2
L∑

c=P+1

γ
m2,cb
β f a

c +
M∑

δ=Q+1

γ
m2,δ
β kab

δ ] − [γ m2,ab
α +

L∑
c,d=P+1

γ m2,cd
α f a

c f b
d

+2
L∑

c=P+1

γ m2,cb
α f a

c +
M∑

δ=Q+1

γ m2,δ
α kab

δ ] = 0 , (17)

(α = Q + 1, . . . ,M;a, b = 1, . . . ,P ) .

If these equations are satisfied, the irreducible vertex function of the reduced theory

	R[ �′s;g;h1, . . . , hP ;m2
1, . . . , m̂

2
Q;μ ]

≡ 	[ �′s;g, ĝ1(g), . . . , ĝN (g);h1, . . . , hP , ĥP+1(g,h), . . . , ĥL(g,h);
m2

1, . . . , m̂
2
Q, m̂2

Q+1(g,h,m2), . . . , m̂2
M(g,h,m2);μ ] (18)

has the same renormalization group flow as the original one.
The requirement for the reduced theory to be perturbative renormalizable means that the func-

tions ĝi , f b
a , eβ

α and kab
α , defined in eqs. (9)–(11), should have a power series expansion in the 

primary coupling g:

ĝi = g

∞∑
n=0

ρ
(n)
i gn , f b

a = g

∞∑
n=0

ηb (n)
a gn ,

eβ
α =

∞∑
n=0

ξβ (n)
α gn , kab

α =
∞∑

n=0

χab (n)
α gn . (19)

To obtain the expansion coefficients, we insert the power series ansatz above into eqs. (12), 
(15)–(17) and require that the equations are satisfied at each order in g. Note that the existence 
of a unique power series solution is a non-trivial matter: It depends on the theory as well as on 
the choice of the set of independent parameters.

4. Finiteness in N = 1 supersymmetric gauge theories

Let us consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory based on 
a group G with gauge coupling constant g. The superpotential of the theory is given by

W = 1

2
mij φi φj + 1

6
Cijk φi φj φk , (20)

where mij and Cijk are gauge invariant tensors and the matter field φi transforms according to 
the irreducible representation Ri of the gauge group G. The renormalization constants associated 
with the superpotential (20), assuming that supersymmetry is preserved, are

φ0
i = (Z

j
i )(1/2) φj , (21)

m0
ij = Z

i′j ′
ij mi′j ′ , (22)

C0 = Z
i′j ′k′

Ci′j ′k′ . (23)
ijk ijk
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The N = 1 non-renormalization theorem [32] ensures that there are no mass and cubic-
interaction-term infinities and therefore

Z
i′j ′k′
ijk Z

1/2 i′′
i′ Z

1/2 j ′′
j ′ Z

1/2 k′′
k′ = δi′′

(i δ
j ′′
j δk′′

k) ,

Z
i′j ′
ij Z

1/2 i′′
i′ Z

1/2 j ′′
j ′ = δi′′

(i δ
j ′′
j) . (24)

As a result the only surviving possible infinities are the wave-function renormalization constants 
Z

j
i , i.e., one infinity for each field. The one-loop β-function of the gauge coupling g is given by 

[33]

β(1)
g = dg

dt
= g3

16π2 [
∑

i

l(Ri) − 3C2(G) ] , (25)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of the adjoint repre-
sentation of the gauge group G. The β-functions of Cijk , by virtue of the non-renormalization 
theorem, are related to the anomalous dimension matrix γij of the matter fields φi as:

βijk = dCijk

dt
= Cijl γ

l
k + Cikl γ

l
j + Cjkl γ

l
i . (26)

At one-loop level γij is [33]

γ
i(1)
j = 1

32π2 [Cikl Cjkl − 2g2 C2(Ri)δ
1
j ], (27)

where C2(Ri) is the quadratic Casimir of the representation Ri , and Cijk = C∗
ijk . Since dimen-

sional coupling parameters such as masses and couplings of cubic scalar field terms do not 
influence the asymptotic properties of a theory on which we are interested here, it is sufficient to 
take into account only the dimensionless supersymmetric couplings such as g and Cijk . So we 
neglect the existence of dimensional parameters, and assume furthermore that Cijk are real so 
that C2

ijk always are positive numbers.
As one can see from Eqs. (25) and (27), all the one-loop β-functions of the theory vanish if 

β
(1)
g and γ (1)

ij vanish, i.e.

