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A common feature in most of the string derived models is the appearance of extra matter fields, beyond those needed for the 
standard model content, which usually become massive at various intermediate scales. In the present work we concentrate on the 
free fermionic string models based on the intermediate gauge symmetries SU (5) × U ( 1 ) and SU (4) X O (4) and investigate the 
effect on the low energy parameters due to the inclusion of threshold corrections introduced either by string massive states or 
states becoming massive close to the intermediate symmetry' breaking scale. 

1. Introduction 

Recent calculations have indicated that min imal  
supersymmetric (SUSY) grand unified theories 
(GUTs)  [ 1 ] are in agreement with the precision LEP 
data, if the unif icat ion scale is chosen close to 1016 
GeV [2]. On the contrary, non-supersymmetr ic  
GUTs  are not favoured from the recent precision 
measurements  of sin20w and a3. 

String theories on the other hand [ 3 ], predict that 
unif icat ion in most of the viable models takes place 
at a high scale, two orders of magnitude larger than 
the one predicted in minimal  supersymmetric GUTs. 
This scale is not lowered even if threshold correc- 
tions [4-9]  from string massive states are included. 
On the contrary, explicit calculations have shown that, 
in most of the cases, there is a slight increase of this 
scale. As a consequence the min imal  stringy standard 
model and certain G U T  models with min imal  con- 
tent are possibly ruled out. A viable solution to this 
problem would be the realization of the string unifi- 
cation scenario in models with intermediate "grand 
unif ied" scales having extra representations. In par- 
ticular, in k =  1 constructions this scenario may work 
when the standard model gauge group is obtained 

through the spontaneous breaking of an intermediate 

semi-simple group as in the case of the SU(5 ) X U (  1 ), 

S U ( 4 ) x S U ( 2 ) L X S U ( 2 ) R  or S U ( 3 ) x S U ( 3 ) L X  
S U ( 3 ) ,  string derived models [10-16] .  Certain 
models of this kind have been investigated the last 
year in order to determine the necessary ingredients 
for a consistent unification at the high scale of O( 10 j8 

GeV).  The usual method is to extrapolate the gauge 
couplings down to low energies and determine the 
particle content of the model with the requirement  
that the string predictions coincide with the high pre- 
cision measurements  at LEP. 

It has been shown [ 1 5 ] that under  certain assump- 
tions, the aforementioned models with the interme- 
diate semi-simple gauge groups may fulfil the above 
requirements.  A reliable calculation however, should 
necessarily be performed at the two-loop level. In that 
case, non-logarithmic corrections, arising from states 
with masses of the order Mx (the scale where the 
symmetry group breaks down ), should be taken into 
account [ 17 ]. In contrast with SUSY GUTs, in string 
derived models all Yukawa couplings are known; thus 
one can in principle calculate exactly the effects of 
the threshold corrections due to these massive states. 

Let My, Ms and M y  are the masses of the gauge 
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bosons, scalars and fermions that become massive 
near the scale Mx. Let tiv, tis and tie be the generators 
of the gauge group in the adjoint scalar and fermion 
representations respectively. Now we may integrate 
out these superheavy particles and work with an ef- 
fective gauge theory whose couplings are related with 
the original unified coupling constant. Thus for the 
case of a non-SUSY simple gauge group G, which 
breaks down at a scale Mx, one has 

1 1 )~ i (Mx)  
_ ( 1 )  

o~i (Mx) ozG (Mx) 127r ' 

where 2~ are the matching functions given by 

2i(Mx)=Tr{t2v }-21Tr{t~v log(~-~xVx) } 
2 Ms +Tr{tis log(~xx)} +8 Tr{t2F lOg(M~) } , (2) 

and i=  1, 2, 3 stands for the three gauge couplings of 
the standard model. This formula should be modi- 
fied properly in the case where the gauge group above 
the boundary is not simple as well as in the case of 
SUSY models. 

In most of the non-supersymmetric models one may 
conclude that the predictions for the low energy pa- 
rameters do not alter significantly, if one ignores 
threshold corrections (usually arising from heavy 
scalar particles) at Mx. On the contrary, in SUSY 
theories since there is an equal number of fermions 
and bosons the contribution to the matching func- 
tions ,~,i(Mx) becomes larger. In particular, if one 
considers string derived models, a large number of 
additional matter and Higgs fields always appears to- 
gether with the three families and the necessary Higgs; 
thus the threshold corrections become even more im- 
portant and should be included in the determination 
of sin20w and a3. As a matter of fact, in an ordinary 
GUT, such calculations would increase the uncer- 
tainties of the results since we do not know the pre- 
cise values of the masses of the superheavy particles 
we are integrating out. 

