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We m,.estlsate the mterplay between GUT. SUSY and top threshold effects m the context of the stung-derived model based on 
SL:( 4 ) × St ; (  2 It x SU( 2 ) , .  The St :SY and top thresholds demand a top mass somewhat high I m, > 141 t G¢V ) and a G t  ;T scale 

- I0 '  s GcV Th,s t.~ Iov, er than the GUT  scale demanded m the model, v, here thc~¢ thresholds are not taken into account. 

!. Introduction 

The success of  the Standard Model (SM) is be- 
yond question, it prox ides understanding of  the strong 
and the electroweak interactions and it has suc- 
ceeded m passmg all expertmcntal tests so far (within 
the experimental and theoretscal uncertainties). 
Ncx ertheless, the plethora of  free parameters, in con- 
junctton with the question of  unification at high 
energies, remains an unsolved problem. As far as the 
second issue is concerned, supers~ mmetric (St !SY) 
models show, m general, a better attitude, providing 
coupling constant unification at st'ales of  the order of  
10 tn- '"  GeV, whde at the same time reproducing the 
experimental values of  the Iow..energ.~ parameters. 

The non-observation of  SUSY parttcles forces us 
to admit the existence of  an energy region, above ,',I,e. 
where the (non-SUSY) SM is effective. The present 
accuracy of  measuring the low-energy parameters 
( a -~ .  sin20,, and a~) permits us to check the limits 
of  successfulness of  the SUSY models through the 
threshold effects [ 1-5 ] of  the SUSY parltcles to the 
running of  the coupling constants. Ncvertheh,-ss. as 
pointed out in ref. [6] ,  GUT-dependent  threshold 
corrections at the unification scale could be tmpor- 
tam. Therefore. the presence of  a specific GUT  model, 
or an estimate of  these threshold corrections, make 
our results, although model-dependent,  safer. 

In thts letter, after a quick overview of  the thresh- 
old correcttons, we concentrate on a successful Grand 
Untried model, namely the one based on the SU(4 ) × 
S U ( 2 ) t × S t ~ ( 2 ) R  symmetry and check its ability to 
reproduce the low-energy parameters, when GUT, 
SUSY and top threshold effects are taken into 
account. 

2. l-he threshold corrections 

The Renormalization Group Equations (RGEs)  
govern the running of  the gauge couplings t h r o u g h  the 
corresponding fl-functions of  the groups on which our 
t h e o ~  is based. These//-functions are determined by 
the light-parttcle content of  the model. I fa t  some en- 
erg) scale our symmetry breaks to a smaller one, some 
of  the parltcles of  the mittal symmetry eventually be- 
come massive and do not contribute to the ,8-rune, 
tion below that scale. The threshold corrections take 
into account the contribution o f  these massive states 
to the running of  the gauge couplings, since the} could 
appear as virtual particles even below the symmetry- 
breaking scale. The effect is the same as if we had 
subtracted each particle contribution to the ~func-  
t ion(s)  at the energy scale that is equal to its mass. 
Following the formahsm of refs. [ 1.2 ], in the vicinity 
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of  the s.,,mmetr,s-breaklng scale, the coupling con- 
stants of  the unbroken pro and of  the broken og,, re- 
gions are related by 

I 1 ! 
11 ~((~¢.~/fl ) = _ _  - -  4 r , . ) . s , (  ,U ) . 

m ~ (/~ ) 0 ~  (/~ ) O~G (/~ ) 

It is easy to see that these correcttons arc of  the same 
order with the two-loop solution of  the RGEs for the 
gauge couplings. The " 'matching" function ). is given 
by the general formula [ 3,5.7 ] 

; .( /~)=2 ~ h, In "t/---z' + C .  
, 

where b, is the contribution to the ,B-function of  the 
panicle t with mass M,. The constant term depends 
on the renormalization scheme. In the DR scheme 
( ' =  0 [ 81. while in the MS scheme it ts given b~ 

- 

~here h', is the contribution to the/~ function of  the 
gauge bosons (plus corresponding ghosts and would 
be Goldstone bosons )acqutring mass. "l-hts term ap- 
pears in the I~IS scheme from the product of  the I/~ 
term of the momentum integral ~ith the ~ term of the 
;,,-matrix algebra• The latter is missing tn the i-)R 
scheme. The connection between the tv, o scheme's 
comcs through the conversion factor 

1 i C _ . ( G  ) 

~tSff, ot .,as 1 2 n  

where C , (G  ) is the quadratic Casimir operator of  the 
group G. By changing from one scheme to the other 
and back, the difference of  the two conversion fac- 
tors gives the constant term of  the MS scheme. 

