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Abstract 

We study asymptotically non-free gauge theories and search for renormalization group invariant (i.e. technically natural) 
relations among the couplings which lead to successfulgauge-Yukawa unification. To be definite, we consider a supersymmetric 
model based on SU(4) x SU(2)R × SU(2)L. It is found that among the couplings of the model, which can be expressed in 
this way by a single one in the lowest order approximation, are the tree gauge couplings and the Yukawa coupling of the 
third generation. The corrections to the lowest order results are computed, and we find that the predictions on the low energy 
parameters resulting from those relations are in agreement with the measurements at LEP and Tevatron for a certain range 
of supersymmetry breaking scale. 

1. Introduction 

The success of  the standard model shows that we 
have at hand a highly nontrivial part of a more fun- 
damental theory of elementary particle physics, and it 
challenges theorists to understand at least some of the 
plethora of its free parameters. 

The well-known unification attempts [ 1,2] assume 
that all gauge interactions are unified at a certain en- 
ergy scale beyond which they are described by a uni- 
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fled gauge theory based on a simple gauge group- 
Grand Unified Theory (GUT). This unification idea 
has been not only inspiring for particle physicists, but 
also has given specific testable predictions [ 3 ]. The 
accurate measurements of  the gauge couplings at LEP 
in fact suggest that the minimal N = 1 supersymmetric 
SU(5) GUT [4] is very successful when comparing 
its theoretical values with the experiments [ 5 ]. 

GUTs can also relate Yukawa couplings among 
themselves which can lead to the prediction of fermion 
mass ratios. In the case of the minimal SU(5) GUT 
[ 1 ], for instance, the prediction for the third genera- 
tion, i.e., M ~ / M b ,  was successful [6].  However, the 
GUT idea alone cannot provide us with the possibility 
to relate the gauge and Yukawa couplings. In order 
to achieve gauge-Yukawa coupling unification, within 
the assumption that all the particles appearing in a 
theory are elementary, one has to consider extended 
supersymmetric theories [7] or string theories [8]. 

0370-2693/95/$09.50 (~) 1995 Elsevier Science B.V. All fights reserved 
SSDI0370-2693(94 )01396-9  



156 J. Kubo et al. /Physics Letters B 342 (1995) 155-162 

Unfortunately, these theories seem to introduce more 
serious and difficult phenomenological problems to 
be solved than those of the standard model. 

Here we would like to emphasize an alternative way 
to achieve unification of couplings [9]-[  15] which is 
based on the fact that within the framework of renor- 
malizable field theory, one can find renormalization 
group invariant (RGI) relations among parameters 
which can improve the calculability and the predictive 
power of the theory. These relations could in princi- 
ple involve all the couplings of the theory, so that this 
field theory technique is sometimes called "reduction 
of couplings" [ 10]. Along the RGI approach, there ex- 
ists already studies and also some success [ 12] -[ 15]. 
In Refs. [ 14,15], we have found that the gauge and 
Yukawa couplings in supersymmetric SU(5) models 
can be unified using this method, which are consis- 
tent with the known experimental facts including the 
CDF result on the top quark mass [ 16]. Moreover, the 
model proposed in Ref. [ 14] is finite in the sense that 
all the fl-functions vanish to all orders in perturbation 
theory [ 17 ]. 

Clearly, in both cases we have assumed the exis- 
tence of a covering GUT so that the unification of the 
gauge couplings of the standard model is of a group 
theoretic nature. In this letter, we would like to ex- 
amine the power of the RGI method by considering 
theories without covering GUTs. 

It turns out that, in order for the RGI method for 
the gauge coupling unification to work, the gauge 
couplings should have the same asymptotic behavior 
either in the ultraviolet or infrared regime. Unfortu- 
nately, this common behavior does not appear in the 
standard model with three families, since SU(3)c and 
U( 1 )r  couplings have opposite asymptotic behavior. 
One can increase the number of generations to make 
the SU(3)c and SU(2)L couplings also asymptoti- 
cally non-free [ 18,19]. But we prefer not to introduce 
new relatively light degrees of freedom, although we 
are in sympathy with this approach to non-perturbative 
unification. Another way to achieve a common asymp- 
totic behavior of all the different gauge couplings is 
to embed the SU(3)c x SU(2)L x U(1) r  into some 
non-abelian gauge group which is not a simple group. 
That is, we introduce new physics at a very high en- 
ergy scale and increase the predictability of the model 
on the known physics by using the RGI method. It 
turns out that the minimal phenomenologically viable 

model is based on the gauge group of Pati and Salam 
[20]-  GPS -= SU(4) x SU(2)R x SU(2)L which is 
asymptotically non-free if it is supersymmetrized in a 
realistic fashion. We would like to recall that N = 1 su- 
persymmetric models based on this gauge group have 
been studied with renewed interest because they could 
in principle be derived from superstring [21,22]. 

