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Abstract

The AIF%: rule in non-leptonic decays of hadrons has been a puzle
for a long time., In the last 10 years new approaches have appeared
which gave some hopes in explaining the above rule,
In Chapter 1 we give a brief review of the phenomenological theory
of weak interactions and the consequences of the AI=§ rule, as well
as earlier attempts to explain it,
- In Chapter 2 we outline the idea of dimensional regularization as a
tool in evaluating momentum integrals.
In Chapter 3 we review the Renormalization Group Equétion and its form
under dimensional regularization.
In Chapter 4, Wilson's Operator Product Expansion is described,
through which, Wilson proposed (1969), the ATFé_rule could be explained,
In Chapter 5, we reproduce the results of Gaillard and Lee, Altarelli
and Maiani, Leading order correction to the effective operators of the
Wilson expansion gave a qualitative but not quantitative explanation
to A3 rule. We have performed the next to leading order calculation,
which shows that these cannot be ignored and that Quantum Chromodynamics

can explain the scale of the effect,




Chapter 1 ¢ Introduction

In the last 6 or 7 years, much attention has been given to the
problem of weak non-leptonic decays and especially to hyperon
decays, since it was realized that in asymptotically free gauge
theories of strong interactions the observed Al=Y2 rule for
strange particle decays, can be possibly explained (1). Similar
explanations can be derived for strangeness conserving, parity
violating weak transitions (2) and also for charm changing
transitions which may be observed in the future (3). In the past
alternative or complementary explanations have been proposed for
tne AT=)2 rute(a).

What is the 4XI=%2 rule? In the (phenomenological) current-

‘current theory of weak interactions, the Hamiltonian density

has the form:
: .

i
)

j . 36“’: G'/\’ra (La +Ja)(l__fa+31°') (a.n

where (5 is a constant (weak coupling constant) heving the

value 103x10° ni'; (™M, proton mass, h=c=| ),

La= Pelx)¥a (1-13) ¥, 00 + ¥ (0 Ba (1-15) Py (%)

is the leptonic current and Ua. is the hadronic current, a
mixture of vector and axial vector currents constructed entirely
from hadronic fields.

The Cabibbo hupothesis states that (§)



J

Ig Ja=Ja cos Be £ 9e oin Be (1.20)

| Ja=Td cosBe +5h sinfe (1.25)
o } Ja=Va+ti Va+Nat+i Al (1.2¢)

 SamVA+LVE+ AL LAY (124)

Tl Ve-ivEA+ A LAY (1.2¢)

C SamVA-LVATAL -UAS (1.26)

and GC is the Cabibbo angle. Va's and Ad's are vectors and axial
vectors currents respectively, trasforming like the '1,24 A and 5
members of two octet representations of SU(3). By this we mean
thats
i) the space integrals of the gquantities \/ob(t,z(_) are the generators
F X of the groups
i ¢ i i . ;
Fro=Vm={doo Vo (e (L=1,..8) (1.3)
! .
{
ii) “: (a's obey the commutation relation:

|
|
|

[Fw, P =i Fiy (1 1)

where f (yk are the structure constants of the group (see Appendix

1), and

iii) VLV and /\Lp transform in the following way:

[Ft(x") ) Vf(m]%{ijk\/;(x) (4.3a)
| [Fioer M ed = a5 0 (1.5b)

If we make the identifioa’gj:ons:
third component of isospin ]\ I3=":3 (’160:)
hypercharge ! Y= 2./\/3 H:S (19‘3)

and L2 (FO* +(F Y 4 () (1.6c)




then the hadron electromagnetic current takes the form:
= VA v (17)
= Vit+z ' :
;Jj 5 /A -

and therfore the electric charge operator (in other words the

space integral of jo ) is:
Q=T34 Y (1.8

With the help of the above equation we have the following

commutation rules:

\ [Q_\é&]:g(k , [ngl]:'gi (1.9q)
Y. dd=0 0 LY El-O (1)

.f-
which means that ga. creates a unit of charge while 3a destroys
.l.
a unit of charge and both ga- and 5a do not change hypercharge.

Finally we can write:

Too has (0vh+t) 30 (oid1)  (1100)
Se (e r+t8) L SE (-t t-h) (1.40b)

where the three numbers Qorreépond to the eigenvalues of
hypercharge, isospin and third component of isospin respectively.
This means that in processes which involve the above operators
the gquantum numbers changé by the amount given in these relations.

Purely hadronic processes. From eq{1.1) we can see that the

purely hadronic (non-leptonic) interactions comes from the term

of g}éu) s \
- Hw=G e (fat™) N

which can be writien in a more symmetric foxrm as:

Ho=G/2v2 {1, 37°), (149)




Using egqs(1.2) we can write:

| HamGI2M2 [cod®efTe. T+ sirt@e[5a 5+
! + G2, simBe cosOe [{IG;SN} +{50‘JTQ}]

Bearing in mind eqs(1.10), we can see that the first term in

(1.13)

brackets in g{w conservs hypercharge (AY=O) while the second
one has [AY[=1 ., we are going to consider only the latter,

From eq(1.8), and for the case AY=%1 we get that ATZ%2,
sincé charge must be conserved (AQ=O). It follows that the
Hamiltonian responsible for the purely hadronic, AY=%t1 ,processes
could have L=V2 ,%2 ,5/2.,.-~ . But from relations (1.10) we can

easily see that JS  is a mixture of I=Y2 and I=3/ only. Thus

we have the following four types of purely hadronic,lAYl=1 ’
processes: AL=Yo, ALzxV2 and Al=3/2 ALz=*1V3

