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group 

Abstract. We study the renormalization group equations 
of the gauge couplings in the SU(4)xO(4)~SU(4)x  
SU(2)L x SU(2)R string model, derived in the context of 
the free fermionic formulation ,of the four dimensional 
superstring. We calculate the effective string unification 
scale taking into account string threshold corrections and 
we consider the consequences of the nL and nR fractionally 
charged states, sitting in the (1, 2, 1) and (1, 1, 2) repre- 
sentations correspondingly, of the gauge symmetry of the 
model. Some of these states become massive at a very high 
scale, when a number of singlet fields acquire vev's. How- 
ever, many of them (the precise number depends on the 
specific choice of the flat direction) remain in the massless 
spectrum. We consider various cases and find that, for 
specific choices of flat directions, the physical parameters 
of the model, like the grand unification scale and the low 
energy parameters sin 20w and ~3, depend only on the 
difference n_ =nL--nR. We study more general cases 
where remnants of the exotic doublets remain below the 
SU(4) breaking scale. We also solve the coupled differen- 
tial system of the renormalization group equations for the 
gauge and the Yukawa couplings and estimate the range 
of the top quark mass which is :found to lie in the range 
140 GeV <mt < 190 GeV. 

1 Introduction 

Nowadays string theories [1] appear to be the only prom- 
ising candidates for a fundamental theory of elementary 
particles. They face, however, a number of unsolved prob- 
lems, while many questions are still open. Among them, 
the problem of finding a phenomenologically viable string 
model has fascinated many particle physicists today. In- 
deed, the last few years, there has been a lot of excitement 
about the possibility of constructing a model with string 
origin leading at low energies to the standard model, 
which is in agreement with all experimental observations. 
Nevertheless, the standard model cannot predict the 

Yukawa couplings and consequently the masses and mix- 
ing angles of the low energy particles. On the contrary, in 
string theories one can predict the Yukawa couplings and 
calculate all trilinear and non-renormalizable superpoten- 
tial terms in any superstring model. Thus, in principle, one 
can obtain all the low energy parameters (like masses and 
mixing angles) from the superstring theory. In early ap- 
proaches, effective low energy models were based on ten 
dimensional constructions [2], where six of the spatial 
dimensions were compactified on a Calabi-Yau manifold. 
In recent approaches, model building is based on string 
theories formulated directly in four space-time dimensions 
[3]. The last few years, a large number of models has been 
derived from Calabi-Yau compactifications [4], orbifolds 
[5] and four dimensional superstrings [-6, 7]. These 
models can be divided in two classes. The ones which are 
based on the standard gauge group with some additional 
U(1) factors, i.e. on SU(3) x SU(2) x U(1)" gauge groups, 
and the others which incorporate modifications of the old 
Grand Unified Theories (GUT's). However, there are cer- 
tain theoretical difficulties in both classes of models. In the 
case where the Standard Model is derived without invok- 
ing any intermediate breaking scale, one can hardly ob- 
tain the right Yukawa couplings which are going to give 
the observed mass hierarchy on the one hand, and forbid 
fast proton decay and flavour changing neutral currents 
on the other. Many of these problems can be solved 
elegantly in the case of superstring modifications of 
GUT's. Nevertheless, the situation is much more restrict- 
ive than in the case of old GUT's. For instance one cannot 
have Higgs in the adjoint or any higher represenation, at 
least as long as only k=  1 level of Kac-Moody construc- 
tions are considered. On the other hand, we know that 
traditional GUT's use the adjoint represenation to break 
down to the standard model. It was shown that in the four 
dimensional fermionic construction of the heterotic string, 
a model [-7] based on the SU(4)xO(4) gauge 
symmetry (which is isomorphic to SU(4) x SU(2)L x SU(2)R 
[-8]), does not need Higgses in the adjoint representation 
to break down. The model has been found to possess 
other advantages too. Among them, one should notice the 
absence of dimension five baryon violating operators in 
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the trilinear superpotential [9]. In addition the colour 
triplets become superheavy, avoiding the danger of fast 
proton decay through dimension six operators. Finally 
there is a natural see-saw mechanism for all neutrino 
species, which gives superheavy masses to the right 
handed components and tiny (but possibly observable in 
the near future) masses to the left handed ones [10]. 