2. The model 

Our supersymmetric gauge model is based on the 
gauge group 9PS, and we follow the definition of Ref. 
[22] for the electric charge Q and the weak hyper- 
charge Y: 

Q=r+½TL, 
r--  r15+ ½rR, (1) 

where TI5 -- d i a g . ( I , 1 , 1 , - 3 )  and TR,L = diag.(l,  
- 1 ). Three generations of quarks and leptons can be 
accommodated by six chiral supermultiplets, three in 
(4, 2, 1) and three (4, 1, 2) of ~ps, which we denote 

by ~(1)~, iR and _--;:_(l)iL respectively. Here I runs over Xlr/z , 

the three generations, and /x,u (= 1 ,2 ,3 ,4)  are the 
SU(4) indices while iR , iL (= 1,2) stand for the 
SU(2)L.R indices. The model also consists of Higgs 
supermultiplets in (4,2,  1), (4 ,2 ,1 )  and (15, 1, 1) 
of ~PS, H ~' iR , n / z  iR and E~, respectively. They are 
responsible for the spontaneous symmetry breaking 
(SSB) of SU(4) × SU(2)R down to SU(3)c x U( 1 )r. 
The SSB of U( 1 )r  x SU(2)L is then achieved by the 
nonzero VEV of hiRiL which is in (1, 2, 2) of GPS. 
In addition to these Higgs supermultiplets, we intro- 

duce G~ iRiL (15' 2, 2) , 4'( 1,1, 1) and E f  ( 15, 1, 1). 
/z G~ i~iL is introduced to realize the SU(4) × SU(2)R × 

SU(2)L version of the Georgi-Jarlskog type ansatz 
[23] for the mass matrix of leptons and quarks while 
~b is supposed to mix with the right-handed neutrino 

t 

supermultiplets at a high energy scale. The r61e of ~ 
will be clear later on. 

The superpotential of the model is given by 

W=Wr+WGj+WNM+WAs+Wros+WM, (2) 

where 
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3 

wy = 
c 

glJ $oi@ qt(J)cl k hiRiL , 

I,J=l 

WNM = 
c 

-(l)iR 

gl4 Eiitj8 *p 
HP jR 

4, 

1=1,2,3 

WSB = gH BP iR Sf’ HV iR 

+ gTr[Z3] + RTr[(Z’)*Z] , 
3 2 

wrDs _ go 
---E 

2 
iR.iREiLh Tr ] GiRiL 2 GjRjL 1 7 

W~=m~h2+m~G2+m~~*+m~~H 

+ rnx X2 + rnsf (IS’)* . (3) 

Although the superpotential has the parity, C#J -+ -4 
and Z’ -+ -8’, it is not the most general potential, 
and, by virtue of the non-renormalization theorem, this 
does not contradict the philosophy of the coupling 
unification by the RGI method. WSB is responsible for 
the SU(4) x sum + SU(3)c x U( 1)~ breaking, 
and it is achieved by the nonzero VEVs 

(H4’) = (H4,) = OH , 

(8z)=diag.(l,l,l,-3)uz, (4) 

in such a way that supersymmetry remains unbroken. 
This scale is expected to be of O(Mom). It is then 
easy to see that the right-handed neutrinos become 
heavy through WN,+, after the SSB above [ 2 11. 