Finally considering the SU(3) properties of Jw for purely
hadronic processes, we can decompose the Hamiltonian in parts
which transform like the 8 and 27 representation of Su(3). We
briefly explain how this comes about. The direct product of two
identical octets can be decomposed into .1, 8 and 27
(irreducible) representation of SU(3). From the 36 elements of |
this product we are interested only in the terms 31‘14 and 3135
(see eqs(1.2) and eq(1.13)), where 3{' is the general element
of the octet. The singlet does not contribute since it corresponds
to JZB::; 333‘3 . The 8 part of :K.u) has purely 1= ]/2. since 8 can
have only L=0 ,Wzﬂand 1 ,and Hwis a mixture of T=Y9 ana I1=3/2

only. The 27 part of Jw can have both 1= Y2 and I=%2 . so

we can writes




How(for AY=21) =G/212 5tn,cosO, -

[ &(8.)1,4/21_4/2)"'}(_(5)—1;,1/2,)+{/2:)+

+ JCCAT L Yo Yo )+ H(2T A1, Yo ,+ 42 )+

5 30(27,1, %2 ,~Y2) +5 H(2T, L, Y, %2)]
(4w

The {5 factor comes from the SU(3)=Clebsch-Gordon coefficient

and it is important since all four last terms in the :Kw contribute
to the same reduced amplitude (by Wigner-Eckart ‘bheorem). It can |
be seen clearly now that the 8 representation parts of Hw induce
processes with pure L\I='/2.,while 21 representation parts induce
processes with a mixture of AT=/2 ana AI=%/2 (while always AT_;"L'/?_).
So the AI=V2 rule says that amplitudes coming from the last

parts of the J‘(,u) sare, by a mechanism which we are trying to
recover, suppressed ‘relative to the other terms,

Consequences of NI=Y9 rule

Hyperon decays. The effective Lagrangian for non leptonic hyperon

decays B~B.+T can be written (6)&
Lfeqfﬁc:Gp? [ CA+By) b, ] 9%7 | (1.15)

where Je is the charged pion mass, and A and B are dimensionless

complex numbers giving the relative amplitudes of the parity-
violating and parity-conserving decays respectively.

The invariant amplitude for the decay is:

H =G e LTPY CA+BP up)] (1.46)
where % is the 4-momentum of the hyperon of mass M and P is the

4~momentum of the baryon decay product of mass ™. . The probability

dl” for the decay of the hyperon B, at rest with its spin polarized




in the direction $ into a pion and a baryon B, emitted in the

direction M at an angle © with 35 is:

2 2 . z~ 2 ( \ :
A= %,:‘:4 P{IA‘I%%—_/AZ-(—JB}Z _(ﬂﬁ)\%%)__)f" + 2 Re A¥B Mp é'[\_}zs)’n@ 40
‘ (147

Thus A can be put in the form:

/C‘.V:F(iﬂ-d é‘ﬂ)isi’n@ Jdo

where [ is the total decay rate and K is the asymmetry parameter.,
Thus measurement of | and ® suffices to determine the magnitudes of A
and B and their relative sign (assuming T—invé,riance, A and B are

relatively real). Table 1 summarizes the amplitudes A and B for the

non leptonic decays of N ,Z and = .(7)

Table 1
M om+u A B

A2 2 p + 7 1.4720.01 9.98£0.24
A§ > n+ 7% -1.0720.02 -7.1420.56
X+ n+ 7t 0.0720.02  19.0420.16
£§ »p + 7%  1.48£0.05 -11.99:0.58
£2 4 n+ 7 1.9320.0f ~0.6520.08
Z§ » A+ 7% 1.55:0.03 -5.9621.12
2.04:0.02 -6.7020.38

ED A+ a7

Let us now see what the predictions of the AI=4/2 rule are. Suppose

that this rule holds exactly. Then it is helpful in visualizing

the effects to imagine that the initial hyperon absorbs a spurion
(a ficticious particle with =% ,T,=-%2) in making the transition
to final particles, With spurion inclu_cied, the hypothetical process

is isospin~invariant. Consider the decay of N .

/\o + S?u‘ri on — Nudeon + Meson

(T,T,)  (1,Ty) (1,7T3) (T,T3)

N pr~ (0,0 (B-%) (4% (4,-1)
N— nm° (0:0)  (%y-%) (%-%) -(4,0)




|
S MNP <ot tls,-5)
==y
/‘ J’((l\o——?’ﬂTW) <é’—%717ol'l§.7”‘i> r C{I./LS)
thus the branching ratio is:

| (A P

! R -1LA=IrT )

! F(A—nTwe) 2 (.4.13)

L
Experiments give R the value: 2.104%0.028 (7)

Next consider the 2. non leptonic decay

Z o+ Spufion — Nucleon + Meson

(1,7)  (T,T3) (T,I) (T2

ZD T amTo(e) (BE) (hed) (41)
T3 OZT=pT (44 (5D (508) (4,0)
3. Z—emw (4-1) (53 (5.-%) (4,-1)

S0 we get - - | N
. <+ . _¢z’12 Yo _ o -
Z+ A"mp\\\.che = A++=2’\< z /gﬁ¢l "2 “—\eg\ 559/ V%ﬁ %V % >
Zts AmPllJLU.de EAZ :%<ﬁ)/3/9_;§‘/1+ %)) ]He€§[“¢ylﬁyk+ﬁ¢‘é:’/z>
and - ) B

|2 Ampltude 2 4 et )
where Heq is isospin invariant and % is a common constant. Thus

we find:

+ _ ‘
A% = fax+%3y t =Y x+ 05y AZ=X
where X and y are two numbers. From these three relations we get:

At-AT=fZAS (190




Finally consider the = decay

= + Spurion —= A 4 Pion
(IT.Ts) (T.1s) (T.1.) (T.T4)
= N1e (2, a) (fa,~2Yy  (0,0) (41.0)

R (k) (,-Y2) (0,0 (1,-1)

|
|
t
|

[

]

Thus:

M (= \7°) _<htas -kl Loy
H(Z )~ <tati gl 4,4

-z (1.91)

Experimer’ltis give the value 0.548+0.0%6 to the ratio of the decay rates(7).
Therefore we see that exact Alz/2 are in fair but not perfect
agreement with the data.

(It should be noted that relations (1.18)=(1.21) hold separately

for s— and p-wave amplitudes).

AI=3/2 amplitudes relative to AI‘—VQ amplitudes, It is possible to -
evaluate from experiments the ratio of Al=%-amplitudes to AT ='/§.. -
amplitudes for s— and p-wave. In the case of /\o decay we get(?) s
for s-wave Az/A1 = ©.027 + 0.008 1.22)
for p-wave Pa/Bs = 0.030 % 0.037 (14.23)
We see again here a violation of the AT=Y2 rule of the order 3%.
For 2. decay‘ the corresponding experimental values are (neglecting

A1=5/2 amplitudes) (7) =

As/A . = -0.062¢ 0.025 C1.2%)

Ba/R+ =-0.076£0.029 (1.25)
where + and — correspond to Zi and 2= decays

Finally we get for = decay:

As/AL =-0043+ 0.015 (1.96)
Pa/Bz = ~-0.13+0.1§5 (£.27)




| Thus for hyperon decay, present experimental data limit AI=3/ 2,

amplitudes to less than about 5%.

Non leptonic Kaon decays. The assumption that the AI='/2 rule holds
exactiy forbids the L1 ° . And ‘the reason is that the Tt system
must have zero angular momentum and since they are bosons they must

have 1sosp1nI- O or P However K—-’Tﬁf has been observed

" showing a small violation of the AI‘/&- rule'

+ ° . .
FCKY =) _ fuBxIS3 (1.28)
F(ke—=won®) +T(kx~=T ") RS
Furthermore the AT=Y2 rule implies:
o o ] " 4 .
(Ke—=7tT™). -2 | ) _ (1.99) -

© (Ks—e TT°)

.Unfortunately, the experimenta.l‘measuvrements' of the above ratio -

are not in complete agreements

"R=2.285io.065 (.8v)v,and, R=i.loto.06 (9) .‘ Li.oo)

v Nevertheiess, it seems unlikely that the AT=Y2 rule will be exact,

KTl's decays. Analys:z.s of the three pion isospin states glves- o
!+ oy =% [ 1,07 “Fl300 ]0°°>=“@'H;07 %130y

o (1. 31)
{++‘7 % 1 '? +k |3, |7 : J#+ooy= f}l 1,17 +{}]317

“vhere [+-07= TSy and by <l sy

Assuming that only I=41 and 1=3 symmetric states contribute .

¥
we gets

legroomes o o e o

* In general three pion system could be in a completely symmetric
I=3 state, in a completely antisymmetric I=0O state, and in a
T=2 and T=1 state whioh have mixed symmetiy, However, an
appropriate linear combvi,na'-tvion of T=4 states (corresponding to _
Taw=0and 2 ,where Lab is the isospin of the two pion system), yields
a complete symmetric T=1 -=state. ‘




Cor= Rl K7 =%6< 14 LRl K + fs<a L hul
\ ool 1 k7 =K 1.1 [t |KHY +36<0,1 ol K77

- (1,32
\ Cooolhulkey =F 4,4 1Hul Koy +F<3,1 ol kY (58
| Groolhl ko =<1t Rl ey +EEC3 ol k)
Assuming AL754 amplitudes to be zero we get:
o) o glar=t-0) _ 2z (1.33)
geeoy T JC—=ooe) 3 |

where ) is the decay rate divided by the phase-space factor for the
appropriate decay.
Furthermore if we suppose that the Al= Yo rule is exact we get

(us:mg Wigner~Eckhart theorem)

_{_1—+—l\4w k¥y= | sl 4,450, '2/\(5‘01(0
Croolthol kK = st ] 40y
Cro-lHul vy = s 1ol 4,0, =Yzl
f:(v\?_ool Hwlkey = ( tr-lh; Va»‘&l'l.()?ﬂo? Voo Hy

where v‘(o is a reduced matrix element, Then taking into account

(1.34)

that K‘3 )kL+K5> we predict:

F (k= -0
J(kt—=o0 0 +)

=g : (125)

3 (ke —o00) -1 (136)

JKkte++-) =¥ (kt—e 00O+)
It is also possible to show that the Dalitz plof slope parameters

& are related by the AT=Y2 rule-(10):

s(kt—=o00+)
S(Kt— ++-)

=2 (1.37)

+——-‘9
c(k—=o0t) .4 (1.%8)

