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Abstract

We derive the scalar mass matrices in effective supergravity models with the standard gauge group augmented by a
Ž . Ž .U 1 family symmetry. Simple relations between U 1 charges and modular weights of the superfields are derived andF F

used to express the matrices with a minimum number of parameters. The model predicts a branching ratio for the m™eg

process close to the present experimental limits. q 1998 Elsevier Science B.V.

The Minimal Supersymmetric Standard Model
Ž .MSSM emerges as the most natural extension of

Ž .the Standard Model SM in the context of the
unification of all interactions. Although supersym-
metric models solve the hierarchy problem, the
plethora of arbitrary parameters requires a further
step beyond the MSSM. The Ns1 supergravity

w xcoupled to matter stands promising 1 . Yet, there are
Žmany essential parameters Yukawa couplings, con-

.tent of the chiral multiplets, etc. to be chosen by the
model builder. In this scene, string theory appears
the only known candidate theory that can in principle
predict all the required parameters. String theory puts
rather strong constraints on many of the parameters
of the resulting Ns1 effective supergravity, which
appears as its low-energy limit. Thus, the kinetic

1 Research supported in part by TMR contract ERBFMRX-
CT96-0090, P ENED-1170r95 and P ENED-15815r95.

terms must have a certain structure, the Lagrangian
should obey the string duality symmetries, while
several constraints are imposed on the superpotential

w xand the Yukawa couplings 2 .
The subject of this letter is to reproduce the

observed family hierarchy of the fermion masses and
moreover to predict the corresponding mass matrices
in the scalar supersymmetric sector. This is done in

Ž . w xthe context of residual stringy U 1 symmetries 3
left from the large gauge group at a high scale. In
particular, combining modular invariance constraints

Ž .and U 1 invariance of the superpotential, the scalar
mass matrices are given in terms of powers of an

² : ² :expansion parameter u rM, where u is the vac-
uum expectation value of a singlet field and M is a

Ž .high string scale. These powers are written in terms
of modular weight differences. Further, the conse-
quences in the lepton flavour non-conserving reac-
tion m™eg are examined. Its branching ratio is
found close to the present experimental limits.
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We start with a quick review of the Ns1 super-
gravity, which introduces a real gauge-invariant

w xKahler function with the general form 4¨

2G z , z sKK z , z q logNWW z N 1Ž . Ž . Ž . Ž .

Ž . Ž .where KK z, z is the Kahler potential and WW z is¨
Ž .the superpotential. Denoting F ,Q by z, where F

stands for the dilaton field S and other moduli T ,i
while Q represents the chiral superfields, the Kahler¨
potential at tree level can be written as follows

K F ,F ,Q,Q sylog SqS yS h log T qTŽ .Ž . Ž .n n n n

2VqZ F ,F Q e Q q PPP 2Ž . Ž .i j i j

Ž .The superpotential WW z is a holomorphic function
of the chiral superfields Q and at the tree level isi

given by

1 1
WW F ,Q s l F Q Q Q q m F Q QŽ . Ž . Ž .i jk i j k i j i j3 2

q PPP 3Ž .

Ž . Ž .In both 2 and 3 , PPP stand for possible non-re-
normalizable contributions. Terms bilinear in the
fields Q refer in fact to an effective Higgs mixingi

term.
Now under the modular symmetries, the moduli

Ž . Ž .transform as T ™ aT y ıb r ıcT q d , where
Ž .a,b,c,d constitute the entries of the SL 2,Z group

elements with a,b,c,dgZ and adybcs1. These
w ximply the following transformation rules 5

k kk ynynn jiiQ ™Q t , Z ™Z t t ,Ž . Ž .Ł Łi i k i j i j k k
k k

WW™ t nk
W WW , 4Ž .Ł k

k

where we have introduced the notation t s ıc T qk k k

d . The exponent nk is the modular weight of Qk i i

with respect to the modulus T .k

Let us now introduce into the Kahler function¨
non-renormalizable terms through two fields, u and
u , which are singlets under the low energy standard
gauge group, while they carry charges q syqu u

Ž . Žunder the U 1 family group. The lower order inF

.Q ’s non-renormalizable terms can be written in thei

form

r̃r i ji j² : ² :u u
i j i jK Q Q qK Q Q . 5Ž .r i j r i j˜i j i jž / ž /M M1 2

Ž .These terms should be invariant under the U 1 F
Ž .symmetry. Assigning U 1 charges q for the mat-F i

ter fields one gets

q qq qq r s0, q qq qq r s0. 6Ž .˜i j u i j i j u i j

Similar non-renormalizable terms could also appear
in the superpotential.