A discouraging fact however, in most of the models 
constructed at level k=  1 of the Kac-Moody algebras, is 
the appearance of fractionally charged particles (FCP) in 
the massless spectrum. Since no violation of charge quant- 
ization has been observed, at first sight, such particles 
might seem to rule out these models. In fact, it was shown 
[1 lJ that in order to avoid FCP's, one has either to deal 
with small values of the Weinberg angle at the unification 
scale, or to consider constructions realized at higher level 
of Kac-Moody algebras [12]. Since in the second case no 
realistic model has appeared as yet, it would be desirable 
to investigate the possibility that these unwanted states 
decouple from the light spectrum. Indeed, one can find 
such mechanisms that render most of these particles 
superheavy. As an example, in this particular model [7] 
(as well as in other models derived in the fermionic con- 
struction [6-]), the classical vacuum is unstable due to the 
existence of an anomalous U(1) which generates a D-term 
in the scalar potential. In order to restore supersymmetry 
and stabilize the vacuum, one should introduce non van- 
ishing vev's for some of the singlet fields which appear in 
the massless spectrum. These vev's, however, may give 
masses to a large number of the unwanted FCP's, at 
a high scale Ma of the order MARC(10 aT) GeV. Other 
mechanisms may cooperate I-7, 13], and make all of them 
dissapear from the light spectrum. 

FCP's may affect decisively the renormalization group 
scaling of the various physical quantites. Even if they 
become massive by some mechanism like the one de- 
scribed above, their contribution to the fl-function coeffi- 
cients should be taken into account for energies higher 
than the scale they acquire mass and decouple from the 
massless spectrum. In the present work, extending our 
previous analysis [14], we are going to investigate the 
consequences of fractionally charged states on the various 
mass scales of our superstring model. In the presence of 
FCP's, we consider the renormalization group equations 
for the gauge couplings in order to find the constraints 
imposed on the Grand Unification and other possible 
intermediate scales, by allowing the low energy para- 
meters sinZOw and ~3, to vary in their experimantally 
acceptable ranges. It is understood however, that the 
number of the massless FCP's will depend on the specific 
choice of the non zero singlet vev's (usually there are more 
than one flat directions in any particular model). Thus, in 
order to make our analysis as general as possible, we treat 
the number of FCP's as a free parameter. 

Our paper is organized as follows. In Sect. 2 we give 
a brief description of the string SU(4) x 0(4) model and 
present its massless spectrum. In Sect. 3 we make a general 
analysis of the renormalization group flow of the gauge 
couplings in the one and two loop level, in the presence of 
FCP's, and finally in Sect. 4, we discuss the results and 
present our conclusions. 

2 Description of the model 

Our string model I-7] has been derived using the free 
fermionic formulation of the heterotic string [15]. We 
have used nine vectors of boundary conditions for the 
world sheet fermions to construct it. A remarkable feature 
of this model is that one imposes only periodic and anti- 
periodic boundary conditions for all the world sheet fer- 
mions to derive it. The resulting gauge symmetry of the 
model is 

SU(4) x 0(4) x U(1) 4 x [SU(8) x U(1)']mad~.. 

It consists of the anticipated S U ( 4 ) x O ( 4 ) , , ~ S U ( 4 ) x  
SU(2)L x SU(2)R observable part accompanied by four 
surplus U(1) factors and the Hidden SU(8) x U(1)' gauge 
group. The massless spectrum generated by the above 
nine element basis, is listed in Tables 1, 2 and 3. 

In Table 1, we have included all the standard fermion 
and Higgs content of the model together with a number of 
singlet fields. There are three states sitting in (4, 2, 1) 
representation of the observable gauge group, namely 
FxL, F3L and F4L , which are going to accommodate the 
left handed fields of the three fermion generations. 

There are five fields sitting in(4, 1, 2) representation, 
namely f f lR,  ffzR, ff'2R, ff3R, and FSR. Three linear combi- 
nations of them have been interpreted [7] as the right 
handed partners of the fermion generations. The other 
two linear combinations, together with F4R and FsR sit- 
ting in (4, 1, 2), are going to acquire vev's in order to break 
the SU(4)x SU(2)R part of the observable gauge group 
down to SU(3)x U(1)r. Notice that FiL+ffiR makes up 

