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The Gross—Neveu chiral condensate in finite volume
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The two-dimensional Gross-Neveu model exhibits spontaneous breaking of its discrete chiral symmetry. In finite volume the
zero momentum fermionic modes condense and a perturbative condensate is formed. Previous calculations of the chiral conden-
sate, are extended to two-loop order and an estimate for the infinite volume limit is given.

The Gross-Neveu two-dimensional fermionic
model has a rich structure, as an asymptotically free
field theory, exhibiting dynamical mass generation
through the breaking of its discrete chiral symmetry
[1]. Its spectrum contains elementary fermions, and
tensor multiplets of the SU(N) symmetry of the
model [2]. It has also been shown to be classically
integrable [3] and 2-2 particle scattering matrices for
different sectors of its spectrum have been deter-
mined {4-7].

A perturbative treatment of the dynamical mecha-
nisms of this model has been shown to be valid, if we
restrict space in a finite periodic box, since then, the
zero-momentum modes condense and their density
is calculable order by order in powers of the renor-
malized coupling constant [8,9]. In this letter we ex-
tend the calculation of ref. [8] to two-loop order and
an estimate of the infinite volume limit is given using
the recently calculated beta function of the model to
three-loop order [10].
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The calculation is done along the lines of ref. [8].
The lagrangian of the model is

B == m)y— S (), (1)

where the fermionic fields carry an internal flavour
index v/, i=1, 2, ..., N. We restrict the space to be a
circle of length L times a,—é¢-dimensional real line,
R % for UV regularization reasons. The time is as-
sumed to be infinite with plane wave boundary con-
ditions (b.c.).

These b.c. determine the fermion propagator to be

1 de + oo ‘k _
Sicem=7 | (Zn)Dn;_wexp[;;Sn D1

(2)

where D=1 —¢ and the space momenta k; are discrete
2

kl=—l’f5, n=0,1,2, ... (3)

For m=0 the lagrangian has the discrete chiral
symmetry

y-yw, gouyc, (4)

0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V. ( North-Holland ) 399



Volume 253, number 3,4

which is known to be broken in the 1 /N approxima-
tion [1].

We shall use the two-dimensional euclidean
Clifford algebra for the y-matrices (dimensional
reduction),

{yyth=—-20". (5)

We define the condensate for m#0 as

d
[ aex om0, = slog zom), ()

where Z(m) is the partition function,

Z(m)= JDwaexp(—f:/dZ*ex). (7)

Finally, sending m—0, from positive values, in eq.
(6), we get the desired result:

[ 2o o030 tim [ @ o
(8)

The chiral condensate satisfies the RGE (L is the
length of the space):

(u%ﬂf(f) a%+yw(/)><v7w>o=0, (9)
where the () and y,, functions are normalized as
BN =—=f(Bot+Bif+Baf?+.) (10)
Yol ==fi +72f+) (1)

So from the RGE (9) we expect that the dependence
of (@, on L will be logarithmic (apart from the
canonical dimensions),

1
<‘/7‘//>L=z{a00+f(a111“/1L+0‘10)+-~-]’ (12)

and the coefficients o, @, @5, should be given as
O =V, O = fo+71)+ Qb2 (13a)

oy =30, (fo+71), (13b)

if the RGE is to be satisfied up to two loops.
The following coefficients are known [1,11,10]:

ﬂ_N—l 8= N—1 105 N-1
0= AN PP T (2aN)?” TPT T 4 (2aN)?
(14)
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and [1,8]
2N—-1
yl_ 27[N 3 (15)
asalso [8] (ye=0.5772)
2N—-1
=N, apo=-— an (Ind4n—7pe) . (16)

It remains thus to calculate the coefficients o, as well
as y,.

