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Abstract

We discuss the possibility of intermediate gauge coupling unification in unified models of string origin. Useful relations
of the b-function coefficients are derived, which ensure unification of couplings when Kaluza–Klein excitations are

Ž . Ž . Ž .included above the compactification scale. We apply this procedure to two models with SU 3 =SU 3 =SU 3 andL R
Ž . Ž .SU 4 =O 4 gauge symmetries. q 1999 Published by Elsevier Science B.V. All rights reserved.

Recently, the possibility that the string and the
compactification scale are around the energy deter-
mined by the geometric mean of the Planck mass
and the electroweak scale, has appeared as a viable

w xpossibility in Type II string theories 1 with large
w xextra dimensions 2 . On the other hand, as is well

known, the minimal supersymmetric standard model
Ž .MSSM spectrum leads to gauge coupling unifica-
tion at a scale of M ;1016 GeV. To lower downU

this scale, usually power-law running of the gauge
couplings is assumed, due to the appearance of the

Ž .Kaluza–Klein KK tower of states above the com-
w xpactification scale 3–7 .

w xIn a previous paper 8 , we studied the possibility
of intermediate energy unification of the gauge cou-
plings due solely to the presence of extra matter and

Ž .Higgs fields under the standard model SM group.
We have found that unification may happen at the
range ;1011 GeV without the use of power-law

running from KK-excitations. In this note we extend
our analysis on this issue by considering unified
models of string origin which break down to the SM
group at some intermediate energy. We further as-
sume the existence of a compactification scale MC
Žsmaller than the would be unification scale if MC

.had not existed above which KK-excitations are
considered. In this context, we find that unification
can always be ensured whenever certain conditions
of the b-function differences are met.

We apply our results to models with intermediate
gauge symmetries which involve no coloured gauge
fields and can in principle be safe from proton decay
operators. In particular, we study models based on

Ž .3 Ž . Ž .the SU 3 and SU 4 =O 4 gauge symmetries.
Such models can be derived from strings and possess
various novel properties. Among them, they possess
particles with fractional charges while they use small
Higgs representations to break the gauge symmetry.
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The superpotential possesses various discrete and
other symmetries that may prevent undesired Yukawa
couplings, while many unwanted particles are pro-
jected out. The original large gauge symmetry breaks
down to the intermediate gauge group of the type
discussed above owing to the existence of stringy
type mechanisms. In the present analysis we assume
the existence of the representations that may be
obtained in these models, and the corresponding
KK-excitations. In our applications, below the inter-
mediate breaking scale, we assume the MSSM parti-
cle content, although our analysis can apply to any
content respecting the general properties that we will
derive in what follows.

We start with the hierarchy of scales as they
appear in our present work and which are the follow-
ing: at the electroweak scale M , we use the initialW

values for the gauge couplings, as they are measured
by the experiment. Next we consider M s1 TeV,S

above which the MSSM b functions are operative;
M , is the scale above which new physics appearsG

and the b functions of the specific grand unified
Ž .model GUT are effective; M , is the scale whereC

compactification appears and the KK-states start con-
tributing to the b functions, and M denotes theU

scale where the gauge couplings would unify if there
were no compactification scale; M is taken to beC

smaller than M . Finally, M is the scale whereU CU

the gauge couplings unify when we include the
KK-excitations. We present them in Fig. 1.

We begin our investigation along the lines dis-
cussed above, with the presentation of a general
property of the b-function coefficients. Let b sbi j i

yb denote the b-function differences. We makej

the following two assumptions:
Ø There exists an energy scale M where the cou-U

Ž .pling constants a ’s unify, i.e. a M sa fori i U U

all i, assuming conventional logarithmic running

Fig. 1. The energy scales appearing in the paper

Ž .no-compactification scenario . Quantitatively,
this is expressed as

ay1 M ay1 M yay1 MŽ . Ž . Ž .i j j j
'

b b ybi j i j

ay1 M 1 MŽ .i k U
s s log )0, 1Ž .

b 2p Mik

where M is some initial scale. The positiveness
Žof the ratio ensures the ‘‘convergence’’ and not

.‘‘divergence’’ of the couplings above M. This
point becomes essential when we discuss the
cases of GUTs.