However, in a more fundamental theory, as in the 
case of strings, one could in principle evaluate more 
accurately the masses of the particles and other re- 
lated parameters, once the specific boundary condi- 
tions for the construction of the model are chosen. In 
conclusion, the calculation of the threshold correc- 

tions in string derived models would not lead to un- 
certainties but to more accurately determined low 
energy parameters. 

In this paper we calculate the threshold corrections 
at the various mass scales for two of the most suc- 
cessful string models constructed in the free fer- 
mionic formulation, namely the string model SU (4) 
XO(4)  [13] based on the gauge group S U ( 4 ) ×  
SU(2)L×SU(2)R [10] and the flipped SU(5) 
[ 16,18-20] based on the GUT model, proposed a 
long time ago [ 11 ]. In section 2 we start with the 
computation of string threshold corrections due to 
massive states at the unification scale Mu for the 
SU(4) × O ( 4 )  case. We subsequently calculate the 
matching functions at the SU (4) × SU (2) R breaking 
scale Mx and determine the gauge couplings of the 
effective field theory at Mx. In section 3 we examine 
the flipped SU (5) model, using the result for the ef- 
fective string scale derived elsewhere [6], to evolve 
the gauge couplings from Mu down to low energies 
and calculate the matching functions at the SU (5) 
breaking scale as before. Finally in section 4 we pres- 
ent our conclusions. 

2. The  S U ( 4 )  × 0 ( 4 )  model  

Before starting our calculation, let us review the 
basic features of the model. It is constructed within 
the free fermionic formulation [ 21 ] of the heterotic 
string using nine vectors of b.c. on the world sheet 
fermions, which lead to the symmetry group of SU (4) 
× 0 ( 4 )  × U(1)  4 X [ S U ( 8 )  X U(1)'lHiddcn [13]. 
The spectrum and other properties are analysed else- 
where [9,13,14]. In the most general case one may 
define the following scales (i) Mu, where a 4 = a z r =  
a2R--au; (ii) MA, where the anomalous UA(1) 
breaks and a number of fields acquire masses through 
some singlet fields developing non-zero VEVs. Be- 
tween Mu and MA we assume the full string content 
of the model; (iii) Mx, where the group SU(4) 
×SU(2 )L×SU(2 )R  breaks down to S U ( 3 ) ×  
SU (2) L × U ( 1 ) r and the relation between the cou- 
plings, at that scale, is given by 

1 1 1 - - +  - -  ( 3 )  
-- 5 50/4~ OLy ~OL2R 

and finally (iv) MI, where we assume that below this 
scale we only have the standard model content. Be- 
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tween Mx and MI some exotic remnants could 
survive. 

In the one loop approximation the renormaliza- 
t/on group equations for the gauge couplings, includ- 
ing string threshold corrections, are written 

m 2 . 2 
[ D/lOg(k,~--jsmng'~-l-Ail-lbjlOg(Mzsmng'~'t'As]\ I-12 ,] 

(U) = 2 ( b / -  hi)log (9) 

1 4x 
a / ( u )  - g~(u)  

4re 
= ki g2 (Mu) 

M~tring - -  + 1 [b/log (---~-T-) +A, ] ,  (4) 

where b/are the fl-functions coefficients, A/are the 
string threshold corrections to the inverse gauge cou- 
plings and Mst~i,g is [4,6] 

Ms~i,g = ( 2  exp(1 - ' ) ~  1/2 
3 , ~ a '  / ' (5) 

where 7 is the Euler-Macheroni constant and 
OL'~ 2 2 2 16re /gsm,~gMm. A, can be calculated explicitly 
once the full string spectrum is known. It is possible 
however to calculate the string threshold corrections 
at a pretty good level of approximation by examining 
the dependence of Ai on the moduli fields [ 5 ]. Using 
general arguments based on the geometry of the com- 
pact/fled space we are led to write A/in the following 
form: 

a , =  - b/a(T~) + G +  Y, (6) 

where c/and Y are the gauge dependent and gauge 
independent pieces respectively while A( Tl ) exhibits 
the non-trivial dependence of A/ on the untwisted 
moduli T~ and arises from the N= 2 supersymmetry 
preserving sectors of the model. 