After this short review we come to the mass
Ž .matrix textures. The SU 2 invariance, together withL

the requirement to have symmetric mass matrices,
Ž .leads us to assign the same U 1 charge to all quarkF

members of the same family q , while the samei

should be applied to the leptons of the same family
l . The full anomaly-free Abelian group involves ani

additional family-independent component and with
Ž .this freedom we may make U 1 traceless withoutF

any loss of generality. Thus q qq qq s0 and1 2 3

l q l q l s0.1 2 3

If the light Higgs H , responsible for the masses2

of the up quarks, and H , responsible for the down1
Ž .quarks and leptons have U 1 charge, so that onlyF

Ž .the 3,3 renormalizable Yukawa couplings to H2

and H are allowed, namely1

2 q qh s0, and 2 l qh s0, 7Ž .3 2 3 1

Ž .only the 3,3 element of the associated mass matrix
will be non-zero. The remaining entries are gener-

Ž .ated when the U 1 symmetry is broken. A straight-F

forward consequence of this fact is the equality of
Ž . Ž .the two Higgs U 1 charges h sh , since HF 1 2 1

provides also the mass to the bottom quark while we
Ž .have assumed equal U 1 charges within a family.F

A general non-renormalizable relevant term in the
superpotential is of the form

x i ju
cY Q u H . 8Ž .i j i j 2 ž /M
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Ž .Owing to U 1 invariance of the superpotential, weF

have the constraint

q qq qh qx q s0 9Ž .i j 2 i j u

and similarly for the parameter u terms. The allowed
powers of non-renormalizable terms in each entry

Ž .are determined by the charges q syqu u

< < < < < <2 aq1 a aq1q yq2 3
< < < <x s 10a 2 1 Ž .i j q � 0u < <aq1 1 0

Ž .where as3q r q yq , and we have used the3 2 3
Ž .condition 7 . Suppressing unknown Yukawa cou-

plings Y and their phases, which are all expected toi j

be of order 1, we arrive at the following mass
matrices

e 2 < aq1 < e < a < e < aq1 <

< a < 2m f m 11Ž .e e eU t� 0< aq1 <e e 1

e 2 < aq1 < e < a < e < aq1 <˜ ˜ ˜
< a < 2m f m 12Ž .e e e˜ ˜ ˜D b� 0< aq1 <e e 1˜ ˜
² : ² :u u<Žq yq .r q < <Žq yq .r q <2 3 u 2 3 uŽ . Ž . Žwhere es , es M˜ 1M M1 2

.and M being two high scales . The charged lepton2

mass matrix may similarly be determined. The equal-
Ž .ity h sh , together with 7 has also the conse-1 2

quence q s l , which implies the successful relation3 3

m sm at unification. We then getb t

e 2 < aqb < e < a < e < aqb <˜ ˜ ˜
< a < 2 < b < < b <m f m 13Ž .e e e˜ ˜ ˜L t� 0< aqb < < b <e e 1˜ ˜
Ž . Ž .where bs l yq r q yq .2 3 2 3

The powers of the above matrices can be written
in terms of the modular weights as follows. As we
have already discussed in the introduction, the super-
potential transforms covariantly under the modular
symmetry. Let us denote by n ,n ,n ,n ,n theQ u d h ui i i 2

modular weights for the corresponding fields with
respect to a certain modulus. For the non-renormaliz-

Ž .able term of the form 8 , the modular weights obey
the equation n qn qn qx n sn . Combin-Q u h i j u WWi j 2

Ž .ing this relation with the U 1 invariance and theF

fact that Ý3 q s0, we obtain the general formulais1 i

q q qu u u
q s n s n s n 14Ž .Ý Ý Ýj Q u dji ji ji3n 3n 3nu u ui i i

where n sn yn and correspondingly for nQ Q Q uji j i ji

and n . The third equality comes from the down-d ji

quark mass matrix non renormalizable contributions
Ž .corresponding to a term like 8 . Similar relations

hold for the lepton modular weights. Using the above
relation, we may obtain an elegant form of the

Ž .matrix 10 , which expresses the powers of the al-
lowed non-renormalizable entries only in terms of

w xmodular weight differences 6 . We obtain

2n n qn nQ Q Q Q31 31 32 311
n qn 2n nx s 15Ž .Q Q Q Qi j 31 32 32 32nu � 0n n 0Q31 Q32

The positivity of the entries requires the conditions
n n )0 and n n )0. We can also express theQ u Q u31 32

Ž .powers of the matrix 12 in terms of modular
weight difference. This is easily done by expressing
the parameter a in the form

n qnQ Q13 23as . 16Ž .
nQ23

Ž .From 15 we conclude that the hierarchical fermion
mass spectrum requires all three n ’s to be different.Qi

ŽModels with equal n ’s, but different q ’s neces-Q ii

.sary to create hierarchy , require q s0. In this caseu

Ž .the U 1 charges are not related to the modularF
Ž .weights and the constraint 14 does not hold.