GCKOL—”+‘O>

10
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Table II shows that the observations are consistent with absence
of ALY¥ amplitudes, but shows a violation of the AT=Y2 rule. Although
predictions (1+35) and (1.36) are ambiguous to a certain extend
because of electromagnetic effects, one tends to believe that Kx, ,as

in K-’ decay, the ratio of IT=%3 to Yo  amplitudes is about:
JA?’/:I/A’/Ql"\‘I' 5/, (1.39)

Table IC

Tesk e of the AT='2 vule in \(na decaqs

Test Predickion (8I=4)  Obsesvation Red evence
3K—=+-0) 1 0.85 +0.04 <)
pKt=+00)

3 (ki—rc00) 1 095 £0.05 1)

Z(k+—’++~) -y (kt=+o00)

o (K= +00) _ _
T o 2 963+0.18 a)
O'Ckl." +-0)
- 1 0.93+0.09
(k> +00) (e
(6T < %2)
J=rr) 1 102+ 0.03 (11)
43(_!4’—’1-00)
3 (ki 000) 1 £15+ 04 (14)

2 ¥ (K= +-0)

Finally it is easy to show that the use of the soft pion theorem
forbids the AT=%9 part of the weak lLagrangian.
Consider the commutator of B—_:s ,the charges corresponding to the

axial currents, with the Iagrangian 2(1T,), Then:




[F5. 4] = (/. 200.15) (1.40)

where we have assumed that £ is constructed from V-AxV-A currents

and that .2, can be written as :

L=l )+l (n-w+ L%, 0+ 4 (%,-%)

Then, using the soft pion theorem we get:

fim (_%T__)S <, £, ‘/2)(K> =

c((,ﬂa 1%{”0 . (141)

=-twste [Fi,[F.[Fx ,;Eca/z,tV;,)]]])k?

Now the three succesive commutators can be written:

[FolFi [P, 20am)]] =5 qsema) £Cooma) (44D

where 'mu=%,---; 3/,2 and A+ are numerical coefficients and we have

used that [:;,' are isospin generators. But since K belongs to L=)p
multiplet,the right hand side of eq(1.41) is zero. Therfore the AIl=
for K=3w (and K—=21 )decays is seen to be an automatic cansequence
of the current algebra assumptions in the unphysical limit of zero
pion four momentas-

Octet dominance,lee-Sugawara relation. We have already seen that the

effective Hamiltonian Jtw (for AS#0) can be decomposed in parts
which transform like the 8 and 27 representation of SU(3) (since it
comes from a product of two identical octets). If we assume that Ftew
itself transform as an octet under SU(3), then the AI# rule is
automaticaly guaranteed (see eq(1.14)).

At this point two guestions can be asked:
i)what octet component must the effective weak Hamiltonian be

proportional to?

12

2
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ii)what are the further experimental consequences of the octet
dominance assumption?

In the first place Jfw must satisfy AQ=0 and [Af=1 . Of the eight
octet components only 3\5,5\8 ’ Ve andf}r; correspond to AQ=0, Among
these,onlynﬁeand‘)? correspond toiASL%L. Now we know that Ko‘meson
transforms like J¢+l)w and K® transforms like Oe-i)% . Also we
know that |K°)=-CP[k),and that both k® and kK° have no definite

lifetime for weak decay. But the states:

K =gk =IRD] 5 [ =F[Ix>+E)]  c1us)
do have definite lifetimes and are eigenvalues of CP operation
(CP IKsY=HkDand CPlk°L>:—lk7_>). Moreover K3 must transform like 3% and
K% 1like De¢ under SU(3) transformation. If we assume that Glw is
CP-invariant then it follows thatdlw can transform like Je or 37 ’
but not as a linear combination of the two.

Let us assume thaté%uatransforms like De *. As before the weak
transition may be examined by pretending the absorption of a spurion
h by the decaying huperon. The spurion is endowed with the quantum
numbers of the hamiltonian and transforms like A6 . In this case
the interaction is SU(3)=-invariant:

h + hyperon — baryon + meson
Then the most general invariant amplitu&e we can write must be
a linear combination of the traces of products of the SU(3) matrices
which contain creation and destruction operators for the particles.

The initial baryon destuction operators and the final baryon and

meson creation operators are represented by the matrices:

* Actually5h;could only transform like D¢ ,and not like 97 ,since

it is constructed from two :identical octets of currents.
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B _
Z°, N z+
= e P
= :Z__ _,ZEO 15? ;
B = v n (1,44)
=" = _2 A°
N ve |
B -
Z° LN = - =-
e Ve z —
B= 5+ So =
-5 = = (1.45)
P 7 _9A®
i Y6
T°,.m” - K~
= Ve
vl — . _F° qe o
K* ke -31’\"
6
_ i

while the sI;urion annihilation operator h transforms like De :

i%f(g %a (1.47)

O 4 O
Then the amplitude J(, must bes

M=+ o (4.48)

where

.
Lﬂ‘Qé=_Z__.—“ sc e and MP=§PLI£ (1.49)

are the s- and p-wave amplitudes and
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Ti=te(hBMB®) T4=be(hRBE M) I';f=tr(_h§—‘\?3%3
Ta=te (haMB) Ts=bethB) te(BAW) Is=tc(hMaB) (150)
Ta=be(hBeMY Te=telr(®M)  Ta=tr (bME(ED

(where we have suppressed %5 or 1 depending on p- or s-wave)

Now the s-wave amplitude is 0dd under P operation, while p-wave
is even. Also we require the amplitude as a whole to be CP-invariant.
Thevefore the s—wave amplitude must be odd under € operation while
the p-wave amplitude must be even under C. However under C:

~ — ~ — =
B>B , B—=B ,» M—=M and h-—=*h

Hence we find that:

TiewTs y ToewTs , Ta==Ta , Tee—>T7 , Lu==1s , Ls=—1¢
Thus it follows that $,=S,=Sg=0 and eq(1.49) for J€5 gives:

Ms =52 (Ta-Tw) +54(Ta-Te)+s5(Ts -I¢)  (151)

‘With the aid of egs(1.44)-(1.47) eq(1.51) becomes:

If Ms = Sa[-P—}ré,—A ~ _’:%;_++ AT - ﬁﬁf;_"/\o_{% o=y
| 9 Fo—y—o o — o .
j +ﬁ:/\w-—]+s4[:/\‘%__~/\-;ﬂr_;:__\f_2_?ﬁ-/\+
S L [FRLTT R Y] (152)
" In other words, the s-wave amplitudes, give the following relations:
(A2) N —epr NE (53-254)
(A2 N—emm® - 4% (55-254)
(x1) PR ' 55
() ZI'>pr —INT 83 (L£.53)
(1) T —vaw S5+53
=) Z—A 4G (29:-54)

=7) Z—Aw “ANE (255-54)
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The Lee—Sugéwara (13) is a new relation (besides the anticipated.
AIFY, relations), which appears when we combine all seven of the

above relations:

S(AZ)+2s(=N) =3 5(2%) (11 54)

The Lee—Sugawara relation requires the assumption that the effective
Hamiltonian transforms like Js s Which is a stronger condition than
the AI=lo rule (see also footnote in page 13 ).

No further restrictions on the p-wave amplitudes can be derived if
theds assumption is made. On the other hand, if we assume that the
weak Hamiltonian transforms 1ike<37- (not expected in current-current
picture), then the p~wave amplitudes satisfy the Lee~Sugawara relation
and the s-wave amplitudes are not restricted., In actual fact, the Lee=
Sugawara relation appears to be quite well satisfied by both sets of
amplitudes (soft pion techniques give further understanding on this

subject).



Chapter 2 : Dimensional Regularization

Ultraviolet infinities and their treatment were one of the most
challenging problems in relativistic quantum field theory. The simple
idea of subtracting the infinities and absorbing them into the bare
quantities (mass, charge etc), must be a process that preserves the
gauge symmetry of the underlying lagrangian., The best method, so far,
for regularizing these infinities was proposed by t' Hooft and
Veltman (1) and has the name of "dimensional regularization". By

regularization we mean a technique, a mathematical prescription,

which renders infinite Feynman amplitudes finite, by a specific cut~
off procedure.

First we will outline the concept of analytic continuation by a

Theorems: Let 8L(Z’>be an analytic function defined in a region ;s and
let @2 be another region such that $4ﬂ5525R?4¢- Then if a function 81@)
exists, is analytic in the region @Q and
g4(2) =ga(z) for z€R , then there can only %5_ p
be one such function. We call gZand (5&(2) _
analytic continuation of each other m%i
(Pig. 1). What is the basic idea in dimensional regularization?
Consider the integral in four dimensions (in Euclidean space):
B P
}1(4)25_____ (2.1)
| kZere®)®

The above integral diverges because of contribution from large k .

17
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But in three dimensions:

I(3)= |

% (2.2)

is a convergent integral., The reduction in dimensions makes the
integral convergent. So the idea is to define the integral over
n-dimensional space (M=04,2,---), and then, making a further step, for
n complex.tl(n),where n now is complex, can be defined as an analytic
function of n. Using standard techniques, like symmetric integrations,
shift of integrations variables, integration by parts, we may compute
the integral and finally, by analytic continuation, we return to m=4
dimensions. In order for this method to be correct, it must possess |
two properties:

a) for finite diagrams, the limit M—=>4 must give the conventional
result, and

b) for infinite diagrams, the method must give a function of n which
has poles at M=4 . As an example we are going to evaluate the infinite

part of the vacuum polarization diagram in Quantum Electrodynamics
F nles for Q.E.D. in Appendix B). B ffi

( Peynman rule Q ppendix B) “ o Fiae

Pig, 2 gives:

T Sé”E)T\F[LeX}( (L@)X E/,{/ J | (2.3)

Going to n dlmens1ons.

p |
I(ﬂ):-fQ )%T\r[ X)V

/M/m] | (2.4)

_ 2 [ % LM dem)3 d vm)
(2211-)“ CREm®) ((k-py= mt)

Using traces formulae (see Appendix C) in n dimensions we get:

Thy=-| £k {4(%“¢3V°’+3““’a”‘— 37 8%°) kKo 4

Lmy=- ——
@m™ + 4 a? m? k2 ((k-p)%-m?)
(2.5)
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Now we use the formoloe of Appendix C:., and since we want the infinite
part only we may expand everything in €=m-4 and select the 1 /e term

_only. We know that (see again Appendix C) :

r( QJ——’“‘/Z) = - 1/6 +(1C‘m'|Jr_c l:exms for 5—703
| 1/em™ = 1/2m)? (1-€Pn2w) + O (2.6)

1
| [# on - L5 [ tnlkon) vocen @)
1 1 '
d -
j; X[Kx(l-x) «n]i'n/z J' dx[[Kx(! Y- - (/L+ € In (Kix(-x)- fm))J (2.8)
So the infinite .part is: l +0(es)

IP(I‘“‘” 2z (‘4@@@4 (PR~ P'gpv) | (2.9)

