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Abstract

Assuming the existence of a functional relation among the Standard Model
(SM) couplings gauge α1 and quartic λ, we determine the mass of the Higgs
particle. Similar considerations for the top and bottom Yukawa couplings in
the minimal supersymmetric SM lead to the prediction of a narrow window
for tan β, one of the main parameters that determine the light Higgs mass.
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1. Introduction. Copious theoretical efforts to establish a deeper under-
standing of Nature, led to very interesting constructions such as Superstring
Theories that aim to unify consistently all interactions. The main goal ex-
pected from a unified description of interactions by the Particle Physics com-
munity is to understand the present day large number of free parameters of
the Standard Model (SM) in terms of a few fundamental ones. Realistically,
one expects to achieve at least a partial reduction of couplings. Indeed, the
celebrated SM had so far outstanding successes in all its confrontations with
experimental results. However, its apparent success is spoiled by the presence
of a plethora of free parameters mostly related to the ad-hoc introduction of
the Higgs and Yukawa sectors in the theory.

Towards reducing the independent parameters of a theory, a method has
been developed which looks for renormalization group invariant (RGI) re-
lations [1–9, 11] holding below the Planck scale, which in their turn are
preserved down to Grand Unified (GUT) or lower scales. This program ap-
plied to dimensionless couplings of supersymmetric GUTs, such as gauge and
Yukawa couplings, had already noticeable successes by predicting correctly,
among other things, the top quark mass in the finite and in the minimal N =
1 supersymmetric SU(5) GUTs [1, 2]. An interesting prediction of the light-
est Higgs mass in a N=1 Finite SU(5) GUT [1] will be confronted with the
experiment soon. An impressive aspect of the RGI relations is that one can
guarantee their validity to all-orders in perturbation theory by studying the
uniqueness of the resulting relations at one-loop, as was proven in the early
days of the couplings reduction program [5]. Even more remarkable is the
fact that it is possible to find RGI relations among couplings that guaran-
tee finiteness to all-orders in perturbation theory [9](see also [10]). Here, we
would like to examine to which extent the above method can be applied to
minimal schemes such as the SM and its minimal supersymmetric extension,
the MSSM. In fact, the former, was one of the first applications of the above
reduction scheme [6,8,11] assuming a perturbative ansatz. The implications
of a stronger condition have been examined in ref [12].

Let us first recall some basic issues concerning the reduction of cou-
plings. A RGI relation Φ(g1, ..., gN) = 0, has to satisfy the partial differ-
ential equation µdΦ/dµ =

∑N
i=1 βi∂Φ/∂gi = 0, where βi is the β-function

of gi. There exist (N − 1) independent Φ’s, and finding the complete set
of these solutions is equivalent to solve the so-called reduction equations
(REs), βg(dgi/dg) = β1, i = 1, ..., N , where g and βg are the primary cou-
pling and its β-function correspondingly. Using all the (N − 1)Φ’s to impose
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RGI relations, one can, in principle, express all the couplings in terms of
a single coupling g. The complete reduction, which formally preserves per-
turbative renormalizability, can be achieved by demanding a power series
solution, where its uniqueness can be investigated at the one-loop level. The
completely reduced theory contains only one independent coupling with the
corresponding β-function. This possibility of coupling unification is attrac-
tive, but it can be too restrictive and hence unrealistic. To overcome this
problem, one may use fewer Φ’s as RGI constraints.

After investigating specific examples, it becomes clear that the various
couplings in supersymmetric theories have easily the same asymptotic be-
havior. Therefore, searching for a power series solution to the REs is justi-
fied. This is not the case in non-supersymmetric theories. Still in the SM
α3 and α2 have the same behavior but one cannot be reduced in favor of the
other [11]. Here, we will examine in some detail the possibility to reduce the
couplings α1 and the scalar quartic coupling λ of the SM, which have the
same asymptotic behavior too.