Table 1. Analysis under SU(4) x SU(2)L x SU(2)R X U(1) 4 of the 
fields belonging to the observable sector (i.e trivial transformations 
under the hidden SU(8) group and zero charges under U(1)') 

fflR =(74, 1, 2)(1/2,0,0,0), 
/72R =(4,  1, 2)(0,1/2,0, 0), 

f a R  = (4, 1, 2)(o, o,-1/2, 1/2), 

F4R =(4,  1, 2)(1/2, 0, 0, 0), 

ffsR =(7~, 1, 2)(o.- 1/:. o, o), 

ha =(1, 2, 2)(o. o, 1,o), 

~1 =(1, 1, 1)(o,o.o.o), 
@3 =(1, 1, 1)(o,o.o,o), 
�9 5=(1, 1, 1)(o.o.o.o). 

qb12 =(1,  1, 1)(1,1,o,o), 

qbl-2 =(1,  1, 1)(1,-1,0,0), 

D1=(6, 1, 1)(1.o.o.o), 
D2=(6, 1, 1)~O.l.O.o), 

hlz =(1, 2, 2)(1/1. x/2. o. o), 
(1 =(1, 1, 1)(1/2 - 1/2,0,0), 

ff2 =(1, 1, 1)(1/z,-1/2, o,o), 

~i =(I, 1, I)(1/2, I/2, 1,0), 
~2=(I, i, 1)(1/2.-1:2,0. I), 
~a=(1, 1, 1)(-1/2, 1/2,0, 1), 

~4=(1, 1, 1)(1/2, 1/2,-1,0), 

FIL = (4, 2, 1)(1/2. o, o. o) 
ffiR =(4, 1, 2)(o.- 1/2, o. o), 

F3L=(4, 2, 1)o.o.-1/2.-x/2), 
F4L = (4, 2, 1)(- t/z. o. o. o)., 
FsR =(4, 1, 2)(o,- 1:2.o.o). 

h3 =(1, 2,2)(o,o,-1.o). 

@2=(1, 1, 1)(o.o,o, o), 
~ 4 = ( 1 ,  1, 1)(o.o.o,o), 

~12 =(1, 1, 1)(- 1.-1,o,o), 
~x-z =(1, 1, 1)(-1, a.o,o). 

/)1 =(6, 1, 1)(-1,o,o,o), 
D2=(6, 1, 1)(o.-1.o,o). 

hlz =(1, 2, 2)(- 1/2.- l/z, o, o, 
(-1 =(1, 1, 1)(-1/z. 1/2, o,o), 
~-2 =(1, 1, 1)(-1/2.1/2. o.o), 

~'1 =(l, 1, 1)(-1/2,-1/2,-1,o), 
~'2=(I, i, i)(-i/2.1/2.0,-m 

~-3 =(1, 1, I)(1/2,-I/2,0.- I), 
~4=(1, 1, 1)(-1/2,-1/2,1, o). 



T a b l e  2. Analysis under SU(4) x SU(2)L X SU(2)R x U(I) 4 x U(1)' 
of the fields being SU (8) singlets but having non-zero charges under 
U(1)' 

h~+L=(1, 2, 1)(0,-1/2,0, 1/2)(- 1) , 

h+g = (1 ,  1, 2)(o, 1/2, o, 1/2) ( -  1), 

hzL = (1, 2, 1)(1/2,0,0,1/2)(+1), 

h2-R=(1, 1, 2)(1/2,0,0,- 1/2)(+ 1) , 

h~L =(1, 2, 1)(1/2,- 1/2, 1/2, o)(- 1), 
h3~ =(1, 1, 2)(- ~/2.1/2,1/2, o)(+ ~), 
h4+L = (1, 2, 1)(0,1/2.0, 1/2)(- ~), 
h4R = (1, 1, 2)(0. ~/2, o,- 1/2) (+ 1), 
h~-~ =(1, 2, 1)(a/2, o, o, 1/2)(+ 1), 
h~-g=(1, 1,2)(-1/2,0,0,1/2)(1), 

H 4 = (4, 

hi~ =(1 ,  2, 1)(o,- l/Z, o . -  1/2)(- 1) 

hi~ =(1, 1, 2)(0,1/2, o, - 1/2)(- 1) 
h~Z =(1, 2, 1)(-1/2,0, o, 1/2)/+1) 

h~R=(1, 1,2)(-1/2,0,0,-1/2)(+1 ) 

h3L:= (1, 2, 1)(1/2,- 1/2,- 1/2, 0)(+ 1) 

h3+R := (1, 1, 2)(-U2 ' 1/2,-1/2,0) (- 1) 

h4c=(1, 2, 1)(0,- 1/2, o, ~/2)(+ 1) 

h~+R = (1, 1, 2)(o,- ~/2, o,- x/2)(- ~) 
h~-L =(1, 2, 1)(1/2, o, o, 1/2)(- 1) 

hs-R =:(1, 1, 2)(-1/2,0,0,-1/2)(+1) 