Assuming that the moduli TI take the same value 
Tfor  the different N= 2 sectors of the model we may 
write A( T~ ) as follows: 

A(T) =log( I q(iT) [aRe T ) ,  (7) 

while expanding the q-function we arrive at the ap- 
proximate formula 

A (T) ~ - ] g Re T+ log (Re T), Re T> ½ x /3 ,  

(8) 

Now, the effective unification scale for two gauge 
couplings g, and g~ is determined by the difference 

where 

M~,J) ____-Mstring(Re T) -1/2 exp(-~ n Re T+ 18c°a)) , 

(10) 

and 8c(CJ)= (ci-G)/(bi-bj) .  In our model, i a n d j  
indices stand for the SU(2)L, SU(2)R and SU(4) 
gauge groups. The quantity 8c "'j~ is not determined 
by this method, but explicit calculations in Z3 orbi- 
fold models [ 4 ], as well as in the flipped SU (5) [ 6 ], 
have shown that this number is very small (8c "'j) 
0.02), and therefore for the present level of approxi- 
mation it can be neglected. Thus the effective unifi- 
cation scale is approximately 

Mv.~Mstring(ReT)(-I/2)exp(~:cReT). (11) 

For the free fermionic models we take Re T= l and 
we get 

Mu~Msmngexp(~).~l.7gst,_ingXlOl8GeV. (12) 

Once we have estimated the effective unification 
scale we can make use of the solution of the D-flat- 
ness constraints [ 9 ] to define the anomalous U ( 1 )A- 
breaking scale which is found to be 

M A ~ 7.8gstring X 101"7 GeV. (13) 

Now, using the renormalization group analysis and 
the specific spectrum of the model one may search 
for the possible SU (4) × SU (2) R breaking scales Mx 
which are consistent with the experimentally deter- 
mined values of sin20w, a3 and a. 

In previous analyses [ 9,15 ] it has been shown that 
the existence of a "grand unified" scale is necessary 
in order to compromise the high energy unification 
mass with the experimental value of sin20w (Mz). This 
scale was estimated to lie in the range of Mx ~ ( 1015_ 
1016) GeV, provided that some extra matter remains 
down to some intermediate scale MI, which varies in 
the range MI~ ( 108-1014) GeV. 

Here we are going to consider the effect of the 
threshold corrections to the above scales induced by 
the superheavy particles. In order to estimate this ef- 
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fect, we need to calculate the matching functions at 
each particular scale. Let us start with the scale Mx, 
where the original symmetry breaks down to the 
standard model gauge group. At this scale the multi- 
plets break in the following way: 

(-)  (-)  ( -)  
n H ( 4 , 1 , 2 ) - ~ n ~ l ( 3 , 1 ,  + 2 ) + n 3 ( 3 , 1 ,  +~)  

+n~(1,1, + l ) + n ' ~ ( 1 , 1 , 0 ) ,  
(-)  (-)  

n4( 4 ,  1, 1 , )~n~( 3,  1, _+~)+n'(1, 1, _+½), 

n22(1, 2, 2 ) - n 2 ( 1 ,  2, _+½), 

nL(1, 2, 1)-~n[(1, 2, 0 ) ,  

nR(1, 1, 2 ) ~ n ' ( 1 ,  1, _+½). 

The matching functions read now 

r(Mx) = ~ - 14 lOgM~ 2 

+ 9 (4n~h + n~+ 3n~+ ~n; h 

+3n~ + 3 # h )  log < M ) ,  (14) 
Mx 

~.2 ( M x )  9 h = ~ ( n 2  + n [  h) l o g - -  

1 Mv 
)'3 (Mx) = 1 - 5 0 g ~ x  x 

9-  ,h ..[_n h .~F/~h) log -3L ~ (n31 

( M )  (15) 
g x  ' 

( M )  (16) 
Mx ' 

where ( M )  stands for an average mass for the mat- 
ter multiplets. The superscript "h" indicates that the 
n's give the number of the corresponding heavy 
multiplets. 

