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Abstract 

We discuss in detail the possibility of determining dynamically the gravitino mass ~~~312, which is related to the supersymmetry 
breaking scale, within the minimal supersymmetric standard model (MSSM). Using the complete MSSM spectrum, we 
minimize the vacuum energy including one-loop corrections and a cosmological term of 0( m$,) induced by the underlying 
fundamental theory. We find that both terms are necessary to determine dynamically the gravitino mass. Other useful 
constraints for the low energy phenomenology are also obtained. 

It is widely believed that the only plausible solu- 
tion to the gauge hierarchy problem is N = 1 lo- 
cal supersymmetry [ 1 ] . The gauge hierarchy problem 
arises from quadratically divergent one-loop correc- 
tions to the effective potential, those being of the form 
( h2Str M2/ (32d) ) , where A is the momentum cut- 
off, while 

StrM2(z,2) =~(-1)2”n(2s.+ l)mi(z,Z) (1) 
n 

The sum is over all particles with field-dependent 
masses squared rni and spin s,. Since M2 contains 
also the Higgs mass-squared, this term induces a diver- 
gent contribution destabilising the hierarchy Mw < 
MPI, where &I is the Planck mass. 

’ On leave of absence from physics Department, University of 
Ioannina, 451 10 Ioannina, Greece. 

2 Work supponedin part by C.E.C. Project (CHRX-CT93-0132). 
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In the spontaneously broken N = 1 local supersym- 
metry the Str M2, which appears as a coefficient of 
the one-loop quadratically divergent contributions, is 
given in terms of the field dependent gravitino mass 
rnsj2 by the formula [2] 

StrM2 =2Q(z,f)m&,(z,Z) (2) 

where the dimensionless function Q ( z, Z) depends on 
the fields z and z” through the Rici tensor of the Kiihler 
manifold and the function fab( z, Z) which determines 
the kinetic terms of the vector supermultiplets as well 
as the gauge coupling constants. 

In the fundamental theory of quantum gravity the 
non-vanishing of Q< z, Z) would imply corrections to 
the effective potential of the order O( m$2M$,) which 
cannot be cancelled by any contribution of low energy 
physics. The gravitino mass is given by 

mzi2(z, Z) = jW(z)12ek(L,‘) (3) 
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where W( z ) is the superpotential. The value of rn3/2 is 
related to the scale of supersymmetry breaking which 
should not be much larger than the electroweak break- 
ing scale. Since m2 3j2( z, 2) is field dependent, its vac- 
uum expectation value (vev) should arise from the 
minimization of the potential. Then, quadratically di- 
vergent loop corrections proportional to Str M2 will 
induce either m3p -+ 0 (unbroken supersymmetry) 
or rn3p + 44~1, therefore destabilizing again the hier- 
archy. 

A possible solution to the hierarchy problem re- 
quires the vanishing of Q( z, 2) which motivated the 
no-scale supergravity models [ 31. A further step to- 
wards this problem has been taken the last few years 
by going beyond the N = 1 local supersymmetry, the 
superstring theory. In the context of the latter, and in 
particular of their four-dimensional version [4], the 
effective supergravity theory is strongly restricted. It 
has been shown [ 2 3 that there exist examples in super- 
gravity theories preserving the general features of the 
superstring underlying theory which predicts a van- 
ishing 0( rn&JM&) contribution. Such theories, how- 
ever, will still leave a non-vanishing contribution to 
the vacuum of the order c3( m&2), which can be inter- 
preted as a contribution to the cosmological constant 

AI/COW = v(QP$ (4) 

The energy scale dependent coefficient v(Q) has a 
certain boundary condition on the unification scale. Its 
value there is dictated by the structure of the ‘hidden’ 
sector in the specific string model that has been chosen. 

In Ref. [ 51, the gravitino mass has been treated as a 
dynamical variable. This would in turn imply that the 
low energy effective potential should be minimized 
not only with respect to the vevs of the Higgs fields 
but also with respect to m3/2. It has been stressed that 
this term cannot be absent in low energies as far as the 
gravitino mass is not taken as an external parameter. 
On the contrary, its contribution is determined by the 
evolution of the coefficient v( Q) from the GUT scale 
down to the low energies on the one hand, and the 
dynamical determination of m3p on the other hand. 