As already mentioned, the method of reduction was applied in the cou-
plings of the SM in refs [6, 8, 11]. The predictions for the Higgs boson mass
in ref [6, 8] and for the Higgs and the top quark masses in ref [11] did not
survive confrontation with experiment. In the present work, after studying
the evolution of the SM couplings under the renormalization group flow, we
look for solutions of the reduction equations following ref [1–5, 8, 9, 11] by
generalizing their perturbative ansatz. Eventually, we are led to the updated
solutions of ref [6] and a Higgs mass prediction in a region that is currently
under experimental investigation, which we do not consider as totally conclu-
sive yet. If the experimental results persist as in [13] when better statistics
are available, then we will consider the SM case as an educative example and
a motivation for applying our method in MSSM, which is examined here too.

2. Studies of the behavior of the couplings under RGEs . In the
following, we will investigate the behavior of the SM and MSSM couplings
under the renormalization group equations in order to establish a possible
realisation of the reduction scenario.The most promising case appears to
connect the scalar quartic coupling λ and the U(1) gauge coupling α1. We
expect that such a relation leads to a prediction of the Higgs mass. Let us
start with the 1-loop contributions. At this level,the RGE’s for the gauge and
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Figure 1: Plotting the derivative dηλ/dt as a function of t

the (top) Yukawa 1 can be solved analytically. The running of the quartic
coupling is governed by the equation

dλ̃

dt
= βλ =

1

2π

[
L2λ̃

2 + (A1Lα1 + A2Lα2) λ̃+

A11α
2
1 + A12α1α2 + A22α

2
2 + HLαtλ̃+H2α

2
t

]
,

(1)

where

λ̃ =
λ

4π
, αt =

h2t
4π
, t = ln(E),

L2 = 6, A1L = −3

2
, A2L = −9

2
,

A11 =
3

8
, A12 =

3

4
, A22 =

9

8
, HL = 6, H2 = −6,

and αi, i = 1, 2, 3 are the gauge couplings.
To check that the ratio λ over α1 indeed tends to a constant value at high

scales, we plot the derivative of the ratio ηλ ≡ λ̃/α1 as a function of t, for
several initial values of the λ̃ coupling, which we trade for the (running) Higgs
mass. In Fig.(1) we show such a plot. Starting from mH = 165 GeV, we
see that the derivative is positive for high energies. Upon lowering the Higgs

1Only the top Yukawa coupling is taken into account in the running.
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mass, the derivative decreases and, for mH ∼ 162 GeV, it goes asymptotically
to zero. Further lowering the Higgs mass the derivative becomes negative but
again for mH ∼ 151.5 GeV goes once more asymptotically to zero. For even
smaller values of the Higgs mass the derivative becomes positive but now
λ̃ passes through negative values2. Notice that the ηλ becomes constant at
energies well above the Planck scale, however at the 2-loop order the situation
improves appreciably. Let us explore the above situation a bit further. We
can easily express the running of the ratio ηλ in the form

dηλ
dt

=
1

α1

dλ̃

dt
− λ̃

α2
1

dα1

dt
=

1

α1

βλ(α1, α2, αt, λ̃)− λ̃

α2
1

β1(α1), (2)

where β1 is the 1-loop β-function for the α1 coupling. This expression can
be easily cast in the following form

dηλ
dt

= α1βλ(1, α2/α1, αt/α1, ηλ)− α1ηλb1 (3)

where β1 = b1 α
2
1. Since at the 1-loop level the differential equations for the

gauge and Yukawa couplings can be solved independently of the λ̃ coupling,
we can express α1, α2 and αt as functions of t and recast the above equation
in the form

dηλ
dt

= α1(t)βλ(t, ηλ)− α1(t)ηλβ1(1) ≡ α1(t)Fηλ(t, ηλ), (4)

using the same symbol βλ for the new function of t and ηλ. In Fig.2 we plot
contours of constant value ( -0.01, 0 and 0.01) for α1(t)Fηλ(t, ηλ) in the (t, ηλ)
plane. We clearly see that the zero value contour tends, for albeit very high
energies, to a constant value for the ratio ηλ (∼ 1.3 and ∼ 0.05).