Let us examine first the effect of the functions 2~ 
on the scale Mx at the first loop level. The renormal- 
ization group equations give 

1 1 + b~ Mu b4 MA 
, 3(Mz) -  log - + 

b3 Mx b ~ MI 2 3 (Mx)  
+ 2-nnl°gM~( + ~ l ° g M  z 127r ' 

bE Mu bL MA _ _ 1  1 + ~ l o g  + l o g - -  
a 2 ( g z )  - au  ~ ~ g x  

b2 Mx b[ Ml 
+ ~-~nlog-~- l + ~ l O g M z  

2 2 ( M x )  

12zt ' 

(17) 

(18) 

1 1 + I 3 ,  2 ,  Mu 
-- 3b4) a r ( M z )  au  ~ (~bR+ IOgMA 

1 2 MA br Mx 
+ ~ (3bR+~b4) lOg~x  + ~-~n l o g ~  

_~ Ml 2 r (Mx)  
+ lOgMz 12z~ ' (19) 

with an obvious notation for the fl-function coeffi- 
cients corresponding to the different gauge groups and 
energy regions. 

By taking the linear combination 

3 1  1 8 1  1 8 1  
- -  + , ( 2 0 )  
5 ar  a2 30d 3 Ol 3 a 3 

we can define an effective "grand unification" scale 
M~ ff, 

M~:ff=MxexP(BxAX_B~) , (21) 

where Mx is now the scale when no threshold correc- 
tions are taken into account, while Bu, Bx and Ax are 
combinations offl-functions and matching functions: 

Bu =bg +bL -2 b 4 ,  (22) 

Bx = 3 b r + b 2 -  8 3b3, (23) 

Ax = ~ [ ~ 2 r ( M x ) + 2 2 ( M x ) - S 2 3 ( M x ) ]  • (24) 

For an illustration, assume that above MA we have 
the usual string content while in the region (MA, Mx) 
we have n6=4, nil=2, na=2, n22=2, nL=4 and 
nR=0. In the range (Mx, MI) we have n ; = n 2 =  
n '=  2 and n31 = n3 = n [ = 0, while below M~ we have 
the standard model content (the number of genera- 
tions is always nG= 3). At Mx, the numbers of parti- 
cles that become heavy are given by 

n'3hl =nn--2--n'31, n~=nn + 2n6--n3, 

n~=nH--2,  n'3"=n4--n'3, n"2=2n2z--n2, 

n~=ne--n'L,  n'h=2nR +n4--n ' .  

Let us consider the simplest case where all super- 
heavy particles get masses equal to Mx. In this case 
one finds that the effective scale M~ ff is higher com- 
pared to Mx: M~ff~ 1.32Mx. Of course in a more re- 
alistic case we should allow the particles to have dif- 
ferent masses at Mx. Moreover, since such corrections 

47 



Volume 291, number  1,2 PHYSICS LETTERS B 17 September 1992 

are of the same order with the two loop ones, we 
should also make the whole calculation at the two loop 
level. 

We would like to present now a schematic scenario 
of the effective gauge coupling evolution. In fig. 1 a 
we present the evolution of the gauge couplings, 
showing expanded the energy region around Mx 
(where the gauge symmetry S U ( 4 ) x S U ( 2 ) L X  
SU (2)R breaks down to the standard model group), 
which we assume to be l016 GeV. We have also as- 
sumed here that all (matter) multiplets becoming 
massive at Mx acquire degenerate masses M,.~ ( M ) ,  
where ( M ) / M x  ~ (g/xf2 ( H ) ) / g ( H )  = 1/x/2. 
For simplicity we ignore corrections from the other 
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Fig. 1. The evolution of the gauge couplings, for the SU (4) X 
SU (2) L X SU (2) R model, from M y  down to Mz, at the two loop 
level, (a)  including threshold corrections and (b) without 
threshold corrections. 

intermediate states. The discontinuity appearing in 
the evolution is due to the matching functions 2~. For 
comparison, we draw in fig. lb, the same graph ig- 
noring the threshold corrections (the appearance of 
the discontinuity in a r  is due to eq. (3) ). 

We turn now to the most interesting part of our 
analysis. Using eqs. ( 17 ) -  ( 19 ), and the definition of 
sin20w(Mz) and a (Mz) ,  we can write down O~3(Mz) 

and sin20w(Mz) as a function ofo~u and Mx. In fig. 
2 - using the same particle content used in fig. 1 - we 
plot curves for constant Mx in the parameter space 
(sin20w, a3). For comparison we also plot the corre- 
sponding contours when no threshold corrections are 
included (dashed lines) [ 9 ]. Thus when threshold 
corrections are included we see a general parallel shift 
of the contours showing that the effective Mx is 
somewhat higher. Note that these corrections do not 
alter the qualitative features of previous analyses [ 9 ]. 