The Yukawa couplings for leptons and quarks are 
contained in WY and WGJ, where WGJ is introduced 
to rovide the Georgi-Jarlskog type ansatz [ 231. So 
T,1p” G’ /I rRiL must be relatively light. We assume that 
the other components, leptoquarks and colored parti- 
cles, are 0( Mom), and that the superpotential WTDs 
can realize this “triplet-doublet” splitting of G. To re- 
alize the SSB down to SU( 3) c x U( 1) EM, we assume 
that there exists a choice of soft supersymmetry break- 
ing terms so that the VEVs 

(hi,i,) = ‘iR,I&L.2 UD + &,2&,1 4,~ 3 

(G”, iRiL) =diag.( l,l, 1, -3) 

x ( ‘in.1 air.2 UGZI + hR.2 6iL.I UGU ) (5) 

really corresponds to the minimum of the potential. 

Given the supermultiplet content and the super- 
potential (2), it is now possible to compute the p- 
functions of the model. We denote the gauge couplings 

of Su(4) x su(2)R X ~U@)L by g4 ,g2R and g2L, 

respectively. The gauge coupling for U( 1) y, gi , nor- 
malized in the usual GUT inspired manner, is a func- 
tion of them: 

1 
L+ 

3 

g: = 5gi g . 
(6) 

Normalizing the one-loop p-functions as dgi/d In /L = 
/3!” + O($) , i = 2L, 2R,. . . ,8’, G, where p is the 
renormalization scale, we find: 

P (1) 
GJ = f$ [ 16lgGJ(* + lg24)* + ;lgG[* - $g412 

- 31g2d2 - 31g*# ] , 

pi;’ = f5& [ 81g3312 + 1g3+1* - gig412 - 3]g2R12 

- 31g2d2 1 , 

(1) Ev 
‘*b - 1(jT2 [ 9 & lgd* + [g&+1* + yl&J]* 

I=1 

+ %H12 - $,g41* - 31g2R12 ] , 

a:;) = 16T* d?L [ 9 2 lgd + lg3# + ylgHI* 
I=1 

+ 3d2 + 31&l* - $lg4)2 - 3]g*# ] , 

(1) 
flz = s [ %I* + 6]SH]* + $I&, I2 + !+&)2 

- Wg412 1 , 
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167r2 [ 3[gx + 2lgnl 2 + ~lgx, I 2 + 3[ga[ 2 

- 241g412 ] , 

167r2 [ 21gGJI 2 + 3igxl 2 + 21gnl = + ~}gx, I 2 

+ 6[gGI 2 - 2419412 - 3[g2RI 2 - 31g2LI 2 ] . (7) 

We have assumed that the Yukawa couplings gu ex- 
cept for g33 vanish. They can be included into RGI 
relations as small perturbations 7, but we assume here 
that their numerical effects will be negligibly small, 
so that we will suppress them in the following discus- 
sions. 

3. Gauge-Yukawa-Higgs unification by the RGI 
method 

Any RGI relation among couplings can be ex- 
pressed in the implicit form as qb (g l , . . . , g~ )  = 
const., which has to satisfy the partial differential 
equation 

N 
3 

i=l 
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(8) 

where fli is the r-function of gi (i = 1 , . . . ,  N). If 
the r-functions satisfy a certain regularity, there ex- 
ist, at least locally, (N - 1 ) independent solutions of 
(8),  and they are equivalent to the solutions to the or- 
dinary differential equations, the so-called reduction 
equations [ 10], 

fl dgi = f i e ,  i = l , . . . , N ,  (9) 

where g and fl are the primary coupling and its 
r-function, and i does not include it. Since maxi- 
mally N - 1 independent RGI "constraints" in the 
N-dimensional space of couplings can be imposed by 
~i, one could in principle express all the couplings 
in terms of a single coupling, the primary coupling g 
[ 10]. This possibility is without any doubt attractive, 
but it can be unrealistic. Therefore, one often would 
like to impose fewer RGI constraints, and this is the 
idea of partial reduction [ 11,13]. From this point of 

7 The meaning of  the small  perturbations will  be clarified later 

on. 

view, the partial differential equation (8) can pro- 
vide us with an intuitive picture of partial reduction, 
though both differential equations (8) and (9) are 
mathematically equivalent. 