∑
i

�(Ri) = 3C2(G) , (28)

CiklCjkl = 2δi
j g

2C2(Ri) , (29)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry and the 
analysis of the anomaly-free and no-charge renormalization requirements for these theories can 
be found in [34]. A very interesting result is that the conditions (28), (29) are necessary and 
sufficient for finiteness at the two-loop level [33,35].

In case supersymmetry is broken by soft terms, the requirement of finiteness in the one-loop 
soft breaking terms imposes further constraints among themselves [14]. In addition, the same set 
of conditions that are sufficient for one-loop finiteness of the soft breaking terms render the soft 
sector of the theory two-loop finite [14].

The one- and two-loop finiteness conditions (28), (29) restrict considerably the possible 
choices of the irreps. Ri for a given group G as well as the Yukawa couplings in the super-
potential (20). Note in particular that the finiteness conditions cannot be applied to the minimal 
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supersymmetric standard model (MSSM), since the presence of a U(1) gauge group is incom-
patible with the condition (28), due to C2[U(1)] = 0. This naturally leads to the expectation that 
finiteness should be attained at the grand unified level only, the MSSM being just the correspond-
ing, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that supersymmetry (most 
probably) can only be broken due to the soft breaking terms. Indeed, due to the unacceptabil-
ity of gauge singlets, F-type spontaneous symmetry breaking [36] terms are incompatible with 
finiteness, as well as D-type [37] spontaneous breaking which requires the existence of a U(1)

gauge group.
A natural question to ask is what happens at higher loop orders. The answer is contained in a 

theorem [8] which states the necessary and sufficient conditions to achieve finiteness at all orders. 
Before we discuss the theorem let us make some introductory remarks. The finiteness conditions 
impose relations between gauge and Yukawa couplings. To require such relations which render 
the couplings mutually dependent at a given renormalization point is trivial. What is not trivial 
is to guarantee that relations leading to a reduction of the couplings hold at any renormalization 
point. As we have seen, the necessary and also sufficient, condition for this to happen is to require 
that such relations are solutions to the REs

βg

dCijk

dg
= βijk (30)

and hold at all orders. Remarkably, the existence of all-order power series solutions to (30) can 
be decided at one-loop level, as already mentioned.

Let us now turn to the all-order finiteness theorem [8], which states that if an N = 1 super-
symmetric gauge theory can become finite to all orders in the sense of vanishing β-functions, 
that is of physical scale invariance. It is based on (a) the structure of the supercurrent in N = 1
supersymmetric gauge theory [38], and on (b) the non-renormalization properties of N = 1 chiral 
anomalies [8,39,40]. Details on the proof and further discussion can be found in refs. [8,9].

Theorem. Consider an N = 1 supersymmetric Yang–Mills theory, with simple gauge group. If 
the following conditions are satisfied

1. There is no gauge anomaly.
2. The gauge β-function vanishes at one-loop

β(1)
g = 0 =

∑
i

l(Ri) − 3C2(G). (31)

3. There exist solutions of the form

Cijk = ρijkg, ρijk ∈ C (32)

to the conditions of vanishing one-loop matter fields anomalous dimensions

γ
i (1)
j = 0 (33)

= 1

32π2 [ Cikl Cjkl − 2 g2 C2(Ri)δij ].
4. These solutions are isolated and non-degenerate when considered as solutions of vanishing 

one-loop Yukawa β-functions:

βijk = 0. (34)
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Then, each of the solutions (32) can be uniquely extended to a formal power series in g, and the 
associated super Yang–Mills models depend on the single coupling constant g with a β function 
which vanishes at all-orders.