An equivalent formula for the matching function 
is [2.31 

+ ( 'FTr ITS,-In M--Z11' J + C" Tr [ ,~sln "t'l-'~sl) " . i t  j /  

where V. F, and S stand for vector boson, fermion 
and scalar, while t is the group generator in the ap- 
propriate representation. The index t runs over the 
panicles that become massive. The factor for the fer- 
talons takes the value Cr = 8 for Dirac and G. = 4 for 
two-component spmors or Majorana fermions (the 

latter is applicable when the L and R components  are 
treated separately). For the scalars the values are 
Cs = 1 for complex representations and Cs = 2 for real 
ones. For a SUSY theory the above formula takes the 
form 

).(it) = 4--~n, (Tr[t~v ] - 13 Tr [t~v In --fjMvq 

where V and C stand for the vector and chiral multi- 
piers. Note the unchanged constant term that comes 
from the spin-I momentum integral. As mentioned 
before, in the DR scheme this constant term is 
missing. 

3. Threshold effects in the SL'(4)X SU(2h. × SU(2)a 
m o d e l  

We are going to investigate the interplay between 
GUT, top and supers.~ mmetry threshold effects in a 
string-derived model based on S U ( 4 ) × S U ( 2 ) t . X  
SU (2) r .  The symmetD group, derived from the free 
fermionic formulation [9],  is S U ( 4 ) × O ( 4 ) ×  
U( 1 )'iX ' ,SU(8) x U (  I ) '  } l l , ~ , : r ,  [ 10]. For more in- 
formation on the spectrum and the properties of  the 
model see refs. [ 10,1 1 ]. We quickly review the dif- 
ferent scales appearing in the running of  the RGEs: 
- MI,. where or4 = o f 2 l .  = ¢X2R ~ Ut,'. 
- M^. where one of  the U ( I )'s, which is anomalous. 
breaks and where a number of  fields acquire masses 
through some singlet fields• Between Mu and M^ we 
assume the full string content of  the model. Both Mu 
and M^ can be fairly well approximated by the sim- 
ple expressions 

Mu ~ 1.7~,."4n--~tl × 10 ~ GeV,  

M^ - 7.8.v'~-nnoq~ x 10 t 7 GeV , 

- Mx. where the group SU (4) × SU (2)t. X SU (2)R 
breaks down to the MSSM and the relations among 
the couplings are 

! 1 1 
ot~=ot , ,  ot.=or.. L, - + - - .  ( I )  

and finall.~ 
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- M., where only the Standard Model content is pres- 
ent. Between Mx and 3 I  t s o m e  exotic remnants  could 
su~'ive.  

We give the breaking pattern at Mx for the differ- 
ent multiplets ( the quantum numbers  on the left cor- 
respond to SU (4)  × SU ( 2 )t x SU ( 2 ) ~t, while those 
on the right correspond to SU ( 3 ) × SU ( 2 ) t. × U ( l ) ): 

( - )  ( - )  I - I  

n,t( 4 , ] , 2 ) - . n ~ , (  3.  l, __. i )+n,(  3 .  ], " J )  

+ n , , ( l . I . _ + l ) + n ~ ( ] , ] , O ) .  
( - )  ( - )  

n . , ( 4 . 1 . 1 ) - , n ' ~ (  3 . 1 .  + ~ ) + n ' ( i . I .  = ! ) .  

n:2(I .  2 . 2 )  --,n;( I. 2. _+½). 

nt.(l .  2. I )-- ,n[(  I. 2. O) . 

n ~ ( l . l . 2 ) - , n ' ( I . I . _ + ! ) .  
( - )  

n~,(6. I. 1 ) -,n~( 3 .  I. + i )  

The number of  generations is always 3. The full string 
content is 

n t = 3 .  nt = n R = 1 0 .  

n t , = n 2 2 = n l l = 2 / 1 4 = 4 .  

In a previous work [ 13 ] the threshold effects o f the  
fields becoming massive at Mx ~ere  taken into ac- 
count, assuming a degenerate mass of  the order of  3Ix. 
The MSSM was effective down to M/.  It was found 
that, for Mx in the region 3 X 10 j 5_ 10t~GeV. the low- 
energy parameters  stay within the exixr~mental lim- 
its for a wide range of particle content between 3,1~, 
and Mx and with a remnant  ( n ; = n ' = 2 )  between 
Mx and M,. 