In what follows we wish to analyse the above proce- 
dure in a realistic low energy supersymmetric theory. 
We take as an example the minimal supersymmetric 
standard model (MSSM) which is endowed with all 
the salient features of an effective supergravity theory. 

We will show that under the very general characteris- 
tics of the above theories, the v(Q) is non-zero and 
negative at Q N Mz, as long as 111312 lies in the de- 
sirable range of 100 GeV to 1 TeV. Moreover the dy- 
namical determination of the rn3/2 scale through the 
minimization of the effective potential puts constraints 
of the scalar mass spectrum of the theory. 

We consider therefore the MSSM. Following the 
discussion above, the only terms relevant to the poten- 
tial (including quantum corrections) are the following 

q(Q) = G(Q) + rl(Q>m& 

+--&StrM”(ln$ - i) (5) 

G(Q) is the (RGE improved) tree-level potential 
while the appearance of the last term is due to the ra- 
diative corrections (at one-loop level) and its inclu- 
sion is necessary in order to stabilize the minimization 
procedure of the potential against Q [ 61. 

The evolution of the parameter 7 (Q) is determined 
by a RGE which can be derived by demanding that the 
potential fl (Q) is scale independent to the one-loop 
order, i.e. 

a(t) =. 
dt ’ 

t=lnQ 

Since the above relation should hold for all values of 
the fields, in the case where u1 = u2 = 0, we have 
[5,71 K&o = &+/,,+I = 0, thus 

4 b(t) -- 
m3/2 & 

&Str M4(o,+, = 0 

The above differential equation determines the value 
of v(t) in terms of Str M4 and the gravitino mass, 
once the initial values of 7 and of the mass parameters 
entering Str M4, at the unification scale, are known. 

The initial value TG, for example, is related in some 
specific models to the difference nB - nF where nar(~) 
are the bosonic (fermionic) degrees of freedom af- 
ter supersymmetry breaking. An explicit derivation of 
the cosmological term, which can be identified with 
the contribution v(Q)&/, of Eq. (5), is given in 
Ref. [ 81. In this treatment, the supersymmetry break- 
ing scale is related to the size of a large internal di- 
mension R. It was found that after the SUSY breaking, 
the one-loop contribution to cosmological constant is 
of the order of (c~se~~/4’rr@) (7~ - 7~). For Z2 x Z2 
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orbifolds, the gravitino mass is l/m, thus for bro- 
ken SUSY one estimate that TG 5 0. 

The initial values of the scalar masses I?$, the gaug- 
ino mass ml 12 and of the JL parameter at the unification 
scale MC. can be parametrized in tetm of rn3/2 

fif = r$im:j2, m$2= !$ll2m$ y PC =&m/2 

(8) 

where the 6 coefficients are of 0( 1) (calculable in 
specific models). Therefore, the value of v (Q) at any 
scale Q < MG is given by 

v(Q)= ?'G 
Q 

1 
+- 

321r2 s 
Str fi4(Q',5i, &/2)l+zdln Q' 

MG 

where 

(9) 

m!(Q) 
Jf41@ = C(2Si + 1)(-1)2’* 

312 

= 
c czd + 1)(-112” i.fi(h,Q>l" 

and fi( ti, Q) WI be calculated from the RGE run- 
ning of the masses. Therefore, the parametrization of 
Eq. (8) renders the value of 7~ (Q) , obtained from 
Eq. (9)) independent of m3p. 

For a given set of (&, ?jo), the rn3/2 value will be 
given by the minimization condition of the low energy 
potential with respect to m3p. This condition results 
to the equation [ 51 

v,+- ’ StrM4=0 
128~2 

The latter has been interpreted as defining an infrared 
fixed point of the cosmological term, as it corresponds 
to the vanishing of the associated P-function. It is a 
significant constraint that should be satisfied by the 
m3/2 and tn parameters and the low energy values of 
the gauge couplings involved in VO ( UI , ~2). 