It is important to note a few things: The requirement of isolated and non-degenerate solutions 
guarantees the existence of a unique formal power series solution to the reduction equations. The 
vanishing of the gauge β-function at one-loop, β(1)

g , is equivalent to the vanishing of the R current 
anomaly. The vanishing of the anomalous dimensions at one-loop implies the vanishing of the 
Yukawa couplings β-functions at that order. It also implies the vanishing of the chiral anomaly 
coefficients rA. This last property is a necessary condition for having β functions vanishing at 
all orders.1

Thus, finiteness and reduction of couplings are intimately related.

5. Sum rule for SB terms in N = 1 supersymmetric and finite theories: all-loop results

As we have seen in section 3, the method of reducing the dimensionless couplings can be 
extended [7] to the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 super-
symmetric theories. In addition it was found [18] that RGI SSB scalar masses in Gauge-Yukawa 
unified models satisfy a universal sum rule. Here we will describe first how the use of the avail-
able two-loop RG functions and the requirement of finiteness of the SSB parameters up to this 
order leads to the soft scalar-mass sum rule [19].

Consider the superpotential given by (20) along with the Lagrangian for SSB terms

−LSB = 1

6
hijk φiφjφk + 1

2
bij φiφj

+ 1

2
(m2)

j
i φ∗ iφj + 1

2
M λλ + h.c., (35)

where the φi are the scalar parts of the chiral superfields �i , λ are the gauginos and M their 
unified mass. Since we would like to consider only finite theories here, we assume that the gauge 
group is a simple group and the one-loop β-function of the gauge coupling g vanishes. We also 
assume that the reduction equations admit power series solutions of the form

Cijk = g
∑
n

ρ
ijk

(n)g
2n . (36)

According to the finiteness theorem of ref. [8], the theory is then finite to all orders in pertur-
bation theory, if, among others, the one-loop anomalous dimensions γ j (1)

i vanish. The one- and 
two-loop finiteness for hijk can be achieved by [15]

hijk = −MCijk + · · · = −Mρ
ijk

(0) g + O(g5) , (37)

where . . . stand for higher order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the lowest order 

coefficients ρijk

(0)
and also (m2)ij satisfy the diagonality relations

ρipq(0)ρ
jpq

(0) ∝ δ
j
i for all p and q and (m2)ij = m2

j δ
i
j , (38)

1 There is an alternative way to find finite theories [41].
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respectively. Then we find the following soft scalar-mass sum rule [19,4,42]

( m2
i + m2

j + m2
k )/MM† = 1 + g2

16π2 �(2) + O(g4) (39)

for i, j, k with ρijk

(0) �= 0, where �(2) is the two-loop correction

�(2) = −2
∑

l

[(m2
l /MM†) − (1/3)] T (Rl), (40)

which vanishes for the universal choice in accordance with the previous findings of ref. [15].
If we know higher-loop β-functions explicitly, we can follow the same procedure and find 

higher-loop RGI relations among SSB terms. However, the β-functions of the soft scalar masses 
are explicitly known only up to two loops. In order to obtain higher-loop results some relations 
among β-functions are needed.

Making use of the spurion technique [43], it is possible to find the following all-loop relations 
among SSB β-functions, [44–46]

βM = 2O
(

βg

g

)
, (41)

β
ijk
h = γ i

lh
ljk + γ j

lh
ilk + γ k

lh
ij l

−2γ i
1 lC

ljk − 2γ
j

1 lC
ilk − 2γ k

1 lC
ij l , (42)

(βm2)
i
j =

[
� + X

∂

∂g

]
γ i

j , (43)

O =
(

Mg2 ∂

∂g2 − hlmn ∂

∂Clmn

)
, (44)

