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We present a systematic algorithm for calculating certain classes of p-loop integrals. The results are used for calculating the 
highest-N term of the ]/-function for the Gross-Neveu model in four and five loops respectively. The scheme dependence of the 
results is also being discussed. 

The recent evaluation o f  the ]/-function for the Gross-Neveu ( G - N )  model [ 1 ] in three loops [ 3 ] raised the 
question whether the observed vanishing of  the renormalization scheme independent part (i.e. the term propor- 
tional to N 2) persists in the next orders. In this letter we develop a systematic procedure for calculating the 
highest-N term of  the fl-function to any loop order. All contributing graphs can be generated by means of  two 
basic ones, while the (infinite part of  the) momen tum integrals is calculated through a recurrent relation. 

The lagrangian of  the model is 

L =  ~'(i~) ~u+ ½2(~U) ( ~v~),  ( 1 ) 

or in the so-called a-formulation which is more suitable for our calculations 

Lo = 'P(i~) ~ - g ( ~ v )  a +  ½a 2 , (2) 

where g2= 2 and in both eq. ( I ) and eq. (2) we have supprcssed the summation ovcr the flavour index N of the 
fcrmion field P. The field a serves as an auxiliary one. The fl-function of the model has been calculated up to 
three loops [2,3 ] and equals 

422 82 3 42024~ 
f l ( 2 ) = ( N - 1 )  - ~ +  (4r0 ~ ( 4 n ) 3 j .  

The vanishing of  the//-function for N =  1 shows the equivalence to the massless Thirring model. It is useful to 
note that to any j-loop (j~> 2) order, the corresponding ]/-function term is a polynomial in N of  order j - 1 .  
Evaluation o f  the third order term revealed that the coefficient of  the N 2 term is zero, as eq. (3)  shows. Let us 
now examine the renormalization scheme dependence o f  the//-function. Under  an (N-independent)  analytic 
rescaling of  the coupling 

2'  ~-"'- 2-~" C222 "[" C323 "~-C424 (3) 
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we get 

ffl =#1 ,  fl'2=f12, f l&=f3-c2f l2+ (c3-c2)f l2 ,  (4a,b,c) 

fl'4 = f14-l- 2 fll ( C4 + 2C2-- 3CaC2) -l- f12C2 -- 2 flaC2 , (4d) 

with an obvious definition of the ill. Since fll and f12 are proportional to ( N -  1 ), an N E-proportional term in f13 
would be scheme independent, as eq. (4c) shows. The lack of this term shows that by a suitable rescaling of the 
coupling, f13 can be made to vanish. Finally eq. (4d) shows that possible N 3- and NE-proportional terms offl4 
are both scheme independent. 

All the terms of the fl-function can be extracted from the infinite parts of the four-and two-point functions 
calculated to the appropriate order. Although the number of  contributing diagrams gets large very quickly and 
the corresponding momentum integrals become more and more complicated, graphs contributing to the highest 
power of N (namely j -  1 for thejth term of the fl-function) are represented by the three diagrams of fig. l, where 
the blobs represent j th loop corrections containing 0"-  1 ) fermion loops. As far as the two-point function is 
concerned, the only such possible diagram is the one shown in fig. 2a. The correction to the vertex can be easily 
obtained by differentiating the two-point function with respect to m, a fermion mass which plays the role of  
infrared regulator. Finally, the correction to the a-propagator can be obtained in a similar way by differentiating 
the vacuum-to-vacuum diagram, shown in fig. 2b, twice with respect to rn (for more details on the methods 
used see ref. [ 2 ] ). 

The building block for all calculations is the one-loop correction to the a-propagator, shown in fig. 3, which 
we denote by 27(k). Separating out the infinite part we can write 

Z (  k ) = -No9[  2 I - k E (  ( k ) + 4m2(  ( k ) ]g2 , (5a) 

where 

f d2°'p 1 f d2°'p 1 
I =  (2rQE~OpE_m2 , ( ( k ) =  (2n)2o , ( p E _ m 2 ) [ ( p + k ) 2 _ m 2 ]  , (5b,c) 

and 2o9 is the dimension of space-time. The integral I contains the UV divergence for to = 1 while ( (k )  is finite. 
Now the vacuum-to-vacuum diagram shown in fig. 2b can be written as 

d2~O k 
V ( m ) = i  °-1) ~ [ S ( k ) ]  u - l ) ,  (6) 

0 ' - -  

* I 

Fig. 1. Highest Ngeneric diagrams. 