Detailed discussions on partial reduction are given 
in Ref. [ 15] for instance, and here we would like to 
briefly outline the method. For the case at hand, it is 
convenient to work with the absolute square of gi, and 
we define the tilde couplings by 

OL i 
Ol i "~ , i =  1 , . . . , N ,  (10) 

OL 

where a = [g[2/47r and O~ i = [gi12/47r ( i  does not 
include the primary coupling). We assume that their 
evolution equations take the form 

do~ - - = - b  ( 1 ) a 2 + . . .  , 
dt  

d a i  
.~ ( l )  ~ ' ~ h ( l )  ajOl k . ~ _ . . .  - b  i otia + ~ vi,jk 

dt  j,k 

in perturbation theory, and then derive 

d~i b~ 1) a(l) 
a - ~  = ( - l  + ~ ) &i - Z ~'i,# 5 j  Ol k 

),k 

+ ~ ( E)r-l "(r~ 
• r b i ( a ) ,  

r=2 

( l l )  

where b~r) (t~) ( r  = 2 , . . - )  are power series of~i  and 
can be computed from the r-th loop r-functions. 

To proceed, we have to solve the set of the algebraic 
equations 

b~l) /.,(1) 
( - 1  + ~ ) P i -  ~ ~'i,jk p: ;k = 0 ,  

j,k 

(12) 

and assume that the solutions pi's have the form 

pi=O for i = I , . . . , N ' ;  

pi > O for i = N '  + I, . . . , N . (13) 

We then regard t~ i with i < N p as small perturbations to 
the undisturbed system which is defined by setting ~i 
with i _< N p equal to zero. We recall that it is possible 
[ 10] to verify at the one-loop level the existence of 
the unique power series solutions 
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ai = pi + X-" _(r) (a_)r-I 
P/ 7/" ' 

r=2 

i = N l +  1 , . . - , N  (14) 

of the reduction equations (11) to all orders in the 
undisturbed system. These are RGI relations among 
couplings and keep formally perturbative renormal- 
izability of the undisturbed system. So in the undis- 
turbed system there is only one independent coupling, 
the primary coupling a. 

The small perturbations caused by nonvanishing t~i 
with i < N' enter in such a way that the reduced 
couplings, i.e., c~/with i > N', become functions not 
only of a but also of ¢~i with i < N'. It turned out 
that, to investigate such partially reduced systems, it 
is most convenient to work with the partial differential 
equations 

N' 
+ = 

a=l 

~i(a) = fli(a) # ~ f l  a2 a2 ~i(~), B - ~ ,  (15) 

which are equivalent to the reduction equations (11), 
where we let a, b run from 1 to N' and i, j from N' + 1 
to N, in order to avoid confusion. We then look for 
solutions of the form 

~ti ---- Pi + E ( O ~ ) r - I  f [ r ) ( ~ a )  ' 
71" 

r=| 

i = N l +  1 , ' . ' , N ,  (16) 

where f(i r) (~a) are supposed to be power series Of&a. 
This particular type of solution can be motivated by 
requiring that in the limit of vanishing perturbations 
we obtain the undisturbed solutions (14) [ 13,24], i.e., 
f ~ l ) ( 0 )  = 0 , f ~ r ) ( 0 )  = p}r) fo r  r >_ 2. A g a i n  i t  

is possible to obtain the sufficient conditions for the 
uniqueness o f  f~r) in terms of the lowest order coef- 
ficients. 

With these discussions above in mind, we would 
like to present our results for the present model below. 
In principle, the primary coupling can be any one of 
the couplings. But it is more convenient to choose a 
gauge coupling as the primary one because the one- 
loop fl functions for a gauge coupling depends only 
on its own gauge coupling. For the present model, we 
use ~2L as the primary one. 
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(i) Gauge sector 
Since the gauge sector for the one-loop fl functions is 
closed as said, the solutions of the fixed point equa- 
tions (12) are independent of the Yukawa and Higgs 
couplings. One easily obtains 

4 
P4 = , P2R = 3 , (17) 

where we have used the one-loop t -  functions (7) in 
the gauge sector and Eq. (12). Using now Eq, (6),  
we find that the RGI relations (14) become 

a4  8 a 1 5 
t ~ 4 =  ----- t~l _ - - - -  = g , 

O'2L 9 ' O(2L 

sin 20w = 3al/5a2L 1 
1 + 3al/5a2L = 3 " (18) 

