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The Gross-Neveu chiral condensate in finite volume 
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The two-dimensional Gross-Neveu model exhibits spontaneous breaking of its discrete chiral symmetry. In finite volume the 
zero momentum fermionic modes condense and a perturbative condensate is formed. Previous calculations of the chiral conden- 
sate, are extended to two-loop order and an estimate for the infinite volume limit is given. 

The Gros s -Neveu  two-dimensional  fermionic 
model  has a rich structure, as an asymptot ical ly  free 
field theory, exhibi t ing dynamical  mass generation 
through the breaking of  its discrete chiral symmetry  
[ 1 ]. Its spectrum contains e lementary  fermions,  and 
tensor  mult iplets  of  the S U ( N )  symmetry  of  the 
model  [2] .  It has also been shown to be classically 
integrable [ 3 ] and 2-2  particle scattering matrices for 
different sectors of  its spectrum have been deter- 
mined [4 -7 ] .  

A per turbat ive  t rea tment  of  the dynamical  mecha- 
nisms of  this model  has been shown to be valid,  if we 
restrict space in a finite per iodic  box, since then, the 
ze ro-momentum modes  condense and their  densi ty 
is calculable order  by order  in powers of  the renor- 
malized coupling constant  [ 8,9 ]. In this letter we ex- 
tend the calculation ofref .  [ 8 ] to two-loop order  and 
an est imate of  the infinite volume l imit  is given using 
the recently calculated beta function of  the model  to 
three-loop order  [ 10 ]. 

The calculation is done along the lines o f  ref. [ 8 ]. 
The lagrangian of  the model  is 

~m = q~(i~-- m)~,--  ~N (q7~')2 ' (1)  

where the fermionic fields carry an internal  f lavour 
index ~u i, i =  1, 2 . . . .  , N. We restrict the space to be a 
circle of  length L t imes a , - e - d i m e n s i o n a l  real line, 
R -~, for UV regularizat ion reasons. The t ime is as- 
sumed to be infinite with plane wave boundary  con- 
di t ions (b.c.) .  

These b.c. de termine  the fermion propagator  to be 

i f  dOk +V ~ e x p [ i k ( x - y )  ] 
SF( x, y; m ) = Z _ (~ -~o  _~_~ ~ , 

(2) 

where D = 1 - ~ and tlae space momenta  kl are discrete 

2~zn 
k ~ -  , n = 0 , 1 , ' 2 , . . . .  (3)  
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For  m = 0  the lagrangian has the discrete chiral 
symmetry  

~--.75q/, ~ t T y  5 , (4 )  
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which is known to be broken in the 1 /N approxima-  
tion [ 1 ]. 

We shall use the two-dimensional  euclidean 
Clifford algebra for the 7-matrices (dimensional  
reduction ), 

{7", 7~} = - 2 d " ~  • (5) 

We define the condensate for m # 0 as 

f ° d2-~x (U2(X)~(X))m-- ~m log Z ( m ) ,  (6)  

where Z ( m )  is the parti t ion function, 

Z ( m ) = ~ D q J D O e x p ( - ~ d 2 - ~ x ) .  (7)  

Finally, sending m-~O, from positive values, in eq. 
(6) ,  we get the desired result: 

I d 2 - ~ x ( ~ ( X ) ) o  = lim [ d 2 - ' ( ~ 7 ~ ( x ) ) , . .  
trt ~ 0 q- , 

(8) 

The chiral condensate satisfies the RGE (L is the 
length of  the space): 

0 
(/z ~ + fl(f) ~-f + 7~,~,(f)) (q>gt) o = 0 , (9)  

where the f l ( f )  and 7~,~, functions are normalized as 

fl(f) = - f 2 ( f l  o + fl,f+,82Ja +...), (10) 

Ye~,(O = - f ( 7 ,  +72f+...) • (11)  

So from the RGE (9)  we expect that the dependence 
of  (g2~)L on L will be logarithmic (apart  f rom the 
canonical d imensions) ,  

1 
( ~ ' ) L  = ~ [aoo + f ( o g ,  l n # L + O g o )  +. . . ]  , (12)  

and the coefficients a l  1, OL21, OL22 should be given as 

a t l  =aooTi , OZ2i = a t0( /~o + 71 ) + aooTz , (13a)  

O922 = / a l i  ( f l 0  "[- 71 ) , (13b)  

if the RGE is to be satisfied up to two loops. 
The following coefficients are known [ 1,1 1,10 ]: 

N - 1  N - 1  105 N - I  
f l o - - 2 z c N '  /31----(2zgN) 2 '  f12= 4 (27~N) 3 

(14) 

and [1,8] 

2 N -  1 
7 J -  2~rN ' (15) 

asa lso  [8] (yE=0.5772)  

2N--  1 
a ° ° = N '  a t ° =  4n (ln47~--TE)" (16) 

It remains thus to calculate the coefficients a2o as well 

as Y2. 
The diagrams appearing for Z ( m )  up to two loops 

and their contributions to the coefficient a20 are pre- 
sented in fig. 1. The final result for a20 is 