Ø The ratios of the differences of the b-functions
KK Ž .b above the compactification scale M toi j C

i j Žthe corresponding difference b below the com-
.pactification scale M have the property:C

b KK b KK
i j i k

s )0. 2Ž .
b bi j i k

Again positiveness ensures ‘‘convergence’’ of the
couplings above M .C

Then, it can be shown that the gauge couplings do
unify, whatever energy scale we choose as a com-
pactification scale M , above which the massiveC

KK-states contribute to the running.
Let us sketch the proof of the above statements

w x9 . Since all couplings unify at M we haveU

b Mi Uy1 y1a sa M y log . 3Ž . Ž .U i 2p M

Assuming now that there exists a compactification
scale M -M , the running of the couplings, forC U

M X
)M , is given by 1

C

ay1 M X say1 MŽ . Ž .i i C

b KK M X
i

y 2 N log y2log N ! .Ž .ž /2p MC

4Ž .
Ž . Xwhere N is an integer such that Nq1 M )M )C

NM , which counts the massive KK-states that haveC

1 We ignore the contribution of the MSSM massless states
above M since it is negligible compared to that of the KK-excita-C

tions. We use the successful approximation of incorporating the
w xmassive KK-states with masses less than the running scale 3 .
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Žmasses below the running scale we have assumed
only one extra dimension and in that case the multi-

.plicity of the states at each mass level is 2 . From the
y1Ž .running below M , we can express a M in theC C

form

b Mi Cy1 y1a M sa M y logŽ . Ž .i C i 2p M

b Mi Cy1sa y logU 2p MU

Ž .and 4 is written as

b Mi CXy1 y1a M sa y logŽ .i U 2p MU

b KK M X
i

y 2 N log y2log N ! .Ž .ž /2p MC

5Ž .

Suppose now that the two couplings a and a meeti j

at the energy scale M . It is easy to check that theCU

following relations hold:

M b MCU i j C
2 N log y2log N ! sy logŽ . KKM MbC Ui j

ay1 MŽ .i CU

say1 MŽ .j CU

b M b KK b Mi C i i j Cy1sa y log q logU KK2p M 2p MbU Ui j

b M b KK b Mj C j i j Cy1sa y log q log . 6Ž .U KK2p M 2p MbU Ui j

y1Ž .The value of the third coupling a M at thek CU

scale M is given byCU

ay1 MŽ .k CU

b Mk Cy1sa y logU 2p MU

b KK Mk C
y 2 N log y2log N !Ž .Xž /2p M

b M b KK b Mk C k i j Cy1sa y log q log . 7Ž .U KK2p M 2p MbU Ui j

It is now straightforward to check, using the second
Ž . y1Ž .condition 2 , that a M equals the values ofk CU

ay1 and ay1 at the same scale. Therefore, thei j

couplings unify, no matter what compactification
scale M we choose. The positiveness condition ofC
Ž .2 comes from the ‘‘convergence’’ requirements of

Ž .the couplings above M . From 4 we getC

ay1 M 1 MŽ .i j C CU
s 2 N log y2log N ! ,Ž .KK ž /2p Mb Ci j

which should be positive, since the unification scale
M )NM . But from the running below M weCU C C

get

b Mi j Cy1a M s logŽ .i j C 2p M

and the positivity condition can be put in the form

bi j
)0.KKbi j

Ž .Let us note also that the initial scale M in 1
could be either an intermediate one where a group
larger than the SM one appears, or could be just MW

if no GUT is assumed.
We now come to the b-function, both below and

above M . Below the compactification scale, theC
Ž .one-loop b-function is given by

1
y3C G q T R , 8Ž . Ž . Ž .Ý2 i2 ž /16p i

where the first term corresponds to the vector super-
Ž .multiplet gauge bosons and gauginos contribution

Žwhile, the second corresponds to the chiral quarks,
.leptons, higgs and superpartners supermultiplets.

Ž .C G is the quadratic Casimir operator for the2

adjoint representation, R is the representations ofi
Ž .the matter multiplets and T R is defined by the

w a b x Ž . abrelation Tr R R sT R d . Above M , the mas-C

sive KK-states give the following b-function

1
y2C G q T R . 9Ž . Ž . Ž .Ý2 i2 ž /16p i

Ž .The difference from 8 comes from the fact that the
massive vector supermultiplet is actually a Ns2
hypermultiplet with a vector plus a chiral supermulti-
plet.



