
EI,qEVIER 

12 January 1995 

Physics Letters B 342 (1995) 163-170 

PHYSICS LETTERS B 

Low energy thresholds and the scalar mass spectrum in minimal 
supersymmetry 

G.K.  Leon ta r i s  a,1, N.D.  Tracas  h 
a CERN, Theory Division, 121i Geneva 23, Switzerland 

b Physics Department, National Technical University, GR-157 80 Zografou, Athens, Greece 

Received 25 August 1994; revised manuscript received 1 November 1994 
Editor: R. Gatto 

Abstract 

We discuss low energy threshold effects and calculate the spatticle masses in the context of the Minimal Supersymmetric 
Standard Model. We pay particular attention to the top squark and the Higgs mass parameters, and calculate the top Yukawa 
corrections, taking into account the successive decoupling of each particle at its threshold. We discuss the phenomenological 
implications in the context of the radiative symmetry breaking scenario. 

The Minimal Supersymmetric Standard Model 2 
(MSSM) has by now been accepted as the most nat- 
ural extension of the Standard Model of Strong and 
Electroweak Interactions. As the recent experiments 
[ 2] approach closer to the energies where some of the 
superpartners seems to acquire their masses, it is very 
important to obtain higher precision in the theoretical 
predictions of the scalar mass parameters, Yukawa 
coupling corrections, threshold effects, etc. In recent 
analyses [4-8] ,  it has been shown that the semi- 
analytic procedure in the calculations of the above 
quantities can offer the possibility of investigating 
reliably the above effects. Moreover, the advantage 
of analytic expressions for the low energy parameters 
is more than obvious: one can extract easily infor- 
mation about the role of the input parameters at the 
GUT scale (mo, ml/2, htc), since in the analytic pro- 

l Permanent address: Theoretical Physics Division, University of 
loannina, GR 451 10 Ioannina, Greece. 

2 For reviews see for example [ 1 ]. 

cedure the low energy measurable quantities can be 
expressed in terms of calculable functions of the for- 
mer with the boundary conditions incorporated into 
these expressions. Nevertheless, detailed theoretical 
predictions may be still pushed further by estimating 
higher order effects, threshold corrections, etc. 

In recent works it has been shown that the unifica- 
tion scenario [ 3] survives even when various uncer- 
tainties arising from several sources (GUT and low en- 
ergy SUSY thresholds, input values for coupling con- 
stants, experimental uncertainties, etc.) are taken into 
account [4,6,9,10]. For example, in Ref. [4], it has 
been shown that an effective low energy SUSY scale 
can be defined which, for a realistic mass spectrum 
can account for low energy threshold effects. More 
recently [ 11 ] a more accurate way to estimate the un- 
certainties of such effects, which may also take into 
account two-loop corrections, has been explored. 

Predictions of low energy parameters turn out to 
be very sensitive in all the above mentioned thresh- 
old effects. In estimating these effects, it has been 
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shown [ 12] that it is adequate to use the "step" ap- 
proximation in the definition of the beta function co- 
efficients. Thus the values of the weak mixing angle 
(sin 20w), the electromagnetic (aem) and the strong 
(a3) couplings, and other low energy parameters can 
be given by their one-loop formula with the addition of 
two small correction terms arising from two-loop and 
threshold effects in a semi-analytic procedure [4]. In 
calculating however the scalar masses themselves, one 
should be careful in particular for those affected from 
the top-Yukawa coupling hr. In this case due to the 
non-negligible contribution of ht, the evolution of m }- 
squark and ran2 mass parameters are determined by 
a coupled differential equation system. Thus in addi- 
tion to the successive changes of the gauge coefficients 
as the sparticles decouple, the boundary conditions at 
each sparticle's threshold should be treated carefully. 

In the present analysis, we wish to investigate the 
above effects in the context of the MSSM assuming 
that the gauge couplings unify in a simple non-abelian 
gauge group at an energy scale close to 1016 GeV. We 
find it useful to adopt a semi-analytic procedure and 
provide specific formulae for all the involved param- 
eters, and compare them with those of previous esti- 
mates where such effects were not taken into account. 

In particular the following issues will be discussed. 
We will start assuming that the radiative symmetry 
breaking (RSB) scenario [13] is an effective mech- 
anism operating in the usual sense at low energy, i.e. 
by driving one of the Higgs mass-squared parameters 
negative at energies close to mz. We are going to use 
one-loop corrections to the effective potential and es- 
timat~ the effects in the I /-* l -Parameter which plays an 
essential role. Next we calculate the exact contribu- 
tions of the trilinear parameter A and compare the re- 
sults with previous estimates where these corrections 
were not included. Finally, we are going to calculate 
the scalar masses for various choices of the initial val- 
ues mo, ml/2 taking into account the afore-mentioned 
threshold effects. 