Fig. 3 shows the same contours as before but at the 
two loop level. Again dashed lines represent curves 
where no threshold corrections are included. We see 

,13 

~ ,12 

,11 

/ 1 / ~2E 6 16 

/I ///  
/ I  / I  

, . , ' . / ' ,  . Y ,  , I 
,230 ,732 ,234 

sin=~w 

Fig. 2. Contours of  constant Mx in the (sinE0w, or3) parameter 
space for the SU (4) X SU (2)L X SU (2)R model, at the one loop 
approximation. Continuous lines include threshold corrections 
while dashed ones do not. The ratio r = ( M )  ~&Ix = 1. 

• 616  

,13 . /  ,7 

Ot~ ,12 I6 
i 

,230 ,232 ,234 
,i~'%, 

Fig. 3. Same as in fig. 2 but at the two loop approximation. 
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now a significant shift to lower values of  sin20w and 
c%, with respect to the one loop order. For both figs. 
2 and 3 we have assumed that the superheavy parti- 
cles acquire mass Mx. 

Finally in fig. 4 we present curves of  constant Mx 
for different values of  the ratio r=(M)/Mx, but 
again assuming degeneracy of  the masses of  the mat-  
ter multiplets. In particular the cases r =  1, 0.71, 0.5 
for (nL, n R ) = ( 4 ,  0) and M x = 2 × 1 0 1 6 ,  1016 and 
5 X 1015 GeV are considered. We conclude that a sig- 
nificant correction arises only if r<0 .5 ,  i.e. only if 
Mx > 2 ( M ) .  I f  we further adopt  the high precision 
LEP data [22],  where sin20w=0.2331 +0.0013,  we 
conclude that the op t imum cases would be r <  0.7 for 
the highest acceptable value of  M x ~  1016 GeV, or 
r > 0.5 for the low value of  Mx ~ 5 × 10t 5 GeV. 

3. The SU(5) X U(1) m o d e l  

Let us turn our discussion to the S U ( 5 ) X  U ( 1 )  
model [ 16 ]. The effective string unification scale can 
be defined in terms of  the string threshold correc- 
tions as [ 6 ] 

Mu = M,,,,+ir, g exp 12---~t  5, ) , (25) 

where +A~s=AI-A+ is the difference between the 
U ( 1 ) and S U ( 5 )  threshold corrections while 
6bl 5 = b t -  b5 is the difference of  the corresponding r -  
function coefficients. In the " r evambed"  version of  
the flipped SU (5) ,  rials has been calculated explic- 
itly ~A t 5 = 24.13 (and 5b~ 5 = ~ .  In that case one finds 
that 

Mu ~ 1.3gstring X 1018 G e V .  (26)  

,13 

t~ 3 ,12 

,11 

/1 / 11 / 

16 , 

/ /  / / /  
/ / / / 

/ 

/ S ~  / "5E15 
i / . .  

, . . W ' . ~  , , , 

,e3o ,z3e .e3+ 
s i ~  w 

Fig. 4. Same as in fig. 2. The dashed, continuous and dash-dotted 
lines correspond to r=  ( M ) / M x =  1, 0.71 and 0.5 respectively. 

It can be shown [23],  however, that gauge cou- 
pling unification at such a high scale needs extra mat-  
ter representations which should remain massless 
down to some intermediate scale Mb much lower than 
the SU (5)  breaking scale. In particular at least one 
or two extra pairs in the Q + Q =  (3, 2) + (3, 2) vec- 
tor-like representations, as well as two D + / ) =  
(3, 1 ) + (3, 1 ), are necessary in order to obtain the 
correct sin20w and c% at Mz through the evolution of  
the gauge couplings down to low energies. Note that 
Q +  Q representations arise f rom the decomposi t ion 
of  10 + l 0 representations of  SU (5) ,  thus the proper  
number  of  the latter should be present in the string 
spectrum of  the model. A first a t tempt  to obtain a 
flipped string S U ( 5 )  with extra 10+ l0 was pre- 
sented in ref. [ 18 ], while a systematic search using 
computer  algorithms was presented in ref. [ 19 ]. 