1, 1)(0.0,0.1/2)(- 1) , /]4-~(~, -, 1, 1)(o,o, o,- 1/2)(+1) 

Table 3. Analysis under SU(8) • U(1)' • U(1) ~ of the fields being 
singlets under the observable sector 

Z~ = (8,  1 / 2 ) ( o , -  1 /2 , -  1 /2 ,  o), Z 1 = (8, - 1 / 2 ) ( o , -  1/2 ,  - ~/2,  o )  

Z2=(8,  -- 1/2)(1/2,o,-1/2, o), Z~=(8, -- 1/2)(-1/2, o, -1/2, o) 
Z3=(8, 1/2)(o,1/2,-1/2,o), 2~ =(8, 1/2)(o,- 1/2,~/2,o) 
Z~4 =(8, 1/2)(1/2, o, 1/2, o), Z4 =(8, -- t/2)(~/2, o,- 1/2, o) 
Z5=(8, - 1/2)(1/2,- ~/2,o, 1/2), Zs=(8, 1/2)(1/2,-1/2,o,-1/2) 

the complete 16 spinorial represenation of the SO(10) 
group, while FiR = (4, 1, 2) is just half a piece of the 16 of 
the SO(10). The spectrum in Table I is completed with 

(-) 
four sextet fields D~=(6, 1, 1) and left-right doublet fields 
h~ = (1, 2, 2). Both kinds of representations arise from the 
decomposition of the 10 dimensional representation of the 
SO(10) symmetry ((10)--,(6, 1, 1)+(1, 2, 2)). 

In Table 2 there are 10 (hL+hR) doublet fields sitting 
in (1, 2, 1)+(1, 1,2) representations and two fourplets, 
namely H=(4,  1, 1), H=(4,  1, 1). All these states carry 
fractional electric charges. Indeed, the charge operator 
may be written 

~T Q = g  15+1T3L+�89 (2.1) 

where T~5=diag(1, 1, 1, - 3 )  and T3L=TaR=diag(1, 
--1). Thus the charge of the doublets is +�89 Notice how- 
ever that fractionally charged states are generic in all k = 1 
constructions. We could avoid them, either by going to 
higher level Kac-Moody algebras, or by allowing small 
values for sin 20w at the unification scale. 

Finally in Table 3 we collected all the states having 
non trivial properties only under the hidden gauge group 
SU(8) • U(1)', giving also their U(1) 4 charges. 

In this particular free fermionic formulation of the 
heterotic string one can compute unambiguously the 
Yukawa couplings of any model. In our case, the trilinear 
superpotential consists of the following terms 

W=gN//2EF4Lff sRh12 + ~ F4RFsR(2 + ff 3RF3Lh3 

+ D~ DE ~ E  + D I D2 C~12 + D1D2 ~12 + DI D2 C1912 
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+ �89 FaL + F1RF1R + F4R F4g)D1 + 1F4L F4L D1 
1 t t + ~(F2R F2R + FSR FSR + FsRFsR)D2 + �89 F2R F2R D2 

+�89 + ~ + ~:C: + r ~-~ + ~ + ~-3 

+ ~4 ~-4) ~3 + ((-~ (2 + (2 (~) ~4 + (1h~2h12 + ~ ~4) t~2 

+(�89 + ~1 ~ , , ) ~  +(�89 + �89 ~: + ~ ~) r h 

+ (�89 (~ ~-~ + 1(2 (2 + ~2 ~a) �9 ~2 + (~4/~2h3 + ~-~ h~2h3 

+ ~-4h12h3 + - - ' -  ~1 h12h3) + H4H4crP3 + F1RhzRH4 
--t - + F2Rh4RH~ + a~Lh3Rh3 + h;Lh~.h3 + h3Lhh~;2 

+~2h3Rh+R+h~lh~Rh~2 '+ - - + hlRhsLhl 2 "~ ~2  h'~zhsL 
t+  - 1 t+ - -- + ~2 hlR hsR + ~ (hlL hsg~l + h'~Rh51~) + Z5 ;Z5 cb h 