Starting at the GUT scale with a particular gauge 
group, one chooses specific values for five independent 
parameters, namely mo, ml/2, Iz, A and B. In the sim- 
plest case, all the scalars have a universal 3 mass too. 
The masses evolve down to low energies where one 

3 For recent discussions where non-universal conditions at the 
GUT scale are assumed see [ 14]. 
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expects that one Higgs mass-squared parameter be- 
comes negative. This triggers the SU(2) x U( 1 ) sym- 
metry breaking. The calculation of the mass-squared 
parameters needed to check if this scenario is valid, 
requires the solution of the coupled differential R.G. 
equations obeyed by these parameters. 

In the case of the small tan/3 ,-, O(1) scenario 
(tan/3 is the ratio of the two v.e.v.'s), one may approx- 
imate the relevant differential equations as follows 

dm~L 1 (h 2 m2 m2 - 2 - ( tt2 + + A2) dt 87r 2 \ tL + m~R 

• C Q -2 M2"~ --  /- ~ i ,gi  i /  ( 1 )  
i=1 

dm~Rdt = ~ 1  (2h2 (m2n 2 + m2 L "~ m2tR + a2) 

3 

Z - -  Ci gi Mi ( 2 )  
i=1 

dm22 1 (3ht 2 m2 2 m 2 + a 2) 
m ( H2 -1- m?L + tR dt 8~ "2 

_ @~cHg2M2"~ 
/__,~l i t i /  (3) 

dm2nl = 1 ( ~  n 2) 
dt ~ - ci ~Mi (4) 

i=1 / 

3 
da 1 (6ht2a ~cAg~iMi ) (5) 
dt 8¢r 2 i=1 

where only the top quark Yukawa coupling ht has been 
kept. The coefficients ci are given by 

c? = { ~ , 3 , ~ } ,  c~ ={T3,0 , 1 6  ~}  

c~=  {~,3,0}, ca = t]~'[13 ~,~ ~j16]. 

while Mi's are the gaugino masses and t = In Q. 
The differential equation for Hi can be solved 

straightforwardly, since it is independent from the 
others. The remaining four differential equations de- 
fine a coupled system which depends strongly on the 
top Yukawa coupling. Making the identifications 

rnl L =- Fnl, m~ R = Fn2, mtf2 -= Fn3 
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the solution of the system is found to be 

m2 (t) = m20 + C3(t)m~/1 (6) 

Vn](t) = m g + Cn(t)m2/2 - n82m(t) - nS~(t) (7) 

A(t)  = q-l  (t) (Aa - ml/21a(t)) (8) 

where all the relevant functions are presented in the 
Appendix. 

The scale dependence of the Yukawa coupling ht (t) 
can be found by solving the RGE for that coupling 

d"T = W 6h2 - Z ci ht, 
i=1 

where ci { 13 !~} = 73,3, (9) 

with the well known solution 

ht( t) = htaYu( t)q-l/2( t) ( lo )  

In all previous equations, the subscript G denotes the 
corresponding value at the GUT scale. 

There are four arbitrary parameters entering the 
above formulae, namely m0, ml/2, AG and ht~. The 
first three of them, as was already pointed out, are 
the soft input mass parameters at the unification scale 
MG. Since the above solutions enter the minimization 
of the Higgs potential V(H1, H2), their range can be 
phenomenologically constrained by the requirement 
of generating a stable minimum for this potential. Of 
course, a crucial role is played also by the fourth pa- 
rameter, htG, which should be large enough to drive the 
H2-Higgs mass-squared parameter negative and give 
a phenomenologically acceptable vacuum. 