Furthermore, one can convince oneself that at the one- 
loop level there is no correction to Eq. (18) which can 
result from perturbations to the undisturbed system. 
The RGI relations (18) are also boundary conditions 
at M6trr, where, at M6trr, the QCD coupling as can 
be identified with a4. 
(ii) Yukawa-Higgs sector 
The solutions of Eq. (12) in the Yukawa-Higgs sec- 
tor strongly depend on the result of the gauge sector. 
Since there are 9 couplings in this sector, Eq. (12) 
could in principle admit 29 = 512 independent solu- 
tions. But solutions with negative p cannot be accepted 
because oQ and the primary coupling a = a2L are pos- 
itive semidefinite (see Eq. (10)) .  Note also that the 
more vanishing pi ' s  a solution contains, the less is 
its predictive power. After slightly involved algebraic 
computations, one fnds that most predictive solutions 
contain at least three vanishing pi ' s .  There exist 11 so- 
lutions of that type, but their predictive power on low 
energy parameters is not equally significant. Out of 
these 11 solutions, there are two, A and B, that satisfy 

P33 , PGJ > 0 a n d  P3~b > pl~b , P26 • (19) 

These contain RGI relations that exhibit the most pre- 
dictive power and moreover they satisfy the neutrino 
mass relation My, > M~, , My,. 

For the solution A, we have pl~ = P2¢ = P~ = O, 
while for the solution B, pie = p2¢ = p6 = 0, and the 
rest of the p i ' s  are given by 
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Paj  = { 2 8 9 7 2 1 / 1 7 3 0 1 0 2  1.67 
1583/720 2 2.20 

[ 1151909 /3460202  3.33 
P33 = [ 7543/2220 2 3.40 

41363/28835 2 1.43 
P3~ = 491/555 2 0.88 ' 

93746/86505 2 1.08 
PH = 6974/2775 2 2.51 ' 

{o 
P~ = 9 9 5 6 / 2 4 9 7 5 2 0 . 4 0  ' 

3819496/778545 2 4.91 
P~' = 224/27 2 8.30 ' 

4351714/778545 2 5.59 
PG = 0 

for 

The corrections to the above RGI relations in the low- 
est order in the undisturbed system, which come from 
the perturbations, can be computed, and one finds in 
the first order 

1.67 - 0.05~¢ + 0.004&2¢ - 0.90~ + • .. 

2.20 0.08~26 - 0.05~o + ... 

~ 3 3  ' ~  

3.33 + 0.05&1¢ + 0.21&2¢ - 0.02&~ + • • • 
3.40 ÷ 0.05~1~ - 1.63~2~ 0.001&a ÷ • ' 

1.43 - 0.58&1¢ - 1.43&2¢ - 0.03&~ + -. • 
0.88 0.48~1¢ a t- 8.83t~2¢ ÷ 0.01&G ÷ ' 

&H 2 
1.08 -- 0.03&1¢ ÷ 0.10&2¢ -- 0.07&~ + • • • 
2.51 0.04~1¢ -- 1.68&24, 0.12tia + ' 

0.40 ÷ 0 . 0 1 & 1 4 ,  - -  0 . 4 5 & 2 ¢  - -  0 . 1 0 & G  ÷ .  • - ' 

f 4.91 - 0.001t~l¢ - 0.03&2~ - 0.46&~ ÷ • • • 
l 8.30 ÷ 0.01&l¢ ÷ 1.72&2¢ - 0.36&a ÷ • ' 

&G 2 
5.59 ÷ 0.02&14, -- 0.04&24, -- 1.33&~ q- • - - 
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, for { B  A (21) 

Note that &GY is in the same order of  magnitude as 
& 3 3  for both solutions and the masses of  the second 
and third fermion generations are approximately pro- 
portional to ~ and v / - ~ ,  respectively. Therefore, 
we must require that 

U D ~ U G D  a n d  Vu ~ UGU (22) 

to satisfy the observed fermion mass hierarchy, where 
VEVs are defined in Eq. (5).  Consequently, we will 
neglect in the following numerical analysis the contri- 
butions of  rod and you to the top and bottom quark 
and tau masses (and also to Mz).  

4. Results and discussions 

Until now we have assumed that supersymme- 
try is unbroken. But we would like to recall that 
the RGI relations (18) and (21) we have obtained 
above remain unaffected by dimensional parameters 
in mass-independent renormalization schemes such 
as the minimal subtraction (MS) scheme. There- 
fore, those RGI relations have still their validity if 
supersymmetry breaking is soft. 