N-~ 
O~2o = 4 ~  [ (N-  ~)a+b] ,  

a =  - I n  4zr+Te, b = l n  ~r--TE, (17) 

and the coefficient 72 turns out to be [ 10 ] 

y2=0  • (18)  

After presenting the perturbative calculations up to 
two loops, we shall extract from these the non-pertur-  
bative and renormalizat ion scheme independent  in- 
format ion about  the chiral condensate. What  we are 
after is to give an est imate of  the constant c relating 

(i#~"~) = CAMs, ( 19 ) 

Nr. (2tr~2o 

lc~ 4-N 

( ~ )  3!3 b -a2 
4 

0 0 - 0  
16 1--(a 2-4b) 

8N 

Fig. 1. The two-loop diagrams and their contribution to the coef- 
ficient ce2o: a=yE-|n 4n, b=ln n--yz. 
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where AMs is the MS renormalization group invar- 
iant (RGI) scale of the model, 

AMs =/* (ffof) -/~'/P~ 

f+ . . . )  (20) 

and ( ~ ) a n  appropriately defined RGI chiral con- 
densate, which satisfies RGE (9) without the anom- 
alous dimension 7e~,. This defines ( ~ ' )  uniquely up 
to an overall constant [ 8 ], 

f 

( - ~ )  = e x p ( f  ~ d~) (~Tp,) L (21) 

=(fro D e . /&(l- t - '2ff0--Tlf l i f+ . . .)(~2~)L. (22) 
ff~ 

In eq. (22) we have fixed the overall constant in an 
arbitrary way. 

Now define the RGI variable Z, which measures 
how much bigger the condensate (qT~,)is compared 
to L, the size of the box: 

Z=L(~'~')L.  (23) 

Remember that there is a relation between the con- 
densate and the mass gap of the elementary fermions 
[%12]: 

m (L) = c~,~,(f) ( ~ )  L + power corrections, 
L ~ O  

G,~, ~ O (f) . (24) 

So if we knew, by some independent calculation, the 
short distance coefficient function ce~, up to two-loop 
order, we could extend the calculation of ref. [ 9 ] for 
the mass gap of elementary fermions to two loops us- 
ing the presented results for (~TW)L. 

The variable Z thus qualitatively measures whether 
our box is bigger or smaller than the size of the ele- 
mentary fermions. The perturbative regime is for Z 
small, but we should not squeeze the fermions too 
much, so moderate values of Z~  2-3 are reasonable 
[ 13,8,9 ]. Finally we introduce the function F(Z) :  

F ( Z )  _ (25)  
AMS 

Following the philosophy of refs. [ 13,8,9 ] we should 
determine the minimum of this function, that is, its 

value which is less dependent on L, in order to get a 
rough estimate of the value at infinite volume. This 
is what seems to be the correct procedure judging from 
the behaviour of this function in the leading 1/N ex- 
pansion [8 ]. More careful study though of the finite 
size effects should be done, using techniques devel- 
oped in ref. [ 14] and applied to the mass-gap of the 
O(N) two-dimensional non-linear sigma model [ 15 ]. 
With the results we have obtained for (~P')L up to 
twoqoop order and the knowledge of the #-function 
up to three loops we calculate the function F(Z) ,  as 
a function of the variable Z: 

F(Z)  =Fo Zu exp(A/Z")  [ 1 +F~ Z " + O ( Z  2") ] , 

(26a) 

Fo = a 6-f'/~oy, exp ( a ~o/aoo + 72/flo - 71 fll/ fl~ ) , 
71 

(26b) 

A=a~o/e', /*=l+fl~/flo~q, v=flo/7~, (26c) 

(ffoff2_ffl~). ,~+ 2 2 3ffoB2 - #off, B, B2 - fro2 B, B3 
FI = 3 3 

ffoBl 

where 

B~ = f foO~8/e '  , 

(26d) 

(27a) 

20 
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Fig. 2. The plot of the function F(Z) ,  against Z, N=2, for the 
one- and two-loop results. 
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B2 = - -  ( Ollo + K c e o o ) B l  , ( 27b )  
Y~ O~oo 

B3 = flo (C~2o+Kc~o)+  ]~o-~1 B22 (27c )  

K= (72flo -Tiff, )/f ig. (27d) 

In fig. 2 we plot for N=  5 the one-loop and two-loop 
functions F(Z) as functions of Z. Note that the vari- 
ables Z, in one and two loops are different. 

Concluding this work we notice that our method 
though reliable in the perturbative regime (small vol- 
umes) could  be t rus ted  for  large v o l u m e s  only  af ter  

the c o m p l e t e  r e s u m m a t i o n  o f  all o rders  (a t  least in 

every  o rde r  in the 1 / N  e x p a n s i o n ) .  

Recen t ly  very  in te res t ing  work  o f  the Bern group 

p r o v i d e d  the  exact  mass  gap o f  the  O ( N )  t w o - d i m e n -  

s ional  m o d e l  [ 16 ]. It could  be the  case that  the exact  

mass  gap for  the  e l emen ta ry  f e rmions  o f  the  G r o s s -  

N e v e u  m o d e l  is exact ly  calculable,  s ince the S -ma t r ix  

in this case is also known  [4] .  
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