Experimental evidence [15] as well as theoretical 
expectations [ 16] treating the Yukawa couplings as 
dynamical variables, indicate that the top mass re- 
quires a large top-Yukawa coupling, close to its in- 
frared fixed point, i.e. (rnt/sin 3) ~ 190 GeV. There- 
fore, since only the ratio mt/sin 3 enters in the rele- 
vant running scalar mass parameters, one may safely 
conclude that in the fixed point solution for the top- 
mass, their values depend mainly on the initial values 
mo and ml/2. The above argument may be more trans- 
parent if one writes the above mass-formulae in the 
limit of the infrared fixed point of hr. One then ob- 
tains [8] 
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n n J(t) 
rh2(t) = ( 1 -  -~)m 2 + [Cn(t) 61( t ) ]  m~/2 

(11) 

The contribution of the trilinear parameter A intro- 
duces one more input parameter at the GUT scale, but 
its role is less significant as long as A6 is of the order 
of mo (as expected). Indeed, by writing AG = A0m0, 
after some algebraic manipulations one can show that 
8~ is written as follows 

t 

1 f 82A(t) = ~ q(f l)d(A~) 

ta 

t 

1 f q ( f l )  h2tt ~ - ~ A 2 ( t ' ) d t  ' (12) 
q(t) 

ta 

Expanding A2(t), using Eq. (8), we write formally 

6 2  , ,2 ~ 2  2 2 2 2 = Oal,aOm o + 6a2Aomoml/2 + 6a3ml/2 (13) 

where 

1 1 ( 1  ) 
621(t) = 6q(t)  q - ~ -  1 (14) 

1 1 ( q - - ~ I a ( t ) - - T a ( t ) )  (15) 822(0= 6q(t)  

1 1 ( }.12(t)_2ya(t)la(t ) 623 ( t ) = - -~ q( t----S \ q( t ) 

+ 21~ ( t ) )  (16) 

t 

1'a( t) = f q( t')Ca( t')~,a( t')dt' (17) 
ta 

3 cA (ozi(t) 1) (18) 
yA(t) = Ct(t ' )dt '  = ~_, ffi " "~i~ 

i=1 tG 

The coefficients 8A, depend on simple integrals of 
scale dependent parameters. Evaluation of the relevant 
integrals give the followingresults (for mt ~ 175 GeV 
and SUSY breaking Ms = (500 - 1500) GeV) 

62 =0.005A~m~ - O.020Aomoml/2 

+ (0.146 - 0.155)m~/2 (19) 
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which add too small corrections to the solutions where 
A was ignored. Moreover, these corrections become 
even smaller [5,7] as mt approaches its infrared fixed 
point value. 

In the above equation, the simplified assumption 
was made that all scalar masses decouple at the same 
scale, namely Ms. In the running of the RGE's it is as- 
sumed that there is a great "desert" between the GUT 
and the weak scale while a low energy SUSY scale Ms 
is assumed so that for energies lower than Ms one uses 
the Standard Model beta function and ci coefficients. 
However, as has been already pointed out, a more care- 
ful treatment should also take into account threshold 
effects due to the successive decoupling of these scalar 
masses from the spectrum at different scales. In the 
semi-analytic approach of Ref. [4] an effective scale 

eft M s was assumed which can be roughly estimated to 
be 
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bl 4n =3 g -~- ~ nsM + 20f4 + ~OH2 

28 

~, a3(m~) I/zl ~ ½1/LI (20) 

to account for the SUSY scalar mass effects. The 
parameter can also be given in terms of known param- 
eters by solving the minimization conditions of the 
neutral Higgs potential. Taking also into account one- 
loop contributions to the superpotential, we may ob- 
tain the following approximate formula for I/xl [ 18] 

I~1 = V/(~o 2 + ~ 2 ) / ( 1  _ a2)  (21) 

In deriving the above, the approximation ln m2 

Inm 2 ~ ln(m 2) has been used (m~, and m 2, are the 
eigenvalues of the stop mass matrixi, lu-ol is the tree 
level contribution while r/ and II are defined in the 
Appendix. For tanfl ~> 1.1, I/.t I is less than 1.5 GeV. 
One therefore, for sensible values of the parameter 
I~1 <- (1 - 2) TeW, could define a reasonable scale 

eft M s ; below that scale the beta function coefficients 
should turn to their non-supersymmetric form. 

The precise effects, however, are found by the suc- 
cessive change of all the beta function dependent co- 
efficients at each particle's threshold. Assuming only 
one-loop corrections, in the Minimal Supersymmetry 
with three families and two Higgses, one can write the 
b~s in the following form [4,17,19] 

3 

.q_ 1 ( OuLi -}- OdL i ) + "30uRi "}- 3 dRi 

+ ¼(O~L, + 0~,.,) + OoR,] (22) 

b2 = - ~ + 4 n l nSM 4 3 g"~ g H "-~'3O~V 
3 

+320-H + kOH2 + g Z (O"L, OdL, + ½0eL, O~L~ ) '  (23) 
i=1 

b3 = -11 + 4ng 
3 

+ 2e~, + ~ ~ [o~L, + o.R, + oaL, + oaR, ] (24) 
i 

In the above formulae for bi's, [I stands for the 
higgsino contribution W for the winos, etc., while for 

2 any particle's threshold with mass ms,, we have de- 
noted Os, -= O(Q 2 - my,). 