We now turn to the SUSY thresholds. For com- 
pleteness we write dov, n the three matching func- 
tions corresponding to the groups SU ( 3 ). SU( 2 ) and 
El( I ): 

l ( 1 2 1 n l / ~ + 1 2 1 n ~ / ° - 3 ) ,  (2)  

I , ( . ~  Ma. in Mr , i . , (u )=  ,--z---. 9 I n -  + 8 I n  + 3  - -  
, : I~R p p p 

+ 4 In .ff__aau + in t.f,p - 2 ) .  (3) 

I ( ~ ,7 Mr Ma 
,,i, (.u) = 4---~n .,, \ :~In +3,- I n - -  + ~  I n - -  p /z 

.ttu ~) 
+ ] In  - - ~ - / ,  (4)  

where the subscripts 0, pP, ~ fl'" and/-7 stand for the 
squark, gluino, slepton, wino and higgsino, while !! 
stands for the heavy Hzggs doublet. In the above for- 
mulae, we have incorporated the constant term com- 
ing from the conversion from DR above the SUSY 
breaking scale, to MS, below that scale. 

For the masses of  the sparticles we shall assume a 
simplified version of the rnt.,., and mo scenario, where 
m~ .: is a universal gaugino mass and mo a universal 
scalar mass. The masses of  the gauginos, squarks and 
sleptons are given by the (one-loop) equations [ 12 ] 

a~(m s) a,(ma.) 
F ~ | i =  n'/I . ,  2 , F l ' i t l . ~ -  - -  F ? I I / 2  , 

O¢ x Of x 

and 

, ,~  = m~ + 7m~, :  . . ,~  = m o  + 0 .3rob , . .  

where we have assumed a common  squark mass and 
a common  slepton mass (and also that t a n / / =  
(P )  / ( v )  = I ). The coupling Otx is at the scale Mx. 

Finally the top threshold corrections to a j  and a -  
are given b~ 

,@n rn, 8 m, 6 ,op (~  i ) =  i n ._~ / '  d , , . n , (a - i )=  inMz 

As far as the correctzon to s t--s in:0, ,  is concerned. 
following ref. [ 5 ] we use the formula 

d'°V(s-') = 1.05× 1 0 - '  GeV-- '  (m ~-M~)  . 

The ( SUSY and top ) threshold-corrected low-energy 
parameters  are given by 

(5) 

Our aim is to find the allowed regions in the (m~, 
rap) space - where we have traded m~ ;: for m~ - which 
can lead to experimentally accepted values of  the low- 
energy parameters.  These regions will give us the cor- 
responding allowed masses for the sparticles. The 
strategy is the following: we run the RGE, including 
M× threshold effects (varying the ratio r=M/M×, 
where M is the degenerate mass of  the fields becom- 
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ing massive at .tlx ), and top threshold effects (for 
m , = 1 2 0 - 2 0 0  GeV) .  We keep SUSY ,B-functions 
down to M,,. This will give us the ranges of  the re- 
quired correcuons  to a -  t, s .~ and a~. at Mr. m order  
to have exper imental ly  allowed values at 3t,,. Finall)  
from the 6,h, of  the sparticles (and the heavy Higgs) 
we search for a region in the ( m v  too) space giving 
the required correct ions to all three parameters .  

In order  to isolate and concentrate  on the interplay 
among the three types of  threshold corrections (GUT,  
SUSY and top) .  we choose all G U T  parameters ,  ex- 
cept r, to be constant:  

a u  = 0 . 0 5 3 .  

.%f× = 10 '~ GeV . M, = 3 x 10'z G e V .  

~L  = fIR = 4 . lilt = 1'122 = rt4 = ~ ~6 = 2 , 

n i ~ = n ' = 2 ,  n ~ . = n l  = 0 .  

At this point  we should note that ( i )  ~e  have taken 
into account the fact that the three gauge couplings 
are no longer unified at .',Ix. However this amounts  
to a sizeable change only m ,n~: the coefficient of  
m~,,  varies between 7.0 and 8.5. In fig. 1 we plot 
contours of  constant  mass for ,no.  mr and ,n,v For  
the latter, we have plot ted the corresponding bands 
for the whole range of  the m~..., coef f ioent  men- 
t ioned above. ( ii ) The inclusion of  the SUSY and the 

top thresholds forces us to reduce . i f  x to somehow 

lower  values relat ive 1o the range ment ioned in ref. 

[ 13 ] .  ( t i i )  In all our  calculat ions we have taken 

rib, = ,nn = I O0 GeV. 

In fig. 2 we plot the allowed regions in the ( m~, rap) 

space for different r and m, values. The ranges of m# 

and mo were chosen so that sparticle masses stay be- 

low I TeV while they arc above their experimentally 

allowed values. Bcfore tD'ing to explain the tenden- 

cies we see m the figures, let us state some facts. With 

our definitions, eq. (5). 8'h'(a~). ~'h'(s-') and 

6,h,( a - ' ) arc positive. The conversion factors C.~ and 

('., arc too small to render the corresponding match- 

ing funcnons negative. This could only happen for 

vcD low (rn~. rap) values being outside our space. 