� = 2OO∗ + 2|M|2g2 ∂

∂g2 + C̃lmn

∂

∂Clmn

+ C̃lmn ∂

∂Clmn
, (45)

where (γ1)
i
j =Oγ i

j , Clmn = (Clmn)∗, and

C̃ijk = (m2)i lC
ljk + (m2)j lC

ilk + (m2)klC
ijl . (46)

The assumption, following [45], that the relation among couplings

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d lng
, (47)

is RGI, and furthermore, the use of the all-loop β-function of Novikov et al. [21] given by

βNSVZ
g = g3

16π2

[∑
l T (Rl)(1 − γl/2) − 3C(G)

1 − g2C(G)/8π2

]
, (48)

leads to the all-loop RGI sum rule [20],

m2
i + m2

j + m2
k = |M|2{ 1

1 − g2C(G)/(8π2)

d lnCijk

d lng
+ 1

2

d2 lnCijk

d(lng)2 }

+
∑ m2

l T (Rl)

C(G) − 8π2/g2

d lnCijk

d lng
. (49)
l
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In addition the exact-β-function for m2 in the NSVZ scheme has been obtained [20] for the first 
time and is given by

βNSVZ
m2

i

=
[

|M|2{ 1

1 − g2C(G)/(8π2)

d

d lng
+ 1

2

d2

d(lng)2 }

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d

d lng

]
γ NSVZ
i . (50)

Surprisingly enough, the all-loop result (49) coincides with the superstring result for the finite 
case in a certain class of orbifold models [19] if d lnCijk/d lng = 1.

It is important to emphasize that the sum rule holds always, to the extent that there is a reduc-
tion of couplings. A consequence from the reduction of dimensionful parameters is that in some 
cases, for instance in the reduced MSSM, it is possible to have exact relations among the soft 
scalar masses and a mass-dimension one parameter, which could be the gaugino which corre-
sponds to the primary coupling [28]. This option cannot be applied to the case of Finite Unified 
Theories, though [18].

6. Finite SU(5) Unified Theories

We shall study an all-loop Finite Unified Theory (FUT) based on the SU(5) gauge group, 
applying the coupling reduction to quarks and leptons of the third generation. The particle content 
of the model consists of the following supermultiplets: three (5+10), needed for each of the three 
generations of quarks and leptons, four (5 + 5) and one 24 considered as Higgs supermultiplets. 
When the gauge group of the finite GUT is broken the theory is no longer finite, and we will 
assume that we are left with the MSSM.

A predictive FUT, in addition to the requirements mentioned already, should also posses the 
following properties

1. One-loop anomalous dimensions are diagonal, i.e., γ (1) j
i ∝ δ

j
i .

2. The three fermion generations, in the irreducible representations 5i , 10i (i = 1, 2, 3), should 
not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs quintet 
and anti-quintet, which couple to the third generation.

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions 
do not restrict the renormalization properties at low energies, and all it remains are boundary 
conditions on the gauge and Yukawa couplings (29), the h = −MC relation (37), and the soft 
scalar-mass sum rule (39) at MGUT. Thus we examine the evolution of these parameters ac-
cording to their RGEs up to two-loops for dimensionless and dimensionful parameters with the 
relevant boundary conditions. Below MGUT their evolution is assumed to be governed by the 
MSSM. We further assume a unique supersymmetry breaking scale MSUSY (which we define as 
the geometrical average of the stop masses) and therefore below that scale the effective theory is 
just the SM. This allows to evaluate observables at the electroweak scale.

We briefly describe now the low-energy observables used in our analysis. As precision ob-
servables we first discuss the third generation quark masses that are leading to the strongest 



330 S. Heinemeyer et al. / Nuclear Physics B 927 (2018) 319–338
Fig. 1. The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) are shown as function of M , 
the unified gaugino mass, and the two values of sign μ.

constraints on the models under investigation. Next we apply B physics and Higgs-boson mass 
constraints.