Let us explore this situation from even another point of view and treat
α1, α2/α1 ≡ η2, αt/α1 ≡ ηt and ηλ as independent variables. Then we rewrite
Eq.3 in the form

dηλ
dt

= α1 Fηλ(η2, ηt, ηλ) (5)

using again the same symbol Fηλ . The derivative of ηλ with respect to α1 is
given by

dηλ
dα1

=
dηλ
dt
dα1

dt

=
α1 Fηλ(η2, ηt, ηλ)

b1α2
1

=
Fηλ(η2, ηt, ηλ)

b1α1

. (6)

2Recall that the assumption the λ stays always positive, for the whole energy scale,
gives a lower bound to the Higgs mass ∼ 149 GeV.
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Figure 2: Contours of constant value of the derivative dηλ/dt in the (t, ηλ)
plane for three values: -0.01, 0 and 0.01

If ηλ tends to a constant value, then the above derivative should tend to
zero. This is of course true when α1 becomes very large but also when the
numerator, Fηλ(η2, ηt, ηλ) is equal to zero. Just to have a first impression,
we put η2 = ηt = 0 (both ratios tend to zero for very high energies). Then
Fηλ(0, 0, ηλ) is just a second order polynomial in ηλ with zeros at ∼ 1.34 and
∼ 0.047, which are the two fixed points observed many years ago [6]. We can
plot, in the space of (η2, ηt, ηλ), the surface where Fηλ(η2, ηt, ηλ) = 0. We can
also numerically solve the differential equation and express ηλ as a function
of t. Then we can make a parametric plot of the curve (η2(t), ηt(t), ηλ(t)).
We expect that for high energies, i.e. low values of η2 and ηt, the curve will
lie on the surface Fηλ = 0. This is shown in Fig.3. There are two surfaces
corresponding to Fηλ = 0 and we have plotted the parametric curves for three
Higgs masses. We clearly see that for the values mH ∼ 162.5 and 151.6 GeV,
the parametric curves lie on the surfaces for low values of η2 and ηt.

3. The Reduction Equations. The observations made in section 2 sug-
gest that at least the couplings λ̃ and α1 are not independent in the SM
and there may exist a functional relation among them at high scales. It is
therefore justified to look for solutions of the reduction equation

dλ̃

dα1

=
βλ
β1
. (7)
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Figure 3: Surfaces of constant ηλ and parametric curves of (η2(t), ηt(t), ηλ(t))
for three values of the Higgs mass (1-loop).

Let us first look for solutions of Eq. 7 at 1-loop

λ(t) = c1α1(t), (8)

where c1 would be a constant in the perturbative ansatz of ref [1–5, 8, 9, 11],
but here we are searching for more general solutions. From the 1-loop α1(t)
we can solve for t and express α2(t) and αt(t) (which are present in βλ) as
functions of α1. Using the ansatz given in Eq.8, Eq.7 becomes a second order
polynomial in c1, where, of course, the coefficients depend on α1. In Fig.4
we plot the two solutions of the polynomial as a function of α1. We clearly
see that for large values of α1 (i.e. large energies), the two solutions tend to
constant values. This is easily understood, since for high energies, we can
neglect all the couplings but α1 itself, and Eq.7 reduces to

c1 =
L2α

2
1c

2
1 + c1A1Lα

2
1 + A11α

2
1

b1α2
1

=
L2c

2
1 + c1A1L + A11

b1
(9)

with the two solutions being independent of α1 (1.34233 and 0.0465609). We
have already encountered this behavior when examining Eq.6. The second
order polynomial above is the Fηλ(0, 0, ηλ). It is worth noting that the values
of α1, when c1 approaches one of its fixed points correspond to energies well
above the Planck scale. (At the Planck scale α1 ∼ 0.017 !).

We can go one step further and postulate that

ηλ =
λ̃

α1

= c1 + c2(η2). (10)
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For high energies, the ratio η2 tends to zero and in order to obtain our first
ansatz, we should require that c2(η2 → 0) = 0. From Eqs.10 and 3 we easily
get

dc2
dt

=
dηλ
dt

= α1βλ(1, η2, ηt, ηλ)− α1ηλb1. (11)

Writing
dη2
dt

=
1

α1

dα2

dt
− α2

α2
1

dα1

dt
= α1

(
b2η

2
2 − η2b1

)
, (12)

where b2 is the one loop β-function coefficient for α2, and dividing the last
two equations we get the derivative of c2 with respect to η2. All that remains
to be done is to express the ratio ηt as a function of η2. Having the 1-loop
analytical expressions for αt and α1 as functions of t, we can substitute t
from the relation