1 --! -- 
+ Z 3 Z 4  ~4-4-  ~ Z 3 Z 4 ~ 2 ] .  (2.2) 

Let us discuss now in brief the gauge symmetry breaking. 
The observable gauge group SU(4) x 0(4) • U(1) ~ at the 
first stage breaks down to SU(4) • 0(4), where some of the 
singlet fields, possessing non-zero charges under these 
four surplus U(1) factors, develop vacuum expectation 
values. Note however that three of them are not traceless. 
We can, nevertheless, define new linear orthogonal combi- 
nations, namely 

U(1)'= U(1)~ + U(132 , U(1)~,= U(1)4, 

U(1)~ = U(1)I - U(1)E +2U(1)s, 

W(1)a = U(1)I - W(1)2 - W(1)3, 

where only one of them, U(1)A is found to be anomalous, 
with Tr [-U(1)A ] = 72. This particular U(1)a symmetry is 
broken by the Dine-Seiberg-Witten mechanism [16]. Ac- 
cording to that mechanism, the anomalous D-term gener- 
ated by a vev of the dilaton field is cancelled by singlet 
vev's that break the other non-anomalous U(1) symmet- 
ries, so that supersymmetry is preserved. Any choice of 
these vev's should be a consistent solution of the F- and 
D-flatness conditions of the model. 

A possible choice of non-zero vev's, consistent with the 
F- and D- flatness conditions, is [7] 

<t~12>,  < ~ 1 2 > ,  < r  <~-2>5 &0, 

for the singlets, and 

<z~>, <2;>#0, 

for the representations of the hidden gauge group. The 
F-flatness conditions are trivially satisfied, while the D- 
flatness conditions read 

214h212 +1~112-�89 =0,  (2.3) 

-21qSi-212 +21~112-1~-212 + IZs12 +312;12 =0,  (2.4) 

-1~-212 +�89 (2.5) 

_21~S;212 1~112_1(212+1Z~2 3~. I + ~ - - = 0 ,  (2.6) 

The above equations give 

12qOl2 2 1 1 3e,, 
4 2~ '  (2.7) 
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2 1 3~, 1 
I ~i-21 = 5 ~ - + a l Z s l 2 + � 8 8  (2.8) 

1(3 u_ ) 
I ~ , l Z = ~ \ 2 ~  1;~;I z , (2.9) 

1(21~=�89 =, (2.10) 

Thus, IZ~l should satisfy 

<12~lz<~'zc (2.11) 

The SU(4) x SU(2)R breaking down to SU(3) • U(1)y oc- 
curs when the F4R, FsR tetr_aplets together with two linear 
combinations of the fields F,R, F2R, F~R and ff3R develop 
vev's. The above choice has the following phenomenologi- 
cal advantages: 

i) All the "conventional" colour triplets in (3, 1, 1) and 
(3, 1, 1) representations, which could in principle mediate 
proton decay processes, become superheavy as one can 
see from the superpotential. 
ii) The fermions of the heaviest generation, F4L and fsR, 
receive masses from the first term of the superpotential 
when the Higgs field h~2 acquires vev. The second term 
F4RFsR~2 , provides a see-saw mechanism for the neu- 
trinos of this generation. The two lightest generations do 
not receive any mass at the tree level, but higher order 
non-renormalizable terms are expected to  provide the 
right order of magnitude masses. 
i ii) All components of the extra electroweak type doublets 
h12 and h3 receive masses at a high scale. In addition four 
of the "exotic" fractionally charged doublets of Table 2 
also receive masses from the trilinear superpotential. At 
this stage, the rest of the "exotic" doublets remain mass- 
less. However, some of them are expected to acquire large 
masses through dimension-five operators. Of course, one 
could also take into account the effects of the condensa- 
tion of the "hidden" group SU(8), which most likely takes 
place. In that case it is easy to check that many of the right 
handed "exotic" doublets receive superheavy masses, as- 
suming non-zero vev's for ( Z i Z j )  bilinears of the states 
appearing in Table 3. 

It is important to remember at this point that our choice 
of non-zero vev's considered above is not the only one 
acceptable. In fact, the F- and D-flatness constraints leave 
considerable freedom to choose some other singlet fields 
to develop non-zero vev's. Any other choice will have 
different phenomenological consequences for the model. 
One, of course, cannot decide which of these choices is the 
most promising one, until a detailed study of the model is 
done. Note, however, that a decisive role on the choice of 
the particular flat direction is played also by the non- 
renormalizable contributions to the superpotential [17]. 