As in the case of  the S U ( 4 ) X S U ( 2 ) L X S U ( 2 ) R  
model, which was examined previously, there is a 
number  of  extra representations becoming massive 
at various mass scales. Again one would need the pre- 
cise number  of  those multiplets in order to compute  
the threshold corrections. As an application, we con- 
sider a version of  the flipped SU (5)  string, presented 
in ref. [ 19]. The basis of  the model  consists of  eight 
vectors which break the symmetry  to the gauge group 
SU(5 )  X U ( 1 ) r X U ( 1 ) ~ X  [SO(10)  x S U ( 4 )  ]Hidden" 
The Higgs and mat ter  representations of  the model 
are (indicating the t ransformation properties under 
SU(5) xU(1 )~): 
- Three F(  10, ½ ) + f ( 5 ,  - ~- ) + I c ( 1, ~ ) which form 
the three complete generations with the right-handed 
neutrinos belonging to the F(  10, ½ ). 
- Two H (  10, ½ ) + H (  10, - ½ ) representations which 
will be used to break the SU (5)  symmetry.  
- Four h ( 5, - 1 ) + h (5, 1 ) pairs of  Higgs. One pair  
is going to provide the necessary Higgs doublet  for 
the standard group breaking, while the remaining two 
coloured triplets should receive masses at some inter- 
mediate scale M~ >> Mw. The rest three pairs of  five- 
plets receive superheavy masses, as some of  the neu- 
tral singlets, which are present in the spectrum, 
develop non-zero VEVs. 

The Hidden sector of  the model t ransforms as 
follows: 
- Six pairs of  SU(4)H X U ( 1 ) p representations 

F(4,  ~ ) + if(Z1, - ¼ ), denoted in the following by n4. 
- Seven sextets under SU(4)H, DI, D2 . . . . .  0 7  with zero 
Y-charge, denoted by n6. 
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As already mentioned, a number of singlets is also 
present [ 19 ] and some of them will develop non-zero 
VEVs to cancel the anomalous D-term and provide 
masses to some of the extra states. In the following 
we are going to use the RG analysis to determine the 
range of the various scales that the particles should 
remain massless (and therefore contribute) in order 
to obtain the experimental predictions for sin20w and 
a3. Since there is a large number of particles becom- 
ing massive at each scale, threshold corrections should 
be taken into account when these states are inte- 
grated out at the corresponding scale. 

We shall concentrate on the SU (5) breaking scale. 
At this scale the multiplets break in the following way: 

nlo(10, + ½)~n32(3, 2, + l )  

+ n 3 ( 3 , 1 , ~ ) + n ~ ( 1 , 1 , 0 ) ,  

ns(5, + 1)~n3(3,  1, ~ )+n2( l ,  2, ½) , 

n'e~(1,_+~)~ne~(l, 1 ,_+ l ) .  

The matching functions read 

;t v(Mx ) = ½ - log Mv 
Mx 

27 / l . h  ~ _ _ h  ± - - "  . l ~ h  1 h ( M )  
"{-'-~g¢¢32-rnecTn4-1-~n3"q-]~2) log Mx ' 

(27) 

22(Mx)=3_151ogA~_yfv +9  3 h ( M )  (~n32 + ½t/h) 1og-~-x  ' 

(28) 

23(Mx)=2-101ogM~+9( t /3"2+~n3) l  h log(M)Mx ' 

(29) 

where, as before, ( M )  stands for an average mass of 
the heavy matter multiplets. The RGEs give, at the 
one loop level 

1 1 b5 Mu b5 MA 
a 3  - -  O / U  "{- ~ log MAA + ~ Iog Mx 

b3 1 Mx b~ M I 
+ ~ og ~ - I  + ~ log M z '  (30) 

1 1 + b ~ l o g M u  bs1 MA 
o~2 - av 2n M A + ~ °gMxx 

b2 , Mx b~ M1 
+ ~ log ~ (  + ~-~ log ~z-z, (31) 

1 1 + 1 (~3gb~_25~,1)_1._241.,, Mv c~y au ~ log~-~ 
1 ( ~b5 + 2~b, ) log MA by Mx 

+ ~ ~ + ~ log M, 

b'r M| 
+ ~-~ log ~ z  z • (32) 