The diagrams appearing for Z(m) up to two loops
and their contributions to the coefficient ¢, are pre-
sented in fig. 1. The final result for ayg is

N—1
do= ozt [(N=a+b],

4rn

a=—-Indn+ye, b=Inm—7y, (17)
and the coefficient y, turns out to be [10]
7. =0. (18)

After presenting the perturbative calculations up to
two loops, we shall extract from these the non-pertur-
bative and renormalization scheme independent in-
formation about the chiral condensate. What we are
after is to give an estimate of the constant ¢ relating

(o =cAys (19)

Nr, (211'5‘320

la [j—N-a
1] b2
OO
OO 18| N2
e

Fig. 1. The two-loop diagrams and their contribution to the coef-
ficient atyg: a=yp—In4dn, b=In m—yg.
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where Ay is the MS renormalization group invar-
iant (RGTI) scale of the model,

Ams = p(fof) L

L t = Pol
o= D) (4 BB )

and <T/7-q7> an appropriately defined RGI chiral con-
densate, which satisfies RGE (9) wjlh\out the anom-
alous dimension 7. This defines { @y > uniquely up
to an overall constant [§],

f
<’v7v7>=exp( V;—W((é—?dé)wm (21)
fo
= (ﬂof)y"”'(l + yiﬁ‘)ﬂ_Ty"f—‘f +...)<v7w>L . (22)

In eq. (22) we have fixed the overall constant in an
arbitrary way.

Now define the RGI variable Z, which measures
how much bigger the condensate { > is compared
to L, the size of the box:

Z=L{py. - (23)

Remember that there is a relation between the con-
densate and the mass gap of the elementary fermions
[9,12]:

m(L) = cg(f){Wy)  +power corrections ,
L-0

—

o ~O() . (24)

So if we knew, by some independent calculation, the
short distance coefficient function ¢y, up to two-loop
order, we could extend the calculation of ref. [9] for
the mass gap of elementary fermions to two loops us-
ing the presented results for {yy), .

The variable Z thus qualitatively measures whether
our box is bigger or smaller than the size of the ele-
mentary fermions. The perturbative regime is for Z
small, but we should not squeeze the fermions too
much, so moderate values of Z~ 2-3 are reasonable
[13,8,9]. Finally we introduce the function F(Z):

F(Z)=<—M.

Are (25)

Following the philosophy of refs. [13,8,9] we should
determine the minimum of this function, that is, its
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value which is less dependent on L, in order to get a
rough estimate of the value at infinite volume. This
is what seems to be the correct procedure judging from
the behaviour of this function in the leading 1/N ex-
pansion {8]. More careful study though of the finite
size effects should be done, using techniques devel-
oped in ref. [14] and applied to the mass-gap of the
O(N) two-dimensional non-linear sigma model [ 15].
With the results we have obtained for (@), up to
two-loop order and the knowledge of the S-function
up to three loops we calculate the function F(Z), as
a function of the variable Z:

F(Z)=FyZ"exp(A/Z*) [1+F,Z2"+0(Z%")] ,

(26a)
Fo=agf/bon exp{a o/ oo + 72/ fo =111/ B3) ’
4t
(26b)
A=afy™, u=1+p/Pori. v=PFo/n,  (26c)
F- (BoB: = B1)B1 +3B5 B3 — fobs B1 B, — 5 B\ Bs
= SB? s
(26d)
where
B, = o™, (27a)
20—
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Fig. 2. The plot of the function F(Z), against Z, N=2, for the
one- and two-loop results.
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By= P (o + Kao) B, (27b)
71 &g

By= -2 (ot Kayo)+ P2 s (27c)
71 &opo 2ﬁo

K= (3:Bo—1181) /B3 (27d)

In fig. 2 we plot for N=35 the one-loop and two-loop
functions F(Z) as functions of Z. Note that the vari-
ables Z, in one and two loops are different.

Concluding this work we notice that our method
though reliable in the perturbative regime (small vol-
umes) could be trusted for large volumes only after
the complete resummation of all orders (at least in
every order in the 1/N expansion).

Recently very interesting work of the Bern group
provided the exact mass gap of the O (N) two-dimen-
sional model [16]. It could be the case that the exact
mass gap for the elementary fermions of the Gross—
Neveu model is exactly calculable, since the S-matrix
in this case is also known [4].
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