In order to exploit the constraint of Eq. ( lo), in the 
case where the complete spectrum of the MSSM is 
taken into account, we need the detailed Q-dependence 
of all the relevant parameters. We start with the clas- 
sical tree-level potential which is given by 

V,(Q) = Cm;, + P~)IHII~ + t& + p2)lH212 
+ rn~(H~H2 + h.c.) + gg’(HiuH2 + H~cH~)~ 

+ $(lH*12 - lH212j2 (11) 

The minimization of the VO potential with respect to 
~1.2 leads to the well known conditions 

m: = -~(m~,+m2,,+ 2p2)sin2/3 (12) 

$M; = 4, -42 tan” p 

tan2j3- 1 -” (13) 

These conditions, for given initial conditions of the 
Higgses and the angle p, can determine the low energy 
values of the p and rng E Bp parameters. In what 
follows, we will demand a top mass to the present 
experimentally determined region, thus for any chosen 
h,, Yukawa coupling we can also determine tan& 
This in turn implies that in our procedure we also fix 
the low energy values of ,u and B. Using their RGE 
evolution we finally determine their values at the GUT 
scale. 

Furthermore, the conditions of Eqs. ( 12,13) allow 
us to write the tree level potential in a simple form, 
exhibiting its dependence on the MZ mass. Substitut- 
ing Rq. (13) into@. (11) we get 

vo(u,P) = -A($ +g’2)u4cos22p 

1 M4,cos22P =-- 
87r ((~+a’) 

where u = 246 GeV. Thus, the details of the supersym- 
metry breaking parameters do not essentially affect 
the VO( u, /?) piece at the low energy scale. In, partic- 
ular, in determining the low energy value of vz from 
low energy physics, the main dependence of SUSY 
breaking parameters enters through the Str contribu- 
tions. In fact, we can use the minimization condition 
JZ.q. ( 10) to determine the required low energy value 
of 17 (Q) as a function only of the parameters (a and 
5z = ( MZ/m3/2)2 and tan p, i.e. for Q rv MZ we get 

I 

&f4(lnfi2 - 1) 

(15) 

The above relation enables us to calculate the re- 
quired low energy value of the cosmological coeffi- 
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cient v(Q) for any set of the parameters & choosing 
a phenomenologically acceptable 1ll3/2 range. By solv- 

ing then the corresponding RGE for v(Q) , Eq. (7)) 

we can determine a consistent range of values of 7 at 
the unification scale. Some general remarks concern- 

ing Eq. (15) are worth noting here. 
First there is a positive contribution from the tree 

level potential which depends on ,$z and the angle p. 

For very large tan& this term becomes almost inde- 

pendent of /3 as ) cos Z/31 3 1. As m3p shifts to val- 

ues much larger than Mz, then 6; << 1 and the pos- 

itive contribution becomes negligible. There is a neg- 
ative contribution, on the other hand, from the super- 

trace dependence which finally leads r) ( Mz) to neg- 

ative values at rnz. Scalar mass and gaugino contribu- 

tions in the supertrace scaled by rns/z are independent 

of the latter, being functions only of the ,$a parame- 

ters and the scale dependent gauge functions. There- 
fore, the main rn3p dependence enters through the 
logarithmic terms of the form ln(i$(Q)/Q’) - 1 = 

In f( {i, Q) + ln( m$2/Q2) - 1. Therefore, the m3p 
value at which the minimum of the potential occurs, 

is intimately related to these terms. 
The calculation of Str &f4 requires the knowledge 

of the boundary conditions (bc.) for the scalars at the 

GUT scale, i.e. the knowledge of the ta parameters. 
In the case of universal b.c., for example, one has 

5i = 50 = / / m0 m3 2 and 51p = wp/m3/2, i.e. only 

two parameters in addition to [z. However, in the 

general case of supergravity theories [i are in general 
different (non-universality) and the parameter space 

becomes more complicated. In addition, the RGEs for 
the scalars should also contain the contribution of the 

U( 1 )-D terms which plays a significant role for large 
deviations from the universality condition [i = 50. 