The effective "grand unification" scale M~< fr can be 
defined, as in the case of the S U ( 4 ) X S U ( 2 ) L X  
SU(2)R model, 

Mkfr=Mx exP (Bxfl-~-XBu ) , (33) 

where 

B~=~(b, -bs),  (34) 

Bx =~br+b2-Sb3, (35) 

A× = l [ ~ a y ( M × ) + X 2 ( M x ) _ ~ 2 3 ( m x ) ]  . (36) 

We express sin20w(Mz) and a3(Mz) as functions of 
au  and Mx, and plot contours of constant Mx. At 
this point we should mention that in plotting the 
above contours we have used a more complicated 
(nevertheless necessary) situation, which is not 
shown in eqs. (30) - (32) .  Namely, we have intro- 
duced the following additional scales: 
- F o r  each specific choice of the number of 
SU (4)Hidden-fOurplets n4 (having charges only under 
U(1 ) and U(1 ) r )  and sextets n6, we evaluate the 
scale Mc where the SU (4)Hiaden coupling constant 
becomes large (>_-0.2). At this scale, the fourplets 
produce bound states and decouple from the 
spectrum. 
- We have also allowed for a scale M32 below which 
no (3, 2 ) + (3, 2 ) survives. The range o f  M32 is found 
to be from 1012-10 ~3 GeV for the acceptable range of 
values of sin20w and a3. 
Finally we have included a central value two loop 
correction to both sin20,(Mz) and Mx following ref. 
[18]. 

In order to achieve unification at the high scale Mu 
in the S U ( 5 ) ×  U( 1 ) model, we have used the fol- 
lowing content: nlo=6 and n5=2 between Mu and 
Mx, while n32 = 4 and n3 = 4 below Mx. We have also 
assumed n4 = 6 and ll6 = 3 above Mx whilst n4 = 4 and 
n6= 1 in the range Mx-Mc. At Mx, the numbers of 
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Fig. 5. Contour of constant Mx for the SU (5) X U ( 1 ) model. The 
curve is almost the same for all reasonable changes of the particle 
content. 

represen ta t ions  b e c o m i n g  heavy are g iven by  

n~z=n,o--2--n32, nhec=n'ec--nec, 

n~=n,o+ns-n3, n~=ns-n2, 

n 4 h = n4 (above  M x  ) - n4 (below M x  ). 

For  this par t i cu la r  con t e n t  M ~  ff = 1.2Mx. 

In  fig. 5 we show the con tou r  of  cons t an t  M x  in  the 
(sinZOw, 013) space. For  any  reasonable  change in  the  
part icle  con ten t  ( i nc lud ing  n4 a n d  n6) as well as in  
Mx,  the dev ia t ions  f rom that  curve are very small.  
We have to po in t  out, nevertheless,  that  M x  should  
be nea r  MA and  a u  ~ 0.075 in  order  to achieve exper- 
imen ta l ly  accepted va lues  o f  sinZOw a n d  or3. 

4. Conclus ions  

In  the present  work we have re -examined  the 
pred ic t ions  of  the f e rmion ic  s t r ing mode ls  based 
on  the  i n t e rmed ia t e  symmet r ies  SU (4)  × SU (2)  L × 

SU (2)R a n d  SU (5)  × U ( 1 ), when  threshold  correc- 
t ions  at the s t r ing scale as well as the i n t e rmed ia t e  
gauge group break ing  scale M x  are taken  in to  ac- 
count .  In  p rev ious  analyses  it was shown that  s tr ing 
threshold  correct ions  increase  the un i f i ca t ion  scale in  
bo th  models  by 70%. As a result  extra  ma t t e r  fields 
should  r e m a i n  massless d o w n  to some scale lower 
t h a n  the i n t e rmed ia t e  scale Mx.  Here we f ind  that  
threshold  correct ions,  due to part icles  tha t  become  
massive near  the scale Mx,  in  most  realistic cases lead 
to a s imi la r  increase  of  tha t  scale. The  qua l i t a t ive  pic- 
ture  of  the above  mode ls  does no t  alter. However ,  it 
is f o u n d  that  these thresholds  are comparab le  with 

the two loop correct ions and  should be inc luded  when 

extrapolates the gauge couplings down to the Mz  scale 
in  order  to de t e rm ine  the low energy parameters .  
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