The next step is to express the RGI relations (18) 
and (21) in terms of  observable parameters. To this 
end, we apply the well-known renormalization group 
technique and regard the RGI relations as the boundary 
conditions holding at the unification scale M o o t  in 
addition to the group theoretic one 0'33 = o~t ---- o~ b = 

0"T" 

Just below the unification scale we would like to 
obtain the standard SU(3)c × SU(2)L X U( 1 ) r  model 
while requiring that all the superpartners are decou- 
pied below the supersymmetry breaking scale MsusY. 
Then the standard model should be spontaneously bro- 
ken down to SU(3)c x U(1)eM due to VEVs (5).  
We assume that the low energy theory which satisfies 
the requirement above can be obtained by arranging 
soft supersymmetry breaking terms and the mass pa- 
rameters in the superpotential (2) in an appropriate 
fashion. 

One of  the large theoretical uncertainties after all the 
above is done is the arbitrariness of  the superpartner 
masses. To simplify our numerical analysis we would 
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Table 1 
The predictions for different boundary conditions, where we have used: Mr = 138 GeV, a~m 1 (Mz) = 127.9 and sin Ow (Mz) = 0.2303 

Msosr [TeV] ~33(Matrr) ots(Mz) ot(MGuT) tan~ Matrr [GeV] Mr, [GeV] Mt [GeV] 

1.6 4.0 0.119 0.046 63.0 0.9 x 1015 5.01 197.8 
1.6 3.2 0.119 0.046 63.0 0.9 x 10 Is 4.97 196.1 
1.6 2.8 0.119 0.046 63.0 0.9 x l0 ts 4.95 195.1 

Table 2 
The predictions for different Msvsr with fixed t~33 

Msusr [TeV] t~33(Motrr) ots(Mz) ot(MGoT) tanfl MGUT [GeV] Mb [GeV] Mt [GeV] 

1.3 3.2 0.117 0.046 63.4 0.8 x 10 Is 4.82 194.5 
3.4 3.2 0.110 0.044 63.0 0.5 x l0 ts 4.69 193.6 
4.4 3.2 0.112 0.044 64.2 0.6 x l0 ts 4.74 195.3 

250 

240 

230 

220  

210 

o 

o 

o 

<> 

oh 

o 

°° o o o 

o o o O 
o 

200 o o ~ o 0 o o 0 
o o o • 

o o o o o o 
o 

190 I I I I I I I I I 

[3 200 400 600 800 I000 1200 1400 1600 1800 
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Fig. 1. The Msusr dependence of the Mt prediction for t~33(Matrr ) = 3.2. 

2000 

like to assume a unique threshold Msvsr for all the 
superpartners. Another one is the number of  the light 
Higgs particles that are contained in hiRiL and also 
in G~ iRiL" The number of  the Higgses lighter than 
Msvsr (which we denote by Nn) namely could vary 
from one to four while the number of  those to be 
taken into account above Msvsr is fixed at four. After 
these remarks, we examine numerically the evolution 
of  the gauge and Yukawa couplings including the two- 

loop effects, according to their renormalization group 
equations. 

In Table 1 we present the low energy parameters of  
the present model for three distinct boundary condi- 
tions; t~33(MGuT ) = 4.0 ,3.2 and 2.8 with NH = 1. 
All the dimensionless parameters (except tan fl) are 
defined in the MS scheme, and all the masses (ex- 
cept for Motrr) are pole masses. Note that the correc- 
tions to sin 2 Ow(Mz) that come from a large Mr, i.e., 
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sin 2 O w ( M z )  = 0 . 2 3 2 4 -  10 -7  [ 1 3 8 2 -  ( M t / G e V ) 2 ] ,  

are taken into account  above and below. We see f rom 

Table 1 that the low energy predict ions are insensi t ive 

against  the value  o f  tz33. The  low energy predict ions  

for var ious Msusr with fixed ~33 are shown in Table 

2. Excep t  for  Msusr all the quanti t ies  in the tables are 

predicted;  the range o f  ~33 is also g iven by the model  

( see  Eq.  ( 2 1 ) ) .  In Fig.  1 we  plot  Mt versus Msusr. 

We see f rom the graph that there are no realistic so- 

lut ions for low values o f  Msusr ( ~  M z  - 300 G e V )  

and the present  mode l  rather prefers large values o f  

Msusr ( >  400 G e V ) .  
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