As it was expected * the terms proportional to the mass of the
electronm cancel out and eq(2.9) has the correct gauge invariant

form,

- Dimensional Regulamzatlon and Massless Fields. (2). In order to cope

with the infrared infinities, in the case of massless fields the
method must be modified. The trick of introducing a finite mass does
not solve the problem at all because :

1)spoils the gauge symmetry of the original theory and

. ¥ I}m is going to be contracted with the polarization vectors EIA
and g’ of the external photons. Gauge invariance of Q.E.D. tells us

that this quantity stays invariant under the transformation E,)h—?a"4 + kf“.
Therefores '

ellL e’ = (ehekh) IP,,CE‘% K”)= el Te”+ kP TLe’s a“IPuk”+ k‘*l‘wk"

= KHI 3 Il.‘uk.v O ) kHI uk =0 '
So the only form I},u; could have is the one in eq(2. 9) Clearly,

terms like m: 8}“’ would spoil the invariance,
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2) when one is going to take the limit 'TTL—?O and m—=4 then {im &m

Med O

Zlim Lim . So, for example the integral:
miros M—4
sy [ 'k Yy

cannot be defined unambiguously (for m—<4 dimensions)

Leibbrand and Capper (1974) proposed a redefinition of the
generalized Gaussian integralvin n-dimensions. The net effect of this
redefinition is an introduction of a mass which is a-function of
dimensions: m=m(%), where n are the dimensions of the space, with
the following properties:
a.)fm(’LL is a non-zero analytic function of the complex varable ’12":
b) M(%)=0for 1 B-xy L9 where H=o0,4,2,... .

c) O_L_—M@Lofor - +q 3 )=9,5,2,-.and £<Lo where Do is finite.
d) Re[m( 2)]>o for any Re[fm];é% s \=0,4,2,-. and for some Im [mJ
A function which satisfies the above properties ig, for example:
mma)=1-cos(2mcosCam (--- (cosam ZI--2)))
with MU nested cosine functions, wherem is finite integer.

The above function has the additional properties:

)CL’T o for

<
2
2 1)
£) d*mB)/ for o,
The intoduction of ‘m(’%) is not a gauge invariant process for q17£4 ’

? \r/\:o) l/ 2/ - a.nd 8 <‘(’lrrn_i

Y
A
3 s9=0,1,2,--. and L >a™d

but property e) can make it gauge invariant to any finite order.

EBxplicit construction of the analytic continuation of an integral ‘(3).

Consider the one~loop integral:

- Voo 9 '
I = jdnp DO\ Pb .= Pc , - - (Q.IO)
Cprky=me ) o ((prke)Zarie ) %%

where fhl,gﬁz---ﬁ\j are not necessarily in‘begers,k(,—--;kﬂ are external
momenta, and PGJ"‘JPG are components G,..,c of P ., The above integral

will be convergent if:

M>-1, a1, -5 D d>-1
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and 402+ < 2 (o +dar--tole) (2.l|>
(the first relation ensures us that there are no infrared singularities
while the second that there are no ultraviolet singularities).

Now we insert in eq(2.10) the expression:

1 5 9
m =Z ‘G?L

We may perform now partial 1ntegrat10n, within the region defined

by (2.11). We obtain trivially:

_ 4 17 (2.12)
B (ML Qg+ 0+ 9y = 200~ QX ym --- — 20l p ) ‘
where ,
f /: cln ’/\1-“ 9\[- 2,0(1<’Tﬂ1+[< +('P Ki))
I j PR--P BKP+k-) «ni)d”i( )u_"< )dﬁ (2.13)
20, (Mark3r(-Ka)) e (mirker(pked)
CY* (prkaimiyert ( e O () ((prkmt ) e

The 1ntegral:I converges if:
Ai>-4, Da2d-4 ,...,030-1

omd M+ da 4o+ (ol rRat vl e+d) L oy (2.14)
¢L+31+32+u~uf33 < Q(d4+uh+~uﬂ-dc)-+i

This is a larger domain than (2.11) and the right-hand side of
eq(2.13) is the explicit representation of the analytic continuation
of T into this new’domain

The above operation is called partial P .

In the case of vector fields, the prescription applies in a similar
way. But we must be careful in doing the vector algebra since all
internal lines are now n~component vectors.

In two loops, there are four partial operations as we shallsee.




22

Renormalization. In order to obtain a consistent theory, it must be

shown that the poles for m=4 can be removed order by order in
pertubation theory. In any order, the infinite parts, which must be
subtracted may not have an imaginary part (optical therem). This means
that the new subtraction terms must be finite polynomials in the
external momenta.

Let us prove this in the one loop case., Consider the integral'I of
eq(2.10). If the integral is convergent in 4-dimensional space, it
has no singularity for m=4 . If it is divergent, it is défined only
in a region to the left of M=4. Analytic continuation, by partial
integration, shows that the integral has a single pole at n=4 .,
Using Feynman parameters to combine the-propagators and the rules of

Appendix C, we obtains

I=F<1-§>J’dxb..j¢xi PO

oI (2.15)
where § is some integer,sg are the Feynmaniparameté£s and E> andypq
polynomials in the masses m ,external momenta k and Feynman
parameters X; o The pole form=4 is in thefT}%) funetion, There is no
trouble hidden in the Feynman parameter. integrals, at least in the

one loop case.