~-Ct... ~ : 
? q Q ¢ 

(G) (b) 

Fig. 2. (a) Diagram contributing to the two-point function. (b) Vacuum diagram. 

Fig. 3. The one-loop correction to the a propagator. 
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while fig. 2a takes the form 

wQk, m ) =  -i~J+l)g 2 d2~k 

PHYSICS LETTERS B 

( ~ - ~ ) + m  
( p _ k ) 2  m 2 • 

21 March 1991 

(7) 

As expected, W(Zk, rn ) has the form A~ + Bm. The infinite parts of A and B are not independent (note that wQk, 
m ) is not the whole two-point function), but related through the simple equation Inf. Part (A) = ( 1 - 1/co) Inf. 
Part (B). This can be most easily checked by expanding the fermion propagator in eq. ( 7 ) around Pu = 0 

g - / ~ +  m - ~ + m  0 /~-/~+ m p,=O - / ¢ + m  ~k +2(pk) - / ~ + m  
(p_k )Z  m2 - k 2 _ m  z + Op u ( p _ k ) 2 _ m  2 + . . . .  k2 m ~ + k2 rn~ 2 ( k 2 _ m 2 ) 2 +  .... (8) 

After all these simplifications the integrals needed to be evaluated can be put into the form 

d2~p 
K ( a , b ) =  ( 2 ~ ( p 2 ) a [ ~ ( p ) ]  b, a>~O,b>~l,a<~b, (9) 

which is a (b+ 1 )-loop integral. 
Upon employing Feynman parametrization, ~(k) becomes 

I 

~(k)= dx (21r)z~o [ k a + p 2 x ( l _ x ) _ m 2 1 2 .  
0 

It is now straightforward to show that ~ (k) satisfies the following differential equation: 

OI i 2 O~ O~ 
~ ( P ) -  am 2 - ~ p  ~ - 2 P  20p2. (10) 

Differentiating eq. (9) with respect to rn 2 and using eq. ( 10 ) we get 

o OI K a  
o m z K ( a + l , b ) = 2 ( 2 a + 2 m - b ) K ( a , b ) + ~ b - ~ m 2  ( , b - l )  (11) 

Taking into account that 

K(a, b) = ( - m  z) (6+l)~°-Zb+af(03)  , (12) 

we finally get the following powerful recurrent formula: 

2m2( 2 a - b -  2og)K(a, b) + 2 b ( w -  1 )IK(a, b -  1 ) 
K (a+  1, b) = (b+ 1 ) o g - 2 b + a +  1 ' (13a) 

with the following initial values 

K ( 0 , 0 ) = 0 ,  K ( 0 , 1 ) = I  2, K(O, j )=RJ,  j > I ,  (13b) 

where 

R J= f d2°'P 
3 (2n) 2'° [~(P)]J' (13c) 

which are finite for j >  1. 
Taking care of the counterterms is easy. In the two-point function of fig. 2a the only counterterms arising are 

those connected with fermion loop (s). Replacing 27(k), in eq. (7), by 

27(k)-Inf .Part  [X(k) ] ,  
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we automatically take care of  all counterterms. The same procedure can also be applied to eq. (6), for the 
vacuum diagrams. In this case we have to add one more counterterm, not included in the previous procedure, 
namely the one shown in fig. 4, where the cross stands for the ( / ' -  1 )-loop wave function counterterm (times a 
factor of  2j). 