η2 =
α2

α1

=

α20

1− b2
2π
α20(t− t0)
α10

1− b1
2π
α10(t− t0)

→

t = t0 +
η20 − η2

1

2π
[η0b1α10 − η2b2α20]

,

(13)

where η20 = α20/α10 and α10 and α20 are the corresponding values at the
scale t0. Substituting ηλ = c1 + c2(η2) and solving the differential equation

Α1

c1

0.10 0.15 0.20 0.25 0.30

-2

2

4

Figure 4: The “constant” c1 as a function of α1
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Figure 5: Plotting of c2 as a function of η2 for the two values of c1 (1-loop)
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Figure 6: Plotting of c1 + c2 = ηλ as a function of log10(E) for the two values
of c1 (1-loop)

for c2(η2), we get c2(η2). In Fig.5 we show the solutions for the two choices of
c1 using the initial condition c2(η2 = 0.2) = 0 (see Fig.4). In Fig.6 we show
c1+c2 (i.e. ηλ) as a function of the energy scale. The curve which corresponds
to the higher c1 value has almost reached that value at the Planck scale, while
the one that corresponds to the lower c1 value, apart from passing through
unacceptable negative values, is still far away from that value. In Fig.7 we
plot the function (c1 + c2(t))α1(t), i.e. λ̃(t) itself, for the higher c1 value
curve. The corresponding running (pole3 ) Higgs mass is ∼ 162(154) GeV.

Going to 2-loop order, we should first determine the value(s) of the con-
stant c1 in Eq.8. In this order, the procedure of keeping only the large terms

3For the known value of the top mass and the specific region of the Higgs mass, the
Higgs pole mass is lower than the running mass by an amount of ∼ 4.6 − 4.7%. The
relation between running and pole mass can be found in the references [14].
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in the high-energy regime, does not lead to an independent from α1 value(s)
c1. Nevertheless, for a big range of α1, c1 varies by less than 5% from the 1-
loop case: 0.0448 - 0.0465 for the lower value and 1.342 - 1.395 for the higher
one. We solve now the 2-loop differential equation for c2 using as an initial
value of ηλ at (very) high energies (i.e. low value of η2) the value c1 = 1.395.
The new value drives the ratio ηλ to its constant value early on the energy
scale (see Fig.8). To be more specific, we see that ηλ(MPlanck) = 1.459 and
it remains pretty stable for higher energies. The Higgs running (pole) mass
is ∼ 163(155) GeV. At the 2-loop level, the problem with the lower c1 value
persists: ηλ passes through negative values.
4. The MSSM case . If we assume that the top and bottom Yukawa
couplings are related, the reduction equation is

dαt
dαb

=
βt
βb

=
αt

(
6αt + αb − c(t)i αi

)
αb

(
6αb + αt + ατ − c(b)i αi

) ,
where c

(t)
i = (13/30, 3/2, 8/3) and c

(b)
i = (7/30, 3/2, 8/3). Let us ignore, for

simplicity, the contribution of ατ and the small difference between c
(t)
1 and

c
(b)
1 . Then, it is straightforward to deduce that if the ratio αt/αb is constant,

then this ratio is equal to the corresponding ratio of the β-functions and is

(c  +c  ) Α 121

log   (E/GeV)10

c  = 1.342331

4 6 8 10 12 14 16 18

0.022

0.024

0.026

0.028

0.030

Figure 7: Plotting of (c1 + c2)α1 = λ̃ as a function of log10(E) for the higher
value of c1. The corresponding running Higgs mass is ∼ 162 GeV (1-loop).
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Figure 8: Plotting of ηλ as a function of log10(E) for c1 = 1.395. The
corresponding running (pole) Higgs mas is ∼ 163(155) GeV (2-loop running).

equal to 1.

d

dt

(
αt
αb

)
= 0→ 1

α2
b

(αbβt − αtβb) = 0→ αt
αb

=
βt
βb
.

This result combined with the previous equation leads to

6αt + αb − c(t)i αi = 6αb + αt + ατ − c(b)i αi → αt = αb.