The residue of the poleﬁsﬂproportional to:

j.cbu jcb(i (M*)’%"A P(xi,m. k) (2.16)

Obviously (2.16) is a finite polynomial (there are no terms like Onk’)

Two=loop diagramg. Next, we consider the two~loop case. First we

suppose that we have introduced counter-terms of the form

P (wm, k)
o
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and made the one~loop diagrams finite. Consider now the general two-

loop diagram:
q Tt

Bl P= Fig. 3

?l' 2
3 P

The corresponding expression iss

XAP‘ C‘P“ 1 ' (2.17)
{ (P\Z"rm\z)o‘(.(‘?z*K) mz)’a (CP‘ P,,_)—'ms)?_ -

We call this an(??ﬁ)diagram. In writing the expression (2.17) we have

supposed that all propagators depending on P, have been combined by
means of Feynman parameters, Similarly for P2 and D-P,. Also we have
suppressed all numerators taking care, of course, of the powers of

the loop momenta, i.e. a term lﬂﬁjl—- is written as 1 . Kis

(prmi)* (Pamt)3
some external momentum (or momenta).
There are three one ~loop diagrams contained in the above two-loop
diagram
1 ) Fiq 4
‘ L
; o x 4

In the case that these diagramS'divergé, we have counter-term. -

contributions:

N/
7<

g S FL% )

VA

where X vertex means the pole-part of the one-loop diagrams. Of course
these counter-terms have double-poles also: one pole from the X vertex
and one from the loop integration itself, But there are also single

pole terms coming from the pole of the vertex multiplying the finite

part of the the loop integration. These terms have the forms




—Ae——E»n K?

These terms must cancel against similar terms coming from the two-loop

diagram (opy diagram), since being momentum-dependent they cannot

be renormalized away.

Let us see now the four partial integrations, we promised, for the-

two-loop diagrams:
a) one may insert the expression:

‘fn
3

=1 apu.'

in eq(2.17) and perform the partial integration. The result shows
a pole for M=2(d+¥) (since only the terms in the exponents o and ¥
involve P, ). This is the partial (dy) operation. Similarly we may
define the partial (By ) operation, with respect to P, (showing a
pole for M=2(B+y)) and partial (xf), with respect to P, after the

substitution P)= P-P, (showing a pole for M=2(d+B)). Finally we

define the partial (&/By ) showing a pole for dm=2(crpry)e In this

case we insert the expression:

Z [BP:M. ’a_fp_“ )

3?4, 'B‘Pu

Let us write down what we get after applying partial (oBX) to

eq(2.17) _
o N :
Rn—ﬁd—Qﬁ—Zg I . ' _
n. " r Q o 9P ('mi_“'k-"' Pz'k) Qﬁfng 9.18
I S'c} P d L )d-ﬂ )15(')75 ( )o:( )?ﬂ( )5*‘ ¢ )% ¢ )B( Y+ ( )

Let us find now the form of the counter-terms. Consider the simple

case when only one of the sub-diagrams diverges. For instance cu—X:%

24
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and B=2 (then, of course R>Q ,B+3>2 )(*). Consider the one=loop
diagram corresponding to the divergent sub-integral (oix ). We have

the expressiont

e
iy .
' E P ('P1'2+ m2 )‘X(( Pl—_ Pz)zﬁ ‘ﬂ'l; )Bi (2.1%)

Combining the propagators by means of Feynman parameters and performing

the integration over p, we get (ignoring irrelevant factors):

: A 1
r@wg—%—) (o7~ )i (2.20)

where M is function of m; and the Feynman parameter. The pole part

of expression (2.20) is (see Appendix C):
9

A+y.. 1
-2

‘ —
So the contributon from the counter-term has the form:

j cl“fz 2 4 :
(+y-2) ((Pzﬂqz. rm%)?’

(2 .21)

This must be subtructed from the two-loop integral which, from

expression (2.17) and (2.20) has the forms

oy reern) 4 2.2.2
S.P(P5~M’)°“3‘%— (G (222)

We are just quoting the follwing theorems (see ref (1),1972):
Theorem 1. The difference of (2.21) and (2.22) for «+J=2 and ’Pzi

contains poles which have as residues polynomials of finite order

(*) The sub-intégral ( o« ) is said to be divergent if owj¢2and
convergent if «+3>2 . More specifically if &+}=92 the diagram is said
to be logarithmically divergent, if u+\g=% linearly divergent etc.,
The same applies to the other sub-integrals. Similarly if o+ Py=2,%,---
the integral is said to have a logarithmic, linear etc overall

divergence, -
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in the external momentum.

Theorem 2.,If the integral (2.17) is overall logarithmically divergent
and contains no divergent sub-integrals then it contains a
"harmless"(*) single pole at m=4 .

Theorem 3. If the integral (2.17) is overall divergent and contains
no divergent sub-integrals then it contains a "harmless" single
pole at M=4 .

Theorem 4. If the integral (2.17) is overall convergent or
logarithmically divergent then it contains at most one divergent
sub-integral, The denominator not involved in the sub-integral has
exponent 293 .

Theorem 5. If the integral (2.17) is overall convergent or
logarithmically divergent and contains one divergent sub-integral
then the difference with the .. subtruction diagram containing the
pole - subtruction term corresponding to the divergent sub-integral

has only harmless poles.

(*)By "harmless" we mean that the residue over the pole is a

polynomial of finite order in the external momenta.




Chapter 3:Renormalization Group equation(1)

and Dimensional Regulatigation

Consider a theory with one dimensionless (in four dimensions)
coupling constant ¢ . The lagrangian has bare parameters The and Qge
The dimensions of space-time is M. , and unrenormalized Green's
functions are obtained in pertubation theory by using the rules
for evaluating M -=dimensional integrals.