For the evaluation of the bottom and tau masses the one-loop radiative corrections from the 
SUSY breaking are incorporated [47] which can provide sizeable corrections to the bottom mass 
for large tanβ . We calculate the bottom mass at MZ in order to avoid running down to the pole 
mass which induces uncertainties, while we take into account the tau and bottom quark mass 
SUSY radiative corrections

mb(MZ) = (2.83 ± 0.10) GeV . (51)

We use the experimental value of the top quark pole mass as [48]2

m
exp
t = (173.2 ± 0.9) GeV . (52)

The theoretical values for Mtop may suffer from a correction of ∼ 4% [3,50,42].
The FUT predictions are shown in Fig. 1, for the bottom mass mb(MZ) and the top mass mt

and as a function of the gaugino mass M , distinguishing the two cases μ < 0 and μ > 0. The 
bounds on the two quark masses leave only the μ < 0 case as a phenomenologically viable [22,
51]. A small variation of up to 5% of the FUT boundary conditions, due to threshold corrections 
at the GUT scale, is also included.

As additional constraints we consider the following observables3: the rare b decays BR(b →
sγ ) and BR(Bs → μ+μ−), as well as the lightest Higgs boson mass. For the branching ratio 
BR(b → sγ ), we take an experimental value estimated by the Heavy Flavour Averaging Group 
(HFAG) is [52]

BR(b → sγ )SM/MSSM = 1.089 ± 0.27 . (53)

For the branching ratio BR(Bs → μ+μ−) we use a combination of CMS and LHCb data [53]

BR(Bs → μ+μ−) = (2.9 ± 1.4) × 10−9 . (54)

2 We did not include the latest LHC/Tevatron combination, leading to mexp
t = (173.34 ± 0.76) GeV [49], which would 

have a negligible impact on our analysis.
3 We do not employ the very latest experimental data, but this has a minor impact on our analysis.
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Fig. 2. The lightest Higgs mass, Mh , as function of M for the FUT model with μ < 0. The red (darker) points are the 
ones that satisfy the B physics constraints. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

For the lightest Higgs mass prediction we used the code FeynHiggs 2.11.2 [55,56,54]4

where the prediction for Mh of FUT with μ < 0 is shown in Fig. 2. The red (green) points 
include (exclude) the B physics constraints. In a range where the unified gaugino mass varies 
from 1 TeV � M � 11 TeV, the lightest Higgs mass varies as

Mh ∼ 121–131 GeV , (55)

where the uncertainty comes from variations of the soft scalar masses. To this value one has to 
add at least ±2 GeV coming from unknown higher order corrections [56].

Additional to the BPO constraints, we now impose the experimental constraint of the lightest 
Higgs boson, which is

Mh ∼ 125.1 ± 3.1(±2.1) GeV , (56)

where ±3.1 GeV corresponds to the current theory and experimental uncertainty, and ±2.1 GeV
to a reduced theory uncertainty in the future.

We find that constraining the allowed values of the Higgs mass puts a limit on the allowed 
values of the unified gaugino mass, as can be seen from Fig. 3. It can be seen from the figure that 
the lightest observable SUSY particle (LOSP) is the light scalar tau. In the left (right) plot we 
impose Mh = 125.1 ± 3.1 (2.1) GeV. Including the Higgs mass constraints in general favors the 
lower part of the SUSY particle mass spectra [24,58], however in particular very heavy colored 
SUSY particles are favored, in agreement with the non-observation of those particles at the LHC 
[59]. Going to the anticipated future theory uncertainty of Mh (as shown in the right plot of 
Fig. 3) still permits SUSY masses which would remain unobservable at the LHC, the ILC or 
CLIC. On the other hand, large parts of the allowed spectrum of the lighter scalar tau or the 
lighter neutralinos might be accessible at CLIC with 

√
s = 3 TeV.