In our semi-analytic approach, when evolving the 
gauge and Yukawa couplings as well as the scalar mass 
parameters down to low energies, we find it sufficient 
to define the following bi-changing scales: We assume 
a common scale QL for the decoupling of uL~.2, rill.2 
sparticles, while we assume that they are not very dif- 
ferent from their mass eigenstates. The next scale is 
the one defined as an average scale QR of their right- 
handed partners. In the case of the universal scalar 
masses at the GUT scale, however, these two scales 
could not differ substantially unless ml/2 is very large 
(/> 1 TeV). Therefore, the thresholds arising between 
these two scales are not expected to have a significant 
effect. 

We define as a third scale (subsequently denoted 
with tl = In rhl) where we change the bi and ci co- 
efficients, the scale where the tL-squark acquires its 
mass. As it is expected, due to the large negative con- 
tributions from the top-quark Yukawa coupling, this 
mass should be substantially smaller than those of 
the L, R squarks of the first two generations. Finally, 
we define two more new scales above the weak and 
top mass scale, namely the scale were the tR-squark 
gets its mass (subsequently denoted with t2 = In ~2) 
and an average scale for all other contributions (slep- 
tons etc.). The hierarchy of these two latter scales de- 
pends strongly on the point of the parameters space 
(mo, ml/2) one has chosen. A simple inspection of the 
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obtained evolution equations for their masses shows 
that slepton masses are larger than m~R for mo val- 
ues much bigger than ml/2 while the opposite is true 
when ml/2 > mo. Of course all the above scales 
should be carefully incorporated in the analytic for- 
mulae presented above. All the relevant integrals (see 
Appendix) should split into sums over the various 
scales. 

Our next step is the determination of the mTL and 
mr, mass parameters which also define the afore- 
mentioned scales where the beta function coefficients 
should also change. For a given (mo, ml/2) pair, one 
can compute the left and right squark masses of the 
first two generations. The negative corrections 62 (tl) 
may then determine the mass of the ?L-squark. Below 
this scale, top-Yukawa negative corrections should 
not include contributions from diagrams involving TL. 
Therefore in the range defined by mTL /> Q ) m~, 
(i.e. for the range (h ,  t2 ) ) the evolution equations for 
m 2- = rh22 and m22 - rh32 can be written as follows 

tR 

th 2 = m2(q) +C2(tl,t)Tn2/2 - 2 6 ( t 1 , t )  (25) 

rn 2 = m2(q)  + C3(tl, t)~2/2 - 36(q,  t) (26) 

where #t2n(tl) are the mass parameters calculated 
at the scale tl = ln(mTL). Top-Yukawa corrections 
6(t l ,  t) contain now the sum only of tR-squark and 
the/-/2 Higgs mass parameters, and possibly (depend- 
ing on the specific values of the (m0, ml/2) pair) the 
A (t) trilinear parameter, 

t 

6 ( q , t )  j ~ mn(t } 
x n - 2  t l  

+ 0 ( / -  ta )AE( t t ) )d t  t (27) 

where ta defines the logarithm of the scale at which 
the trilinear mass parameter stops running. The above 
corrections can be calculated easily, by solving (25), 
(26). The result is 

l 

t~(tl, t) = --q-6 (tl ,  t) q6 (tl, t ')uo(t') dt t 

t l  

(28) 

where 

uo(t) = 2rag + [C2(tl, t) + C3(tl, t)] m2/2 

- 5162(h) - 6~(t l)]  (29) 

After the decoupling from the massless spectrum of 
the tR-squark at the scale t2 = ln(m~R), one ends up 
with only the Higgs mass parameter whose evolution 
from t2 until the transmutation scale is given by the 
formula 

t 

1 [ h~(t')., 
- 3 q-~ (t2, t) . I  qtfraclZ(t2, t ')vo(t') ~ a t  

t2 

(30) 

where 

vo(t) = th~(t2) + C3(t2, t)m2/2 (31) 

In Tables 1 and 2 we present the calculated scalar 
mass spectrum for two initial values of the hto (case 
2, very close to its infrared fixed point value), and 
representative choices of mo, ml/2 pairs. The last col- 
umn of these tables shows the prediction for as low 
energy parameter, for each sparticle spectrum. In ob- 
taining our results, we have worked in the low tan fl 
regime while we have allowed 10% deviations from 
the GUT relation hb (t6) = hr (t6). On the other hand, 
the obtained values for sin 20w and mt are consistent 
with the relation sin2Ow(mz) = 0 .2324-  10 -7 x 
{ (m,/GeV) 2 - 1432 } d: 0.0003. 