The important fact of the above described approach 

is that, for a specific supergravity or superstring model, 
up to an overall constant which can be identified with 

the gravitino mass, all the ta’s are known. If in addi- 
tion the initial value of q(Q) at Mo is known, equa- 
tions Eqs. (7,lO) can determine exactly the gravitino 

mass. 
In practice, it is not trivial to write down, at least for 

the moment, a detailed spectrum of a realistic string 
model. Therefore, in the present analysis we prefer to 
follow the above described procedure using the gen- 
eral features of a supergravity theory. In this proce- 
dure, we treat as free parameters the coefficients c$~, 

varying them in a range close to unity, and use the 
complete spectrum of the MSSM to predict a con- 

sistent range of v(Q) at the unification scale. This 
bottom-up approach has as a prerequisite the knowl- 

edge of the gravitino mass whose value is supposed 
to be determined dynamically. We know however that, 

since supersymmetry breaking is related closely to the 
m3p scale, its value should be necessarily of the order 

of the electroweak scale. Our purpose is then to show 
that under realistic conditions and for a wide choice of 

the parameter space 6 = (&i, 51/x, 6,) there are some 

stable and well defined predictions of the input value 
q( MC) which can be hopefully determined indepen- 
dently in specific string models. To put it in another 

way, using all the possible information of low energy 

physics, one can certainly support, or rule out, possi- 
ble string constructions. 

In the present work we stick in the low tan p regime 
and prefer to use semianalytic formulae to calculate 
the Str contributions. To start with, in the case of 

non-universal conditions at the GUT scale for the soft 

terms, we generalize our previous formulae [9] for 
the third generation of squarks which are the only one 

affected by the heavy top contribution. 
As in Ref. [ 51, we prefer to restrict our analysis in 

the case of the universal condition in the Higgs sector, 

although it seems interesting to consider the more gen- 

eral case. However, working in the low tan@ regime, 
the non-universality in the Higgs sector, rn& = m&, is 

not expected to play a significant role, contrary to the 

case of large tan p scenario. In the latter case, depar- 
ture from universality [ lo] is sometimes necessary to 
avoid instabilities in the low energy effective potential 

due to large negative corrections to both Higgs mass 
parameters. We give now the specific formulae which 

we are going to use. 
The RGEs for the scalars receiving large h, Yukawa 

contribution are 
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3h2 _t 
87r2 (6 -I- 112; + rn& + Al) - ’ a1 sz;;s (18) 

where S, in the case of MSSM, is given by 

gen 

The solution of the above system can be easily found 
through the solution of the differential equation 
obeyed by the sum of the three masses u(t) = C r’$, 
(where we have assigned rTzi -+ fii, fi2 -+ r?tz and 

63 + m&J, 

d&t) 2 

- = uo(t) - 81T2 
dt 

%4(t) (19) 

where 

dM$+ 6h2 
uo=~~$$-g-$A,, j=Q,U,Hz 

j i 

It is worth noticing here that the Eq. (19) is indepen- 
dent of the S contribution, since the sum of the U( 1) 
charges should be zero in the term QUHz (invariance 
of the Yukawa Lagrangian under U( 1) ) . Of course, 
each individual mass gets a contribution from the S 
term. The solution of the differential equation is given 

by [91 

f 

u(t) = J uo(t)dt -682,(t) - 66;(t) 

t0 

Following closely the formalism of Ref. [ 91 and tak- 
ing into account that the At contributions are small, we 
can write the solution of the Rqs. ( 16-18) in the form 

-2 
m, = Snm:,2i-C~(t)S1,2m:12t-C,s(t)Som:,2-ns”,(t) 

(20) 

where the coefficients Ci (t) are defined in Ref. [9] 
and 

where the differential equation obeyed by S, namely 
dS/dt = (~1 bl S/( 2-r), has been used. In the following 
we will stick in the case 53 = [H, (universality in 
the Higgs sector) and that all three 5i/2 are the same 
(universality in the gaugino sector). 