Now the desired infinite part of  the a-propagator can be taken as 

g2 (Om)2V(m) , (14a) 
20-1) 

while the corresponding term for the vertex is 

gO., W(~, m ) .  (14b) 

The recurrent formula ofeq. (13a) can be easily manipulated up to any order by means of a standard algebraic 
computer package (e.g. Mathematica). Defining the wave function renormalization constant by Z2 and the 
corresponding four-point function renormalization constant by Z4, the fl-function is defined as usual to be [ 4 ] 

#(2) =222 ~2 Res (Z4 - 2 Z 2 )  . ( 15 ) 

As an application, we evalute the highest-N term of the fl-function in three, four and five loops respectively• 
To that end we need the infinite part of K(a,  b) for a, b~4 .  

Three loops. The diagram of figs. 2a gives the following 1/e-term (e = 1 -o9):  

• 2 3 1 ( - - ~ + - ~ m )  (16a) 1 w2 

while the diagram of fig. 2b gives 

• 2 2 1 ~ m2 1 ( -~ )3  N2 ~ - . (16b) 

Using eqs. (14a) and (14b) we get the following contribution to Z4: 

2 3 1 16 
- - N  2 - -  (17a) 
(47t) 3 ~ 3 ' 

while the contribution to Z2 is 

2 3 18 
- - N  2 - -  (17b) 
(47t) 3 E 3" 

Using eq. ( 15 ) the N2-proportional contribution to the fl-function vanishes. 
Four loops. The corresponding results that we get are as follows: 

• 24 1 [ 6 ~ _ m ( 2 _ m 2 R 2 _ m 4 R 3 )  ] (18a) (fig. 2a): t ~ N 3 ~ 

Fig. 4. Counterdiagram to the vacuum diagram of fig. 2b. The cross stands for the ( j -  1 )-loop wave function counterterm. 
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• 2 3  3 2 1 
(fig. 2b) :  I ( ~ ) 4 N  m ~ ( - 2 8 - 6 m 2 R 2 - 6 m 4 R  3) , 

2 4 N 3 1  24 g 3 1 ( - ~ Q )  Z2: ( - 6 )  

NOW the N 3-proport ional  cont r ibut ion  to the fl-function turns out  to be 

25 . N 3 ( _ ~ )  
( 4 7 ~ ) 4  x , 

showing that  to this order  the cont r ibu t ion  of  the highest N te rm does not  vanish. 
Five loops• The corresponding results are 

2 5  N 4 1  [ ~ (  64 8 2 2 8 4 3 .. [ 16  56.A~ 2 D 2  O~A4D3"t  , (fig• 2 a ) : i  (-~-~n)5 ~ - y + s m  R + s m  R ) + - , v r - ~ - , , ,  ~x - o r e  ,~ )]  

• 2 s 1 m2(44_88+80mEgE+g~m4R3) (fig. 2 b ) : l  ~ U 4 ~ 

(18b)  

(19a,b)  

(19c)  

(20a)  

(20b) 

25 N 41 2s N 4 _  1 64 8.~ 2 . 2  8 . .  4 D 3 )  Z4:qT[)  - ~  ~. (144...5__.5_12m2R2__,2m4R3) , Z2:(--~)5 E ( T - g "  ~x - 3 m  ~x , (21a ,b)  

and  the N 4-proport ional  te rm of  the fl-function is 

26 
(4n)--~-g N a ( 3 2 + 8 m 2 R 2 + 8 m 4 R  3) . (21c)  

The integrals R 2 and R 3 can be calculated numerically.  Taking into account that  m2R2~8 .4144  and 
m 4R 3,,, 3.6062 we conclude that  in five loops the highest-N term of  the p-function is not  zero. 

The intr iguing dependence  on N found in three loops, does not seem to persist  in higher orders. The four-loop 
result is a th i rd  order  po lynomia l  in N, while the f ive-loop one is a fourth order  polynomial ,  suggesting that  the 
three- loop result is a fluke, connected most  probably  to the topological  structure of  the contr ibut ing graphs and 
not  to physics. However ,  the results o f  this work are not  complete ly  negative. The algori thm presented can 
actually be used for calculating next to leading N correct ions in per turba t ion  theory,  and as such might  be of  
some interest.  

We would like to thank R. Kleiss for helping us with the numerica l  calculat ion o f R  2 and R 3. 
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