4 The Mh evaluation employed here and later does not yet take into account some important refinements that are 
relevant for high SUSY mass scales (as given in our analyses) [57], and that yield Higgs boson masses which are slightly 
smaller by O(2 GeV).
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Fig. 3. The left (right) plot shows the spectrum of the FUT model after imposing the constraint Mh = 125.1 ±
3.1 (2.1) GeV. The light (green) points are the various Higgs boson masses, the dark (blue) points following are the 
two scalar top and bottom masses, the gray ones are the gluino masses, then come the scalar tau masses in orange (light 
gray), the darker (red) points to the right are the two chargino masses followed by the lighter shaded (pink) points indi-
cating the neutralino masses. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

7. Reduction of couplings in the MSSM

The method of reduction of couplings can also be applied successfully to the MSSM, not 
only reducing greatly the number of free parameters, but also giving different allowed parameter
regions than the usual CMSSM.

The superpotential of the MSSM is defined by

W = YtH2Qtc + YbH1Qbc + YτH1Lτc + μH1H2 (57)

while the SSB Lagrangian is given by

−LSSB =
∑
φ

m2
φφ∗φ +

[
m2

3H1H2 +
3∑

i=1

1

2
Miλiλi + h.c

]

+ [
htH2Qtc + hbH1Qbc + hτH1Lτc + h.c.

]
,

(58)

where in the last four terms we refer to the scalar components of the superfield. The Yukawa 
Yt,b,τ and the trilinear ht,b,τ couplings refer to the third generator only, neglecting the first two 
generations.

Following the procedure of reduction, in the first stage we keep only the g3 coupling and treat 
the two other gauge coupling g2 and g1 (which cannot be reduced in favor of g3) as corrections. 
The same happens with the tau Yukawa, since assuming that Yτ is proportional to g3 leads to 
an imaginary coefficient. This “reduced” system, holding at any scale, can serve as boundary 
conditions of the RGE of MSSM at the unification scale [23].

The reduction of the top and bottom Yukawa couplings in favor of g3 leads, at the unification 
scale MU , to the expansions

Y 2
t = c1g

2
U + c2g

4
U/(4π), Y 2

b = p1g
2
U + p2g

4
U/(4π) (59)

where gU = g3(MU) and
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c1 = 157

175
+ 1

35
Kτ = 0.897 + 0.029Kτ ,

p1 = 143

175
− 6

35
Kτ = 0.817 − 0.171Kτ ,

c2 = 1

4π

1457.55 − 84.491Kτ − 9.66181K2
τ − 0.174927K3

τ

818.943 − 89.2143Kτ − 2.14286K2
τ

,

p2 = 1

4π

1402.52 − 223.777Kτ − 13.9475K2
τ − 0.174927K3

τ

818.943 − 89.2143Kτ − 2.14286K2
τ

,

Kτ = Y 2
τ /g2

3 .

(60)

Keeping only the first term of the perturbative expansion of the Yukawas in favor of g3 we get 
also

ht,b = −M(MU)Yt,b , m2
3 = −M(MU)μ , (61)

and finally a set of equations resulting from the application of the sum rule

m2
H2

+ m2
Q + m2

tc = M(MU)2 , m2
H1

+ m2
Q + m2

bc = M(MU)2 , (62)

where M(MU) is the unified gluino mass at the GUT scale. A more refined evaluation, including 
an updated Higgs boson mass prediction, can be found in [28].

Let us proceed now to our predictions on the reduced MSSM. Starting at the unification scale 
MU with the boundary conditions described above, we run the MSSM RGEs down to the SUSY 
scale and then the SM ones down to the MZ scale. At that scale we compare our calculated third 
generation quark masses values with the corresponding experimental ones. The unification scale 
MU and |μ| at MU are varied in the range ∼ 1–11 TeV for both possible signs of μ.