The &-term contributions can be calculated now 
easily. We should point out that this calculation in- 
volves the p parameter of the superpotential, which is 
unknown at the MG scale. However, in the bottom-up 
approach we are using here, the minimization condi- 
tions at Q N Mz determine the value or. at this scale. 
Its value at any scale can be obtained by generalizing 
Eq. (26) of Ref. [ 91 for the case for non-universal 
b.c., and evolve it using the relevant renormalisation 
group equation. Similarly, the B (or rni) parameter 
is not left arbitrary once a particular value of the p 
angle is chosen. As we have already commented, for 
given tanp and ,$H,~ initial Higgs parameters, their 
values are fixed by the minimization procedure. Thus, 
the only parameter left arbitrary, is the value of the tri- 
linear coupling A. Remarkably, its contribution in the 
supertrace is not important, provided that the initial 
value A0 is not very large, Ao N O( firno), and the 
top coupling is large enough h,G > 1. In fact, its con- 
tribution enters mainly through the soft scalar mass 

terms mHzl %,, fit, whose expressions are given by 
Eq. (20). There, SA corrections where ignored since it 
has been found that under the above conditions which 
concern us here 6: < Si [ 91. 

A final issue we should discuss before we present 
our numerical results, is the scale at which the re- 
quired parameters should be calculated. Indeed, as we 
shall show soon, 7 (Q) varies substantially as the scale 
approaches Mz and its value in very sensitive to the 
chosen scale. For a gravitino mass close to the value 
MZ it seems sensible to calculate all the relevant pa- 
rameters at Q N Mz. If we seek however solutions 
for rn3p >> Mz, it would be appropriate to calculate 
the relevant quantities at a scale close to this value of 
m3p Then, according to our program we define as 
low energy value of 7 (Q) that one obtained from the 
minimization condition at Q = m3p and calculate the 
required initial condition 7~ at MG. 

We start our numerical investigations with the 
renormalisation group of the coefficient v(Q) . 
Using Eq. (9)) in Fig. la we plot the coeffi- 
cient v(Q) using as initial value qo = 0, for 
three characteristic choices of the coefficients {a, 
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-100 - 

-150 _ 

-200 - 

-250 - 

-300 - 

-350 - 

v(Q) (a) 

Fig. 1. The running of the parameter v(Q) with initial value q( MC) = 0. In (a) we plot r) for three different values of &/2 = i. 1 .g and 
5, with all other 5’s fixed. In (b), keeping 5112 = 1.8 we plot r) for three values of So = 3.6.3.3 and -1.6. In (c), we keep &t/2 = 1.8, 
all other es, but 5,. fixed and we vary the initial top Yukawa coupling ht ( MG) = 1.8.2.6 and 3.0. 
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v(Q) (c) 

-125 - 

-i50 - 

493 

/71(Q) 

Fig. 1 -continued. 

cy = i, $, CL. By varying them in a reasonable range, 
we find that a crucial role is played by the choice of 
the coefficient 5i,12. For each particular choice of &i’s, 
we choose the value of tP so as to ensure radiative 
breaking of the SU( 2) x U( 1) symmetry at the low 
energy scale. From the three curves shown in Fig. la, 
the upper one corresponds to the choice &/2 = a, the 
middle to the case to &/2 = 1.8, while the lower to 
the value 5t/2 = 5. We observe that the bigger the co- 
efficient ,5i2, the lower the value of q( Qz) obtained 
for the same initial condition ?jG. This is of course ex- 
pected since larger contributions in the Str M4, result 
also to a bigger value of q(Q) through E!q. (9). It is 
dear from Eq. (9) that a different initial condition ?j& 
will result to a parallel shift of the obtained curves by 
the same amount. In Fig. lb we examine the sensitiv- 
ity of the 7 (Q) with respect to the ti parameters for 
given (t/z = 1.8. We present three cases where the pa- 
rameter SO takes the values 3.6,3.3, -1.6. Although 
we observe a significant variation of the 7 ( Qz) value 
for the above choices, this is smaller than the one 
obtained by varying 51/z. On the other hand, there is 
no obvious interrelation between v(Q) and S, val- 
ues. The final v( Mz) ‘s depend solely on the specific 
choice of ti’s. On the contrary, we find a rather in- 
teresting correlation between 7 (Q) curves and the 
top Yukawa coupling. In Fig. lc we plot curves for 