As it can be inferred from the tables, the tL,R- 
squarks and the average sparticle spectrum is lighter 
for larger top couplings and top mass. When mo is rel- 
atively small, slepton masses are the lighter sparticles 
while mrR becomes light when ml/2 << mo. Of course, 
right sleptons (not shown in the tables) have slightly 
smaller masses than their left partners. 

Now let us discuss the effects of the decoupling of 
the heavier quarks in the rest of the sparticle spectrum. 
The successive decoupling of each scalar mass term 
from the relevant differential equation, has modified 
the negative corrections induced by the top-coupling 
below the tL-squark mass. In the low tan fl scenario 
this treatment has a direct effect only on the tR-squark 
and the m22 mass parameters. In particular, in our 
semi-analytic treatment we observe that the t'R mass 
has increased by ( 1 - 5) %,  relative to a naive treat- 
ment of the boundary conditions at each particle's 
threshold [ 5 ], depending on the specific choice of the 
(mo, ml/2) point. Such corrections are therefore of the 
same order but with the opposite sign of the A-trilinear 
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Table 1 
The supersymmetric sparticle spectrum together with the corre- 
sponding as prediction in the low tan/3 scenario (tan/3 ,~ 1.5) 
and mt <~ 165 GeV, fixing sin 20w around its central value ,-~ .232 
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Table 2 
The supersymmetric sparticle spectrum together with the corre- 
sponding as prediction for htc Yukawa coupling close to its non- 
perturbative value, and mt ~ 170 GeV. Again sin 20w has been 

mo roll 2 mQL mQR tnTL tn?~ mf as 

338 423 950 915 853 697 450 .118 
250 359 800 770 722 596 357 .117 
255 306 700 675 627 513 335 .116 
110 324 700 672 640 539 256 .115 
182 189 450 435 400 325 225 .114 
322 100 400 395 316 192 340 .114 
311 100 380 375 301 187 319 .114 
280 95 350 345 280 178 288 .114 
246 113 350 343 290 204 340 .114 

fixed to its central value ,-~ .232 

mo ml/2 tnQL mt2R mfL m~R rn i as 

251 359 800 770 718 588 356 .117 
256 306 700 675 624 505 335 .116 
488 236 700 685 576 395 515 .118 
638 135 700 695 525 241 645 .119 

73 277 600 577 547 451 450 .114 
53 254 551 529 503 424 185 .114 

182 188 450 435 399 320 226 .116 
322 102 400 395 313 180 340 .114 

800 

600 

40( 

9-0 

o ~ u  

Fig. 1. Surfaces of mf and mrR showing their variation as a function 

of m0 and mr~2. 

term corrections given by the formula (8). The max- 
imal change occurs when the top Yukawa coupling 
gets closer to its fixed point value (Table 2). The ef- 
fect however is still small, since the modified equation 
(25) runs only on a small region, namely between 
the thtL and thtR scales. A larger effect is found in the 
mH2 running mass whenever the transmutation scale 
is substantially different from rhtL. 

Finally, as it has been pointed out above, the ?R mass 
is smaller than the slepton masses in specific regions of 
the (too, ml/2) parameter space. A qualitative picture 
of the m~R and m? variation in terms of m0 and ml/2 is 
given in the figure. 

We can see that there is a considerable fraction of 
the parameter space (m0, ml/2) which allows solu- 

tions of relatively small m~. For example, in the last 
entry of Table 2, m~R is of the order of the top-quark 
mass. This would imply that, after the diagonalisa- 
tion of the squark mass matrix, the light physical mass 
eigenstate mTt could be as small as 150 GeV. This 
gives hope that future experiments may discover su- 
persymmetric signatures. 