The values of the top and bottom quark masses are taken as in the previous section. The value 
of the parameter Kτ = Y 2

τ /g2
3 (see Eq. (60)), which is fixed by the value of the tau lepton at MZ , 

is now constrained in order to get both the mass of the top and bottom quarks within 1σ and 2σ

from the central experimental values simultaneously. This requirement is not fulfilled in the case 
where sign μ > 0 and therefore in what follows we consider only the case where the sign of μ
is negative. In that case, the variation of the value of Kτ , demanding 2σ agreement with the top 
and bottom mass experimental values, is in the range ∼ 0.38–0.5.

In Fig. 4 we present the Higgs mass along with the whole sparticle and Higgs mass spectrum 
calculated according to Eqs. (59), (61) and (62). The “mixed-scale” 1-loop approach was used 
in order to calculate the Higgs mass. This approach approximates the leading 2-loop corrections 
given by the full diagrammatic calculations [60]. However, results as the ones in [54,57] (with 
more refined calculations of the Higgs mass) are not yet included.

In Fig. 4, the left plot presents the mass spectrum of the model. The heavier Higgses mass are 
above the TeV scale while we note a heavy SUSY spectrum in general, in agreement with the 
non-observation of colored SUSY particles put by the LHC bounds [59]. As it was mentioned 
above, we are considering only the case where sign(μ) < 0, which is known not to be compat-
ible with the muon anomalous magnetic moment, but our heavy spectrum provides very small 
corrections to the predictions of the SM anyway.

Going to the right plot of Fig. 4 we present the mass of the light Higgs as a function of the 
unified gaugino mass M. The value of Kτ is constrained to give simultaneously the right masses 
for the top and bottom quarks within 2σ of their experimental value, as explained before. All the 
points satisfy the BPO constraints. The different colored points correspond to different values of 
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Fig. 4. The left plot shows the SUSY spectrum in the reduced MSSM. From left to right are shown: The lightest Higgs 
mass, the pseudoscalar one MA , the heavy neutral one MH , the two charged Higgses MH± ; then come the two stops, 
two sbottoms and two staus, the four neutralinos, the two charginos, and at the end the gluino. The right plot shows the 
lightest Higgs mass as a function of the unified gaugino mass for three values of the unconstrained parameter cτ .

cτ , the constant between hτ and Yτ , hτ = cτMYτ , which is the only unconstrained parameter. 
The m2

3 and μ parameters are constrained by the requirement of electroweak symmetry breaking. 
The value of the Higgs mass varies in the range 128 ∼ 130 GeV, but we expect that using the 
new version of the code FeynHiggs [55,56,54,57] this value will go down by ∼ O(2 GeV), as 
already mentioned. See [28] for further details.

8. Conclusions

The reduction of couplings principle, expressed via RGI relations among couplings, provides 
a way to search for more fundamental quantum field theories in which a group of couplings are 
related to a primary one, thus reducing greatly the number of free parameters of the theory. In 
particular, supplemented with supersymmetry, it leads to theories where the gauge and Yukawa 
sectors are unified. It is essential to the construction of N = 1 Finite Unified Theories described 
here, in which the β-function vanishes to all-loops. From the theoretical side, FUTs solve the 
problem of UV divergences in a minimal way. On the phenomenological side, the reduction 
of couplings principle provides strict selection rules in choosing realistic models which lead 
to testable predictions. The celebrated success of predicting the top-quark mass in FUTs [5–7]
was extended to the correct prediction of the Higgs boson mass, as well a prediction for the 
supersymmetric spectrum of the MSSM [22,24,25]. It is also possible to apply a reduction of 
couplings in the MSSM, as we have also shown here, again decreasing greatly the number of 
free parameters and making the model more predictive [23,27,28]. The two models analyzed 
(FUT and reduced MSSM) share similar features and are in natural agreement with all LHC 
measurements and searches. For the reduced MSSM the SUSY and heavy Higgs particles will 
likely escape the detection at the LHC, as well as at ILC and CLIC. In the FUT case parts of the 
allowed spectrum of the lighter scalar tau or the lighter neutralinos might be accessible at CLIC. 
On the other hand, the FCC-hh will be able to test the predicted parameter space for both models.
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