ht, = 1.8,2.6 and 3.0, while fixing all (i’s with 

5112 = 1.8. As can be read off from the the curves, the 
higher the top coupling the lower the I value. 
This result seems to contradict the one obtained pre- 
viously in Fig. 1 of Ref. [ 51. There the curves appear 
in the opposite order with respect to /I,~ values. This 
discrepancy is however apparent. The difference lies 
in the fact that in our case not all the initial condi- 
tions to are fixed. In fact we choose to fix only ti’s 
at the GUT scale while we vary [CL so as to obtain a 
reasonable transmutation scale at Qtrans < 1 TeV and 
satisfy the minimization conditions for any chosen set 
of the parameters ti, tan p, etc. In particular, choosing 
a specific value for k,,, we are forced to change the 
initial value of ,!L to compensate for the corresponding 
negative corrections on m& Higgs mass and result 
to a reasonable scale QtrM,. To make clear the above 
argument let us present a simple numeric example. 
Choosing for example tn,u = 0.4, &/2 = 1.2 and uni- 
versality for the rest of the scalars, for two h,, values 
we obtain the results shown in Table 1. 

Obviously, when the Qtrans are the same, then the 
bigger the top the lower the q( Mz) value, in accor- 
dance with our Fig. 1. If on the other hand one starts 
with the same initial condition p at Mom, then larger 
htG coupling leads to larger 77 ( Mz) values as has been 
shown in Fig. 1 of Ref. [ 51. 



494 G.K. Leontaris, N.D. Tracas/Physics Letters 3 351 (1995) 487-496 

Table 1 

3.0 2.41 8.90 -72.0 N 177.5 
2.0 2.41 6.02 -75.2 N 176.0 

3.0 2.98 6.03 -81.7 N 177.5 

v, 

50 

25 

5 
rrr,,,(lOOGeV) 

-25 

-50 

-75 

-100 

Fig. 2. The potential VI (Mz) as a function of q/z for a selected 
case where &1/2 = l/4, 5~ = &J = 2.5 and So = -3.5. The three 
curves correspond to I = -4, -2, -1. 

In Figs. 2-4 we present our results from the mini- 

mization procedure with respect to rn3/2, varying the 
value of T(Q N Mz ) to a range close to the one ob- 

tained by the minimization condition of Eq. ( 10). In 
our calculations we use Md M 1.3 x lOi GeV, ad M 

l/24.6 and a SUSY scale close to mtop. The obtained 

top mass IS mtop x 175 GeV while we take tan/3 x 

1.8. 
In Fig. 2 we plot the low energy effective potential 

Vi (Mz) versus rn3/2 for a selected case where 

5,/z = 0.25, 5~ = 5~ = 2.5 and Se = -3.5 

and three choices of vz = -4, -2, -1. The elec- 

troweak breaking occurs at Q N 450 GeV. We notice 
in the graph that in the specific case mentioned above, 
for vz in the range ( - 1, -3)) the minimum of rn3/2 
is in the range ( 150,550) GeV. Of course, such a low 
(i/2 will result low masses for the gauginos, in partic- 
ular for the larger rlz values of the above range which 

give the lower rn3j2 minimum. In Table 2 we give the 
masses of the SUSY particles scaled with the m3p 
mass. 