We next turn to the lepton fermion mass matrix.
The phenomenological constraint l sq imposes3 3

the following relation on the modular weights of the
quark and lepton generations

n yn sn yn 'd . 17Ž .L Q Q L13 13 23 23

Ž .As a result, the U 1 structure permits to expressF

the powers y of the lepton termi j
y i jyŽ .

uL e H 18Ž .i j 1 ž /M

by the following matrix

2 n qd n qn n qdŽ .Q13 Q Q Q13 23 131
n qn 2 n yd n ydy s Ž .Q Q Q Qi j 13 23 23 23nu � 0n qd n yd 0Q Q13 23

19Ž .
whilst the corresponding constraints for the positivity
of the entries are n n )0 and n n )0. TheL u L u13 23
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Ž .powers of the matrix 13 can also be expressed in
the same way by writing b in the form

n ydQ23bs . 20Ž .
nQ23

We now turn to the scalar part. At the tree level
the scalar mass matrices receive contributions only
along the diagonal, since terms of the form AQ Q)

i i
Ž .have zero U 1 charge. Using powers of the fieldsF

u ,u scaled by the M, we may fill in the remaining
Ž .entries. It can easily be seen that the allowed U 1 F

structure of the powers in the scalar mass term is

0 n nQ Q12 131
n 0 n 21Ž .Q Q12 23nu � 0n n 0Q Q13 23

² : ² :Thus, the powers of the parameters u , u are
simply determined by the differences n for theQi j

Žsquark matrix and similarly for the sleptons remem-
Ž .ber that since the U 1 charge is the same within aF

Ž . .family, 14 tells us that n sn sn .Q u di j i j i j

Using again the parameters a and b entered in the
fermion mass matrices, we can express the squark
mass matrix in the form

1 e N aq6 N e N aq1N

2 2N aq6 Nm f m 22Ž .e 1 eQ̃ 3r2� 0N aq1Ne e 1

where m is the gravitino mass. Similarly, for the3r2

sleptons we obtain

1 e N aq6 bN e N aqbN˜ ˜
2 2N aq6 bN N bNm f m 23Ž .e 1 e˜ ˜ ˜l 3r2L , R � 0N aqbN N bNe e 1˜ ˜

Obviously in the case of bs1 the two matrices are
Ž .identical since this case corresponds to equal U 1 F

charges in the quark and the leptonic sector, l sq .i i

In fact, it can be checked that the phenomenological
analysis of the fermion mass spectrum allows two

w xvalues of b, namely bs1 or 1r2 7 , while ef
0.053 and ef0.23.˜

Ž .The above results show that U 1 symmetriesF

necessarily lead to low energy models where the
Yukawa and its corresponding scalar mass matrices
are not simultaneously diagonalized. As a result,
flavour violation is possible and in general one should
check whether such models can pass also the flavour

violation tests. One of the most popular flavour
non-conserving processes is the m™eg decay. We
have calculated the branching ratio for this process
in order to compare it with the present experimental
limits. This calculation requires the diagonalization
of the 6=6 scalar mass matrix

2 ² :m A H q m mtanbl̃ l 1 LL2M̃ sl̃ † 2ž /² :A H q m mtanb mŽ . ˜l 1 L lR

24Ž .

Here, as usual, A is the trilinear parameter enteringl

the scalar potential, m is the Higgs mixing term and
tanb is the Higgs vev ratio. Since lepton mass
matrices are symmetric, left and right diagonalizing
matrices coincide. Further, due to the properties of

Ž . Ž 2 .the U 1 symmetry of the model, left m and˜F lL

Ž 2 .right m scalar mass matrices are the same. More-l̃R

over, here we restrict on the case of small tanb

regime, where the chirality changing diagrams are
suppressed. In the general case, of course, and in the
large tanb scenario, they become important. We
have considered contributions from one loop graphs
involving neutralino-charged slepton or chargino-
sneutrino states in the loop. The diagrams of this
process are shown in Fig. 1. We have diagonalized
the lepton and the slepton mass matrices and found
the corresponding am plitude for each
neutralinorchargino graph. Then by diagonalizing

Fig. 1. The m™ eg decay via supersymmetric graphs.
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the Wino mass matrices we evaluated the total am-
plitude and the branching ratio. For sensible values