Indeed, the number of the "exotic" doublets that 
become massive from the trilinear superpotential depends 
on the specific choice of the flat direction. As we already 
mentioned in the introduction, the "exotic" doublets play 
also important role in the evolution of the gauge coup- 
lings through the renormalization group equations. In the 
next section we will examine their consequences in the low 
energy parameters sin 20w and ~3- 

3 One and two loop analysis 

Let us start by specifying the energy scales. In the most 
general case we have: i) Msv  where ~4=~2L=~2R=~u; 
ii) MA, where the anomalous U(1) breaks and a number 
of fields acquires a mass through some singlet fields devel- 
oping non zero vev's. Between Msv  and MA we assume the 
full string content of the model; iii) MG, where the group 
SU(4) • SU(2)L • SU(2)R breaks down to SU(3) • SU(2)L X 
U(1)r in the way already mentioned and the relation 
between the couplings, at that scale, is given by 

1 1 1 
5 . - 7 - +  VS-_., (3.1) 

~Y 3~2R 2~4 

and finally iv) MI, where we assume that below this scale 
we only have the standard model content. Between MG 
and MI some exotic remnants could survive. 

The first two scales, Msv  and MA, could be expressed, 
once the string content is known, in terms of the string 
scale Mstring and the string threshold corrections A, 
[18, 19], which should be calculated in the DR-scheme, 
closely related to the MS-scheme -1 - ( c~ i~-~ = c~ i ~ g -  c Ai/ 2rt ) . 

The string scale, in the Pauli-Villars (PV) scheme, is 
found to be [19] 

{, 2e,l-y, ~ 1/2 
Mpv=Mstring = -  ~ -  =0-7gstring 1018 \3 ,~/ -3~ J GeV, 

where ~' = 2 2 2 167r /gstring MpI and 7 is the Euler-Macheroni 
constant. However, according to arguments presented in 
[19], Mpv = Mb- ~. 

Using modular invariance properties of the low energy 
action, the threshold corrections to the inverse gauge 
coupling, in the free fermionic models, are [18, 19] 

A ~ = - b ~ l n [ l n ( i T ) 1 4 R e ( T ) ] + c ~ +  Y. 

Here, b, are the fl-function coefficients, T are the untwisted 
moduli fields while c, and Y are gauge dependent and 
gauge independent pieces respectively [18, 19]. Using the 
methods of [19] one can find that the SO(6) • 0(4) gauge 
group gives 

where 6c = Co(4)-Cso(6). This quantity is not determined 
by this method but expIicit calculations on a similar 
model [19], the flipped SU(5), based on the free fermionic 
construction as well as in a Z3 model [18], have shown 
that this quantity is very small (&~0.025). Since our 
model is also a free fermionic construction, while any free 
fermionic model is related to a Z2 x Z2 orbifold, we con- 
clude that the possible non-moduli corrections cl are small 
in our model too. Thus the effective scale Msv  is found to 
be 

M s u  ~ Mstring e(~+6c)/2= 1.20string 1018 GeV. 

Thresholds effects from other superheavy particles [20], 
when included, may also change the intermediate scales 
M I and Mx.  However in most of the cases considered in 
our analysis, they are not important and we ignore them. 



Finally, taking into account the solution of the D- 
flatness constraints, we adopt the following value for the 
U(1)a breaking scale 

Ma = 7 .8gs t r ing  1017 GeV, 

which corresponds to the choice 

12512~123 ~max ~v. 
7~ 

A lower value of Ma=69~tring 
through (2.8) by the choice 

1017GeV is suggested 

l ~ s l z  ~ 2 ~U 
~"~3 m a x ~  �9 

Thus the MA range is rather enough constrained and our 
specific choice will not introduce any significant uncer- 
tainty in our calculations. 