In Figs. 3a,b we present the case where &i/2 = 1.8 
while all other 5’s are as before, for two different scales 

namely Q M Mz and Q M 250 GeV. The parameter 

7 takes the values (-20, -30, -40, -50). Table 3 

Table 2 
The masses of the three gauginos and the other SUSY particles, 
scaled with the q/z mass, for the choices (t/z = .25, 6~ = &I = 
2.5 and Su = -3.5 

Ml M2 M.1 AQ t?llJ iTlO fir, I& fiL ITIE 

0.21 0.41 1.36 1.75 1.52 1.58 1.69 1.18 1.54 0.85 

r; (al 
- 20 -xl 

600 

/ / 

~ 

- 40 

400 

200 

-200 

-400 

-6001 
\ q(.Lf,) = -50 

1.1 M 
,,(C) = ?SOGeV) = - 20 -30 

Fig. 3. As in Fig. 2, with 5,/z = 1.8. All other l’s are the same. 
In (a) we plot the potential for Q = Mz, while in (b) we plot 
the potential for Q = 250 GeV. 

Table 3 
The same as in Table 2, for the choices ,$1/z = 1.8. (Q = &J = 2.5 
and So = -3.5 

Ml M2 M3 17lQ ,b, iiz,, ItilL iiit, ffZL fiE 

0.56 1.11 3.65 3.55 3.35 3.37 3.32 2.73 2.33 0.98 

shows the obtained supersymmetric spectrum scaled 
again with the m3/2. The scale of electroweak breaking 
is Q N 280 GeV. Since now &i/2 is higher we expect 
the SUSY masses to be heavier than before. 

In Fig. 3a, V(Q, m3p) develops a minimum for 
n( Mz ) E ( -30, -50) with a corresponding range of 
rn3/2 x (120-550) GeV. In Fig. 3b, the minimum is 
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fig. 4. As in Fig. 2, with &12 = 5, (Q = 6” = 0.8 and & = 0.3. 
The curves correspond to 7 = -200, -250, -300, -350. 

obtained for larger q (Q) values being now in the range 
a( MZ) M (-25, -35). The minimum at my2 = 300 
GeV corresponds to v( Mz) x -40 in the first case 
(Fig. 3a) and to 17 (250 GeV) z -3 1 for the sec- 
ond (Fig. 3b). Again as 31 shifts to lower values, the 
minimum of rn3iz --) co. Notice that within the above 
range, VI (Q) is stable with respect to the scale Q as 
expected. 

Fig. 4 represents a case with relatively large 
value of 51,~ = 5.0 and ..$Q = to = 0.8 and 

So= -0.3. All the relevant parameters are calcu- 
lated at Q = Mz, while the curves correspond to 
17 = (-200, -250, -300, -350). Finally we wish to 
point out that the cosmological coefficient receives 
naturally small values close to zero only in the first 
case, namely when ml/2 5 rn3/2. From this point of 
view, a vanishing cosmological constant at Q N MZ 
would require a considerable fine tuning of the various 
parameters. 

respect to the gravitino mass. We have shown that the 
requirement of determining a hierarchically consistent 
gravitino mass dynamically, leads to useful constraints 
in low energy and unification scale physics. In partic- 
ular, we have seen that the existence of a V-minimum 
with respect to m3/2 necessitates the inclusion of the 
one loop corrections and of the cosmological term 

?IcQtm$+ remnant from the underlying supergravity 
or string theory. Furthermore the minimization of the 
vacuum energy can naturally lead to rn3p values at 
the order of the electroweak scale m3p N ( 100-500) 
GeV and acceptable supersymmetric mass spectrum, 
in particular if ml/2 > m3/2. Further constraints are 
also put on the vz parameter which can be easily con- 
verted to constraints for the initial value of the cosmo- 
logical coefficient 7~ z r] (Q = MC). In particular, 
small 776 values as required by specific string models 
are compatible with ml/2 5 rn3i2 and small deviations 
from the universality condition for the scalars. In this 
case a sparticle spectrum compatible with the experi- 
mental bounds, requires rn312 2 (3-4) x Mz. 

It is interesting that the above minimization proce- 
dure may also apply to other undetermined parame- 
ters of the standard model, i.e. Yukawa couplings and 
ferrnion masses [5,12,13]. 

We have benefited from discussions with I. Anto- 
niadis, S. Dimopoulos C. Kounnas and F. Zwirner. 
G.K.L would like to thank the CERN Theory Division 
for hospitality during the early stages of this work. 
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