( )G.K. Leontaris, N.D. TracasrPhysics Letters B 470 1999 84–89 87

As a first example we discuss the MSSM where
we know that the three couplings a , a and a1 2 3

unify at the scale ;1016 GeV. Now assuming that
only the gauge bosons and the higgs acquire KK-

Žstates the matter fields are placed on the fixed
points of the heterotic string and therefore no KK-

.states appear for them , the above formulae give

16p 2b sy9.6, 16p 2b sy4,31 32

16p 2b sy6.4,21

16p 2b KK sy6.6, 16p 2b KK sy3,31 32

16p 2b KK sy4.4. 10Ž .21

Therefore, with an error of less than 10%, the ratio
b rb is the same below and above M . Note herei j i k C

Ž .that, since the matter multiplets are complete SU 5
Žones the equal contribution of matter in the three

.b-functions is due to that , even in the case where
they had KK-excitations, the relations between the
b-function ratio would still hold. Therefore, what-
ever energy scale we choose as our compactification
scale, the three couplings will unify. We now apply
this idea to the two models mentioned above. Some
details on the b-functions and the string spectra of

w xthe models may be found in 10 .
( ) ( )The SU 4 =O 4 case. We first take as an exam-
Ž . Ž . Ž .ple the SU 4 =SU 2 =SU 2 model, which isL R

assumed to break to the SM-symmetry at some scale
M . Above M , apart from the MSSM matter con-G G

tent, we have the following extra states

Ž . Ž . Ž . Ž .n s 6,1,1 , n s 4,1,1 , n s 1,2,1 , n s 1,1,2 ,6 4 L R

Ž . Ž . Ž .n s 1,2,2 , n s 4,1,2 r 4,1,2 .22 H

where we show the quantum numbers under the
GUT group. The subscript H refers to the Higgs

Ž . Ž .fields that break the SU 4 and the SU 2 groups,R

while the 22 gives the Standard Model Higgs. The
one loop b-functions are

b sy6q2n q2n q2n qn r2,R G H 22 R

b sy6q2n q2n qn r2,L G 22 L

b sy12q2n qn qn qn r2. 11Ž .4 G H 6 4

where n is the number of generations. The relationsG

between the MSSM and the GUT model couplings,
at M , areG

5 2y1 y1 y1a sa , a sa , a s a y a .4 3 L 2 R 1 43 3

Assuming now that the ‘‘turning’’ point from MSSM
to the GUT content is 1011y14 GeV, the ratios of the
coupling constant differences are in the ranges

ay1
4 R

s3.54y3.79,y1a4 L

ay1
L4

s y0.39 y y0.36 .Ž . Ž .y1aL R

Above the compactification scale we assume that all
Ž .extra beyond that of the MSSM matter could have

KK-states. Allowing a difference at most 3% be-
tween the ratio of the coupling constants and the
ratio of the b-functions, and for M s1012 GeV andG

M s1013 GeV, the only values that the b-functionG
Ž X .can give all n s take even integer values are

b b KK b b KK
4 R 4 R L4 L433 3s s , s sy .9 8KK KKb bb b4 L L R4 L L R

If we require M to be either 1011 GeV or 1014
G

GeV, then we should raise the acceptable error be-
tween the ratios to 5% and the only values that the
ratios, below M , can have areC

b b4 R L433 7 3 2s or , sy or y ,9 2 8 5
b b4 L L R

while the ratios above M remain the same.C

Of course, several particle contents below and
above the compactification scale, render the above
values for the ratios. In the following table we give
one example, where the content below M can, inC

Fig. 2. The inverse of the three gauge couplings as a function of
Ž . Ž . Ž .energy, for the SU 4 =SU 2 =SU 2 GUT with the specificL R

Ž . 12content appearing in 12 . We have chosen M s10 GeV andG

three values of the compactification scale M s1013,1014,C

1015 GeV.
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Ž .principle, be reproduced by the string SU 4 =
Ž . Ž .SU 2 =SU 2 model, while we have chosen ML R G

s1012 GeV

n n n n n n6 4 L R H 22

below M 4 8 10 10 4 4 12Ž .C

above M 0 2 0 0 4 4 .C

In Fig. 2 we show the running of the coupling
constants for the above content and for several val-
ues of M . In Fig. 3 a scatter plot is presentedC

Ž .showing the inverse of the unified coupling for
several contents of the model.

( ) ( ) ( )The SU 3 =U 3 =U 3 model. Another in-C L R

teresting string derived model, which admits a low
Ž . Žintermediate unification scale no dangerous di-

. Ž .mension-six operators , is based on the SU 3 =
Ž . Ž .SU 3 =SU 3 symmetry. The MSSM content isL R

found in the 27 representation of the E group6

27™ 3,3,1 q 3,1,3 q 1,3,3 . 13Ž . Ž . Ž . Ž .
where

ucu
c3,3,1 s , 3,1,3 s ,Ž . Ž . ddž / ž /cD D

h0 hq ec

y 0 c1,3,3 s . 14Ž . Ž .h h n� 0e n N
The breaking chain we adopt here is the follow-

Ž .ing: the first group is the colour SU 3 . The second

Fig. 3. Scatter plot of the inverse of the unified gauge coupling,
Ž . Ž . Ž . 12for the SU 4 =SU 2 =SU 2 GUT, choosing M s10 GeVL R G

for three values of the compactification scale M sC

1013,1014,1015 GeV. The horizontal axes enumerates the various
Žacceptable contents of the model the order of appearance along

.the x-axis is irrelevant . The highest the compactification scale the
greater the value of the a .CU

Ž . Ž . Ž .Fig. 4. Same as in Fig. 2 for the SU 3 =SU 3 =SU 3 modelL R
Ž .and the specific content of 19 .