Also. when mlr or mr get smaller than Mz they de- 

couple from the matching functions. This means that, 

before the inclusion of the SUSY and top thresholds. 

a~ should stay below its maximum allowcd expert- 

mental value, while s-' and a- ' should stay above their 

lowest expcrimcntal values. Our GUT model has the 

tendency of giving high c~.~ values (this is the main 

reason for keeping n~ different from zero below Mr). 

Any change in the GUT parameters producing an in- 

crease m the c~ value, should lead to lower SUSY 

and top thresholds. Let us ow turn to the figures. For 

constant m,, the sparticle masses get smaller when r 

is increased (GUT thresholds increase with r). 
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F,g. 2. Allowed relPons m the ( m e, too) space for d,ffcrent ,,alues of r and for m, = 200 GeV ( a ). m, = 180 GeV ( b ) and m,= 160 GeV 

(c). 

Therefore, for each m,, we expect an allov, ed band m 
the • values. The limits on r are dictated by the al- 
lowed sparticle masses. This band becomes narrower 
as the top mass becomes smaller. For the specific 
choice of  the G U T  parameters we obtain the values 
shown in table 1. 

For rn,~ 140 GeV no allo~ed • region exists. Low- 
ering m, and increasing • could, in princtple, com- 
pensate the two effects. Remember,  however, that al- 
though there may exist regions rendering each low- 
energy parameter experimentally acceptable, these 
regions may not overlap. To show the complexity o f  

Tsblc I 

m, (GcV) r 

200 0.4--I 
180 0.4--.0.7 
160 0.4 

the situation, we present two cast's m fig. 3. In the 
first, overlapping of  the allowed regions exists while 
in the second it dots  not. 

Some comments  on the G U T  parameters are in or- 
der. When .',It ~anes between 10 u GeV and 10 ~'~ GeV, 
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Fig. 3. The rc81ons of the allowed SUSY thresholds for tv, o cases. (a) r=0.5, m,= 180 GeV: 8(tg~) ~0.014 (dotted line). 1.4x 1 0 - ~  
h(x:) ~ 2.6x 10 -3 (dashed hne) and 1 . 1 5 ~ J ( a  -~ )~ 1.35 (continuous hne). The overlappmg re ,  on ts shown tn ftl~ 2b. (b) r=0 5. 
m,= 160 GeV d(a~) ~0.014 (dotted hne). 6( ~2 ) ~ 2.1 × 10 -~ (dashed hne ) and I 38 a, 6(el ~ ) ~ 1.58 (continuous line). No overlap- 
p, ng regmn exists. 

the allowed regions do not change significantly, and 

our results have the same qual i ta t ive features. For  

.tl~ = Mx ,  or equivalently' with n'~ = n' = 0, the model  
cannot gtve acceptable low-energy results [13] .  

Therefore n~ = n '=  2 is the mmplest choice. Chang- 
ing • ',Ix or  a v  results in more compl ica ted  situations. 

If Mx a n d / o r  a t .  increase, the values of  the gauge 

couplings at .;Ix also increase. This causes a signifi- 

cant increase of  the squark masses (the coefficient of  
m~,., can be as large as 12 for M x =  10 ~6 GeV and 
a u  =0 .053) .  This fact considerably reduces the al- 

lowed (m~, too) space since we demand  m~ ~< 1 TeV. 

Furthermore.  as ment ioned above, the correspond-  

ing increase in a~ requires light sparticle masses. 

Hence, any increase in the values of  Mx a n d / o r  a t :  

forces the allowed, if any. ( ,n~, too) region to confine 

m the bottom-left  corner of  our graph. 
Finally, some crude upper  l imits  can be set on the 

spart~cle masses. F rom our analysts it ts obvious that 

these l imits are achieved for the lowest possible r and 
m, values 

me~<500GeV, m o ~ 8 0 0 G e V ,  - 'h:r+.<175GeV. 

No actual l imit can be set for the sleptons since for 
large values of  too. ,nr~ mL.. The threshold effects of  
the strong couphng a~ are responsible for these upper 
limits. 

4. Conclusions 

We have evaluated the GUT,  SUSY and top 
thresholds,  which should be taken into account when 
the two-loop RGEs are being run down to Mz, in the 
context of  the SU ( 4 ) × SU ( 2 )t. x SU ( 2 )R string-de- 
rived model. A general remark is that the G U T  scale 
should be -,- 10 '~ GeV. which is lower than the scale 
found in the case where no (SUSY and top)  thresh- 
olds were taken into account. The strong couphng a~. 
which tends to run high at Mz. seems to dictate the 
range of  the parameters  in order  to stay within exper- 
imental ly allowed regions. The threshold effects en- 
hance this si tuation.  This a~ dominance  can set up- 
per l imits  on the sparticle masses. The mass of  the 
top stays above 140 GeV for a wide range of  our 
parameters.  
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