The evolution for the gauge couplings is given by the 
general formula 

d ~ - C d ( b ; + l ~ b u ~ )  ' d t  2re (3.2) 

where b~ are the one-loop and b u are the two-loop fl- 
functions. Above M~ they are given by [21] 

b~=-  6 + na+ 

\12 

+ 
o/ \o/ 

iHH'+- n22Av n6-b 0 n 4 
\1/ 

(3.3a) 

(_24o 0)(li015 ) (140 / 
bu= 0 - 2 4  0 + 14 15 nG+ 0 0 

0 0 - 9 6  3 31 3 0 ~ /  
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where i=  (R, L, 4), while below ://G we have 

- + 0 n3-F 
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where now i=  (Y, 2, 3). We have assumed that supersym- 
metry is effective through all the range between Msv and 
Mz. Although the mechanism which breaks sypersym- 
metry in string theory is still unknown, the latter is ex- 
pected to occur at the electroweak scale in order to protect 
gauge hierarchy. In the above equations n6 is the number 
of sextet fields (6, 1, 1), n4 stands for the number of(4, 1, 1) 
representations, nn counts the (4, 1, 2) Higgses which 
break SU(4), n22 is the number of the (1, 2, 2) Higgses, 
nz~g) are the (1, 2, 1) and (1, 1, 2) representations respec- 
tively while nG is the number of generations, n3 is the 
number of colour triplets, while n2 is the number of W-S 
doublets (the particular choice of non-zero vev's in (2.3), 
provides all n3 triplets with heavy masses and they are not 
present below MG; however, other vev choices which leave 
few of them massless down to some intermediate scale 
MI<MG, consistent with the F- and D- flatness con- 
straints, are also possible), n; is the number of triplets 
arising from Hi ,  H i  fields while n;1 is the number of 
u~ and ~ up-quark-type Higgs. Also n' is the number of 
single_ts with fractional charges _+ �89 arising from hR and 
Hi ,  Hi .  In particular, in the model under consideration, 
n;1 =n ;  =2, if none of these triplets get mass at MG, and 
n '=2ng+2 .  

We are considering initially the case where M A ~ M s u  

with a pair of triplets (n3 = 2) surviving below MG down to 
the scale MI. The one loop equations for the gauge coup- 
lings are given by 

1 1 b4 Msv.  b'3 MG ba M1 
~3 6, ~ - ~ l n  + - -  - - =  in -~ i  + ~nn In (3.5a) 

MG 2~ Mw' 

1 1 bL Msv b'z MG b2 Mt 
--~2 = a, + ~ l n  MG +--ln2zc ~ + ~ - ~  In Mw' (3.5b) 

1 1 br M~ br MI 
~ = ~y(MG~ ~- 2re In M-;I + 2-~n In Mw " (3.5c) 

It is straightforward to use the above relations and derive 
the following formula 

L s in20w=2 3 c~3 t-~-~- - n u  in - 6 1 n ~ w  , 

(3.6) 

where n_ =nL--nR. If we ignore the dependence of 
Msv on e,, the relation between the low energy para- 
meters sin z Ow and o~ 3 depends only on the difference 
n_ - 4nn and M6, once the correct value of O~em is ensured. 
But even when the ~, dependence of Msv is taken into 
account, the range of ~u and the weak dependence 
(In Msv ,-,In x/~.) are such that the above statement holds 
true. As we shall see later this result persists even in the 
two loop level. 
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Let us now treat the gauge coupling evolution at the 
two loop level. We start considering all four scales 
Msv, MA, Ms and Mt but only admitting the pair of 
triplets we mentioned above in the range between ME and 
M~. We run the R.G.E's and plot contours of constant ME 
in the parameter space of (sin 20w, :~3), adopting the fol- 
lowing range 

0.228<sinZOw<0.236, 0.10<~3 <0.14. 

In Fig. 1 we show three such plots. The content between 
M a and ME is n6=4, nz2=ng=nn=2, while the pair 
(no, n~) takes the values (4, 0), (2, 0) and (4, 2) correspond- 
ing to the three figures a, b and c. We can observe that the 
low energy parameters sin 20w and cr put limits on the 
number of the exotic doublets n~ and n~ that may remain 
massless below M A. We remind the reader, that between 
Msv and M a w e  always have the full massless string 
content, i.e. n6 = n22 = nn = 2n4 = 4, no = 3 and n~ = nR = 10. 

Indeed, comparing the figures with the same left- 
handed exotic doublets we notice that as nR increases the 
GUT scale decreases. If we still insist in a reasonable value 
for the GUT scale (ME> 10 zs GeV), then for n~>4, nR 
should not be greater than 2. In fact, it is the difference n_ 
which plays important role in these figures, as we have 
already seen from the one loop formula in (3.6). Compar- 
ing for example the (2, 0) and (4, 2) contours we notice that 
they are essentially the same. These figures differ only in 

the corresponding values of the intermediate scale MI 
(dotted lines). Therefore, the precise number of the exotic 
doublets nL and nR have a significant impact on the scale 
M~. The higher the values of nL and nR the lower the scale 
MI.  