That is, if we start with equal αt and αb at an energy scale, equality will re-
main for all energies. Putting back the τ Yukawa coupling and the difference
between the c

(t)
1 and c

(b)
1 constants, we expect a small deviation from that

behavior.
Therefore, the procedure is the following: we start the running (with the

SM RGEs) from the known values of the top-, bottom- and tau-mass. At
MSUSY , we choose the appropriate tan β value that keeps the ratio αt/αb
constant for all energies. Of course, we expect4 this constant to be near 1.

In the MSSM scenario, at the scale MSUSY , we have the relations

αt(SM) = αt(MSSM) sin2 β

αb(SM) = αb(MSSM) cos2 β

ατ (SM) = ατ (MSSM) cos2 β.

(14)

4 The fact that tanβ could be predicted using reduction of couplings was suggested
in [4] in a discussion with a different focus.
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Figure 9: (a) The ratio ht/hb and (b) the derivative of the ratio as a function
of energy for several values of tan β and MSUSY = 1 TeV, mt = 172 GeV and
mb(MZ) = 2.82 GeV.

Above the MSUSY scale, the running of all the parameters obeys the MSSM
renormalization group equations, while below that scale, the SM regime is
active.

In Fig.9 we plot the ratio ht/hb (a) and the derivative of the ratio (b)
as a function of energy, for several values of tan β and MSUSY = 1 TeV,
mt = 172 GeV and mb(MZ) = 2.82 GeV. We clearly see that for the range
tan β = 52.25− 58.55, the derivative of the ratio stays almost zero (actually
less than 6 · 10−3). The two values of tan β: 52.25 and 58.55, are the limiting
cases. For values below the first one, the derivative stays positive, while above
the second one the derivative stays negative for the whole energy range.

In Fig.10 we plot the ratio ht/hb (in (a) and (c)) as well as the derivative
of the ratio (in (b) and (d)) as a function of energy for the central value of
tan β = 56. In (a) and (b) we show three curves corresponding to MSUSY = 1,
5 and 10 TeV, keeping the masses of top and bottom at their central values.
In (c) and (d) we vary the bottom mass mb(MZ) = 2.75, 2.82 and 2.89 GeV,
keeping the top mass at its central value and MSUSY = 1 TeV. The differences
upon varying the top mass are negligible.

Now, using the program SUSPECT [15]5, we can plot in the plane of
(m0,m1/2) contours of constant (pole) mass values for the lightest supersym-

5We run the programm using the mSUGRA model, 2-loop running and evaluation of
pole masses. In all cases sign(µ) = +1.
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Figure 10: Plots of the ratio ht/hb ((a) and (c)) as well as the derivative of
the ratio ((b) and (d)) as a function of energy for MSUSY = 1, 5 and 10 TeV
((a) and (b)) and varying the bottom mass in the experimental error region
((c) and (d)).

metric Higgs mh
6 for tan β = 56. In Fig.11 we show these contours for

mh = 114, 116, 118, 120 GeV for initial A = 0 GeV and tan β = 56. The
dotted-dashed contour corresponds to a gluino mass of 1 TeV, while the
dashed contour to (the lightest) squark mass of 1.2 TeV. According to recent
data from ATLAS/LHC and CMS/LHC [16], the two values represent the
lower bounds for detection of the corresponding particle. Finally, in Fig.12
we plot the same contours for the two limiting tan β cases: 58.55 and 52.25.
5. Conclusions. The idea of couplings reduction in a theory is very
appealing since it increases its predictive power. Successful reduction led to
all-loop finite theories and a prediction of the top-quark mass. The latter
property was used as a selection criterion for a successful GUT. In the present

6We keep mH for the SM Higgs and denote by mh the lightest Higgs in the MSSM.
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Figure 11: Contours of constant mh (pole) mass in the plane of (m0,m1/2)
for initial value A = 0 GeV and for tan β = 56. The dashed and the dotted-
dashed contours correspond to (lightest) squark and gluino masses of 1.2 TeV
and 1 TeV correspondingly.

work, we have studied the reduction of certain couplings within the SM, and
have obtained a prediction for the Higgs particle mass. Previous studies
either overlooked this possibility, or did not include the heavy top-quark
contribution. We have also started an analogous analysis in the MSSM,
which we plan to extend in a forthcoming publication.
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