To summarize our results, we have used a semi- 
analytic approach to calculate the supersymmetric 
spectrum in the small tan/3 regime, taking into ac- 
count low energy threshold effects. We have given 
special emphasis to top squark and Higgs mass param- 
eter calculation, which in the presence of a heavy top 
quark receive large negative contributions. We have 
examined in detail the effects of the "decoupling" of 
the heavier sparticles from the renormalization group 
equations of the lighter ones, and we have found that 
our treatment of the boundary conditions, results in 
an increase (1 - 5 ) %  of the t'R mass parameter, com- 
pared to a naive treatment. Corrections on the scalar 
masses from the trilinear parameter A are treated also 
analytically and found to be of the same order for 
moderate initial values (Ac ~ -x/~mo) Furthermore, 
we have examined general properties of the sparticle 
spectrum and observed interesting correlations. Thus, 
large values of mo compared to that of m1/2 imply 
that rn~R is lighter than the left slepton masses, while 
the opposite is true for rnl/2 > mo. Moreover, in the 
small tan/3 regime that we are examining here, for a 
considerable fraction of the (rot, ml/2) space, a light 
t-squark (~., 150 GeV) can be obtained, which might 
be found in accessible energies by experiment in the 



G.K. Leontaris, N.D. Tracas / Physics Letters B 342 (1995) 163-170 

near future. 

We wish to thank C. Kounnas for helpful discus- 
sions. The work of N.D.T is partially supported by a 
C.E.C. Science program SC1-CT91-0729. 

A~( t )  = 7•A2(t')dt ', 

t 
tG 

A p p e n d i x  

The scale dependent coefficients in the scalar mass 
solutions (6,7,8) are given by the following general 
formula 

3 

C n ( t l ' t )  = Z cn (OZ2i(t) - ~/2(tl)) 
i=1 2bi°flo 

n-- 1,2,3 (32) 

with the identifications Cl - CQ, Cz - Co and C3 - 
Co 2. We define C~ (t)  - Cn ( to, t). 

The gauge dependent functions yu( t ) ,  and q(t)  
which arise from the top-Yukawa differential equation 
have the form 

~ ( Oti(tn) ) c7/2b~ 
yu( t )  = (33) 

.= \Ot i ( tn- l )  

t 

..3ht2° ~3ht2c J f  q( t l , t )  = 1 + -~-~--£~21(t) = 1 - y2 ( tl ) dtl 

tl 
(34) 

where the index n runs over all the intermediate scales. 
Again we define q( t) =- q( to, t). 

The negative Yukawa contributions of Eq. (7) are 
found to be [5] 

82re(t) = ( m t o p ( t )  ~2(3m~i( t )  +m21/2J(t) ) 
\ 2¢rvyu sin/3 / 

(35) 

3 ( m t o p ( t )  '~2E2 a (36) 
82A(t) = a2a(t) -- 2 \qrvyus in /3 /  

where v = 246 GeV, while the quantities I, J, la are 
functions of scale dependent integrals given by 

t 

l ( t )  = - f 
tc 

3 t 

J( t )  = - Z f ~4(t')c'(tl)at' (37) 
i=l tc 
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e2A(t) = f v~(t')a2A(t')at ' 
t 

(38) 

t 

IA(t)  = f q(t')Ca(t')dt' 
ta 

t 
3 I" Ot2tt t~ 

= 12- ZcAexic / q ( t ' ) ~ d t '  
2~r i=l J OZia 

tG 

(39) 

The minimization conditions of the tree-level neu- 
tral Higgs potential give the following solution for the 
[/zoJ-parameter [8] 

1 r k 2 + 2 2 , k2 J .~ 2 . - 2  11/2 
--~'tk-'~--y- l m ° + [ - ~  ~- 1 1 ' ) m l / 2 - m z *  

(40) 

with k = tan/3. 
The parameters r/, 1) entering the one-loop formula 

are given by 

,72-- '~2 {[(¼ - p~) ( M L  + M ~ , )  
87r cos 2 8w 

+ (M2L _ M2R) (1 _ ]s in 2 Ow) -- p2A2] 

× (ln - 1) 

p2 } k 2 + 1 
- 2 m  2(lnp 2 - 1 ) ~ -  k 2 _ l  ( 4 1 )  

J 

~'~2 O1~2 ~ jo2(k2-~ 1 ) /  (ln j[~2 1 ) 
= 8¢r cos 20w [ 2 (k 2 --  1 ) 

(42) 

with p = mt /Mz ,  p = ( m M M z  and/1.0 the tree level 
parameter defined in (40). Finally the t-squark mass- 
combinations M~L 4- M]R are given by 

M L  + l = ~mo + (C1 + C2 - )m~l 2 + 2m2t 

1 2 + g mz cos 2fl 

M~z. _ M] R 1 2 J 2 = ~m o + (Cl -- C2 + -~-i)mll2 
4 2 5M2 + ( ~ M w - g  zjCOS2/3 
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