In Fig. 2 we have plotted the contours of constant ME 
(solid lines) and constant MI (dotted ones) in the same 
parameter space, using the field content n 6 = 4 ,  n22 = 
n4 = n~ = 2, n' =n3=n3~' ' = 2, n}. = n3 = 0, for the three cases 
(nL, nR)=(4,0), (2,0) and (4, 2). From these figures we 
notice that the values of the GUT scale are lower com- 
pared to those where no exotic states are present below 
ME. A resonable GUT scale is found in the case where 
nR<_2. 

From the above figures it is clear that the fractionally 
charged states play an important role in the various mass 
scales and the low energy parameters. In particular we 
observe a significant change in the Grand Unification 
scale ME as the number of the doublets FCP's changes. In 
particular, if we adopt a conservative lower value for the 
latter (ME> 10 z5 GeV) in order to avoid proton decay 
problems from the colour triplet fields, various bounds on 
the allowed number of these states, as well as on the rest of 
the particle content of the model, can be extracted. Within 
the recently proposed region of the low energy parameters 
C~a = 0.108 + 0.005 and sin 20w = 0.233 _+ 0.001 [22], from 
the above figures it is clear that in the range (MA, ME), we 
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a, b and c. Between MG and Mz we assumed the standard model content with a pair of triplets (ha =2) down to M~ 
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should have nL>nR, while nR should be small. On the 
contrary, the cases where nL < nR are not favourable in the 
string case. 

For  completeness, we also run the coupled system of 
renormalization group equations for the gauge and the 
Yukawa couplings [21], and estimate the mass of the top 
quark, for a single case corresponding to Fig. la. We 
choose M a n  3 x 1015 GeV and evaluate mt in terms of the 
ratio fly, with v and ~ giving masses to the bot tom and the 
top quarks correspondingly. Finally we choose the values 
of the Yukawa couplings, at Msv,  to be 2t = 2b = 0.5gu as 
a central value. This choice of the Yukawa couplings and 
the experimentally known value of the bot tom mass fix 
the vev ratio to be ~ 34. Our  results show that m t lies in 
the range (140, 190) GeV. This range is essentially the 
same as in the case of the minimal version of the model 
[21]. We should note, however, that for a more complete 
calculation of the top quark mass one should include the 
string threshold corrections to the Yukawa couplings 
[23]. 

4 Conclusions 

In this paper we have examined the evolution of the gauge 
couplings in the context of the superstring SU(4)x 
SU(2)L • SU(2)R model. We have examined the possibility 
of obtaining the correct low energy values for the experi- 
mentally determined parameters 0~, 0~3 and sin 20w. We 
calculated the string unification scale Msu for this particu- 
lar model, taking into account the modifications due to 
string threshold corrections, and we found that it is given 
by Msv = 1.2gstring 1018 GeV. Using this value for Msv and 
the aforementioned low energy constraints, we have con- 
sidered possible cases of allowing; additional matter rep- 
resentations below the SU(4) breaking scale M~, which 
permit the unification of the gauge couplings at such 
a high scale. 

First we considered the case where only two colour 
triplets survive down to some intermediate scale MI and 
we have shown, at the one loop level, that the low energy 
value of sin 20w(Mz) can be expressed as a function of 
c~3(Mz), the scale Ma  and the difference n_=nL--nR,  
where nL is the number of "let't" fractionally charged 
doublets (1, 2, 1) and nR is the number of "right" fraction- 
ally charged doublets (1, 1,2) which remain massless 
down to the scale MG. The importance of this result is that 
the presence of FCP's  in the massless spectrum is not 
going to destroy the renormalization group flow of the 
gauge couplings. On the contrary, a small number of them 
is necessary in order to realize naturally the unification 
scenario in this model, provide, d that their difference 
n_ = n L -  nR is positive. By a two loop calculation we have 
also shown that this dependence persists at this level too. 
Subsequently we considered cases where remnants of the 
exotic (1, 1, 2) and (1, 2, 1) fractionally charged states re- 
main below the scale MG. In these cases, we found that in 
order to have a reasonable Ma  scale, a certain number  of 
them should remain down to some intermediate scale Mx. 

The MG value is intimately related to the number  of these 
remnants as well as to the scale Mr. 
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