Ž . Žof m ;m ;OO m initial values for the scalar3r2 1r2 W
.and gaugino masses respectively and standard GUT

initial conditions for gauge couplings, the value of
the BR can reach the order of 10y12. Thus, thism™ eg

rare decay gives the opportunity to test the viability
Ž .of the above U 1 -like model in future experiments.F

In conclusion, we have considered the scalar mass
matrices in supergravity models with the standard

Ž . Ž . Ž .SU 3 =SU 2 =U 1 gauge group augmented byL Y
Ž .a U 1 family symmetry. Using modular invarianceF

of the Kahler potential and the superpotential, we¨
Ž .have derived certain relations between U 1 chargesF

and the modular weights of the fields. As a result,
the scalar mass matrix entries are found to depend
only on certain powers, which are proportional to the
difference of modular weights. We have calculated,
as an example, the process m™eg , which is found,

Žfor a wide range of the parameter space tanb , m ,3r2
.m , to be very close to the present experimental1r2

limits. This fact makes it possible to test such theo-
ries in near future-experiments.

References

w x1 E. Cremmer, S. Ferrara, L. Girardello, A. Van Proyen, Nucl.
Ž . Ž .Phys. B 212 1983 413; J. Bagger, Nucl. Phys. B 211 1983

302.

w x Ž .2 S. Ferrara, D. Lust, S. Theisen, Phys. Lett. B 233 1989 147;¨
Ž .S. Ferrara, C. Kounnas, F. Zwirner,Nucl. Phys. 365 1991

431; I. Antoniadis, K.S. Narain, T. Taylor, Phys. Lett. B 267
Ž .1991 37; S. Kalara, J. Lopez, D.V. Nanopoulos, Phys. Lett.

Ž .B 269 1991 84; L. Ibanez, D. Lust, Nucl. Phys. B 382˜´ ¨
Ž . Ž .1992 305; P. Binetruy, E. Dudas, Nucl. Phys. B 442 1995´
21.

w x Ž .3 C.D. Froggatt, H.B. Nilsen, Nucl. Phys. B 147 1979 277; J.
Ž .Harvey, P. Ramond, D. Reiss, Phys. Lett. B 92 1980 309; I.

Antoniadis, J.S. Hagelin, J. Ellis, D.V. Nanopoulos, Phys.
Ž .Lett. B205 1988 459; G.K. Leontaris, Phys. Lett. B 207

Ž . Ž .1988 447; A. Faraggi, Phys. Rev. D 47 1993 5021; Y. Nir,
Ž .N. Seiberg, Phys. Lett. B 309 1993 337; L. Ibanez, G.G.˜

Ž .Ross, Phys. Lett. B 332 1994 100; P. Binetruy, P. Ramond,
Ž .Phys. Lett. 350 1995 49; E. Papageorgiu, Z. Phys. C 64

Ž .1994 509; P.H. Frampton, O.C.W. Kong, Phys. Rev. Lett. 75
Ž . Ž .1995 781; 77 1996 1699; E. Dudas, C. Grojean, S. Poko-

Ž .rski, C.A. Savoy, Nucl. Phys. B 481 1996 85; B. Allanach,
Ž .S.F. King, G.K. Leontaris, S. Lola, Phys. Rev. D 56 1997

2632.
w x Ž .4 S. Ferrara, C. Kounnas, F. Zwirner, Nucl. Phys. B 429 1994

589, and references therein.
w x Ž .5 I. Antoniadis, E. Gava, K.S. Narain, Phys. Lett. B 283 1992

Ž .209; Nucl. Phys. B 383 1992 93; L. Ibanez, D. Lust, Nucl.´˜ ¨
Ž .Phys. B 283 1992 305.

w x Ž .6 E. Dudas, S. Pokorsky, C.A. Savoy, Phys. Lett. 369 1996
255; C.A. Savoy, FCNC in SUSY theories, Talk at HEP95
Euroconference, Brussels, July 1995.

w x w x7 L. Ibanez, G.G. Ross, as in 3 .˜
w x Ž .8 F. Gabianni, A. Masiero, Phys. Lett. B 209 1988 289; T.

Kosmas, G.K. Leontaris, J.D. Vergados Phys. Lett. B 219
Ž . Ž .1989 457; Prog. Part. Nucl. Phys. 33 1994 397; R. Barbi-

Ž .eri, L. Hall, A. Strumia, Nucl. Phys. B 445 1995 219; S.
Ž .Dimopoulos, D. Sutter, Nucl. Phys. B 1995 .