Ž . Ž .breaks to SU 2 =U 1 , while the third breaks to aL L
Ž . Ž .U 1 . The SM U 1 emerges as a linear combina-R Y

Ž .tion of the two U 1 . The conventional hyper-L, R
Ž .charge Y is related to the X and Z charges of U 1 L

Ž .and U 1 correspondingly, by the relationR

1 2
Ys Xq Z,' '5 5

while the corresponding relations of the couplings at
the breaking scale is

5 1y1 y1 y1a sa , a s a y a .L 2 R Y L4 4

Apart from the above states, in the string model,
fractionally charged and other exotic states usually
appear, belonging to the representations
Ž . Ž . Ž .y y y
3 ,1,1 1, 3 ,1 1,1, 3ž / ž / ž /

0 "1r3 and"2r3 "1r3 and"2r3

15Ž .
Žwhere the second line shows the corresponding elec-

.tric charges. One should not be misled by the values
of these charges: the neutral states are coloured,
while the others are singlet under the colour group.
Therefore, after the symmetry breaking, these states
will result in exotic lepton doublets and singlets
carrying charges like those of the down and up
quarks. Note that such states are not common in
GUTs, however, they are generic in string models.

The one-loop b-functions are given by
1

cb sy9q 3n q3n qn , 16Ž .Ž .3 Q Q C2

1
Xb sy9q 3n q3n qn , 17Ž .Ž .L Q L L2

1
XXcb sy9q 3n q3n qn , 18Ž .Ž .R Q L L2
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Ž . Ž . Ž .Fig. 5. Same as in Fig. 3 for the SU 3 =SU 3 =SU 3 model.L R

where n , n c and n are the number of the repre-Q Q L
Ž .sentations appearing in the complete 27, Eq. 13 ,

while n , n X and n XX are the number of the exoticC L L
Ž .representations of 15 .

As in the case of the previous model, several
massless spectra pass the two conditions and provide
unification of the three couplings. Although it seems

Ž .3 Žthat the SU 3 is probably less constrained giving a
lot of possible contents, presumably because of the

.symmetric form of the b-functions , one should be
careful, since the unification coupling could be high
enough in some cases and get out of the perturbative
region. This of course happens for high matter con-
tent, when the b-functions become large and posi-

Žtive. We should note at this point and it is a general
.remark not applicable only to the specific GUT that

the value of M starts playing a significant role inC

the case where the unification coupling constant is
getting large: if the b-functions between M andG

M are already large, M cannot be much largerC C

than M if we want to avoid a non-perturbativeG

value of the unification coupling.
In the following table, we give, as an example,

Ž .3the content below and above M , for the SU 3C

model, where we have chosen M s1012 GeV and aG

3% error in the equality of the ratios

n n n c n n X n XXQ L Q C L L

below M 10 4 6 10 0 2 19Ž .C

above M 6 0 2 10 0 2 .C

In Fig. 4 we show the running of the couplings for
the above content and for several values of MC

Ž .while Fig. 5 is a scatter plot of the inverse of the
inified coupling foe several contents of the model.

We conclude with a few remarks: the possibility
of lowering the unification scale is a fascinating one,
both from the theoretical and from the experimental
point of view. Experimentally, it would be exciting
to have a low enough unification scale for the possi-
bility of testing its implications in the near-future
machines. Theoretically, it would give a solution to
the desert-puzzle invoked in previous Planck-mass
unification scenarios. However, when lowering the
unification scale in most of the GUTs, one faces the
notorious problem of proton decay. A possible solu-
tion, which combines the idea of a relatively low
unification and a reasonable solution to the proton
decay problem, is the one presented in this note. We
have considered GUTs that do not lead to proton
decay via dimension-six operators and implemented
the idea that the unification occurs at an intermediate
scale so that, for appropriate Yukawa couplings,
other dangerous operators may be sufficiently sup-
pressed. We have shown that there exist numerous

Žcases of massless spectra which can be derived from
.the superstring , implying naturally intermediate scale

unification.
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