The Green's functions will have singularities for m=4 , By

giving Qs and Mg a suitable M -dependence and by multiplying

the unrenormalized Green's functions by suitable wave function

renormalizations, we obtain renormalized Green's functions which

are analytic at m=4 . The value at N4 is of course finite.

In order to follow the above procedure we must parametrize the
renormalizéd Green's functions by a renormalized mass and
renormalized coupling constant. The unrenormalized parameters
are defined in terms of : the renormalized ones,Tt and possibly
of an extra mass n , according to some prescription. Of course,
any prescription will have bare and renormalized parameters equal
in the lowest order of the expansion in powers of Qg .

The renormalized mass Mg and the renormalized coupling constant

gr can be any function of m , anlytic at m=4 ,
1f 1 ufm is an vnrenormalized connected and amputated Green's

function with N external legs and Zyil is the renormalization

27




constant for each of its external legs, then the renormalized Green's

N
function g™ is defined:

,r\/
ez (3.1)

~J

(
FE“” is analytic at M=4 and so:

=N . =Ny
[ = lim e
- ’“"‘747

I

is finite. Since for each M #4 , ’ﬁ{m is computed as a power series
in 9p and as a finite function of M« , we see that e depends
only on Q¢ and Mg , at M=4 ,- and not on d%k/d'n, o

In the M ~dimensional procedure, the bare coupling constant e
has dimensions of mass to the power (4-’&)13 sfor some constant P

(it is easy to show that for ¢4 theory P:’L syfor Q.E.D. and

* : ‘
Q.C.D, p=4/2). The bare mass will have dimensions of mass. We need

an extra mass parameter [+ , which could for exami:le determine
the substruction pointT

The wave function renormalization constant Z ,the renormalized

coupling constant 3r o and the mass renormalization Lam (Emb/”mﬂ),

which are all dimensionless, are functions of e H(A‘“)P

In other words, we assume (and we are going to prove it latery(3))

and T only.

¥ If we assign to a derivative 3}4 dimension 1 , the Lagrangian
has dimension 7. . A boson field has therfore dimension (w-2)/2

(from the kinetic—energy term for example). For 5254 theory the

.coupling constant has dimension 4-m. , because of the term 3954/4,

while in Q.C.D. has dimension(A—n)/z because of the term %QGGGG in

the Lagrangian.

f

1t 't Hooft defines i to be a "unit of mass", having dimensions
of mass, and its only use is to absorb the M~dependent part of

the dimensions of the bare parameters in order that for any L

the renormalized parameters has the same dimensions as the bare one

for m=4 (29,

28
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some renormalization prescription that allows Z , 3 and Zan
not to depend on ™y . Then by dimensional analysis M and 98
“-p

can only appear in the combination %

Scaling behaviour of Green's functions and Renormalization Group

Bquation. Consider a renormalized, amputated and connected Green's
¢

function r;zm(p,gﬂ,mg,p\) ,sWwhere p is the set of external momenta.

['& is defined from the unrenormalized ru(M(P,gB(m)'mg(ﬂﬂﬂD through a

mass-independent renormalization prescription defined in the previous

section}

‘“’(P ama,w) = lim T2 (? g (™), Mg (T,m))

n—4

where

yas
rf({N\ (P,%R('n),’mk('n) )P’rn') =

(m( 0y 3o (BeMPE™F, M), Mem)  Zom (2am W 0m) 1 ™)

(3.9)

P )
7" (g p N m)  TW (P gem M), )
leferentlatlng w:.th respect to W , keeping Mgy 38 ’ P and

M. fixed (and multiplying afterwards by p ) we get:

[}4 Tt B E e 2 2 K22 ]r o (3%
| In the limit M-—>4 we get:
P B Il meg ~ 5380 [ =0 (24)
where
ﬁ@a@ Lim L o3 (emp (3.5)
gro3R)= L p 2 dn Zi Carop ) (3.6)
Y=t b Z Caamp i) (3




1 A1l the coefficients P , Jm and ¥ are finite as m—4
since they appear in a differential equation ((3.4)) for a

l renormalized amplitude.

! Suppose now we scale the momenta P with a scale variable X
|
l

By dimensional analysis we get:

l
D D 0 _

][Hg;w o e - D] L g0me 1)=0 (38

where Po 1is a set of fixed moménta, and Dr are the mass

dimensions of ]_K . Combining eqs(3.4),(3.8) we get:

i[_m %_ +¢<%a%_mg(1+gm(%@),%{ +D -5y C%R)j" (32.9)
B Ty (R 8 me, ) =0

The solution of this equation is given in terms of the effective

coupling constant —%(gg)fx> :
-\o(%%:@(%) and G D=8R (3 10)

A similar relation defines the effective mass ’Y—YL@UR,D‘). The solution

of eq(3.9) is given by:

j 5 ?/no( ) -
| . r —_ — —_— -
T2 (0 g0,k )= o " expl ot a[Feanet]| - T (P, )
L | ° I
(3.41)
where 1 is defineds
o=e® (%.12)
Let us write down now the equations which give the bare parameters
Qg 2 M, and Z  as a power series of inverse powers of (m-4) ¥

The residues are functions of the renormalized parameters and S,

3

¥ While 't Hooft uses |x to absorb even the dimension of Mg ,
rendering "My dimensionless, we are following reference (3)

where Mg has dimension 1 (of mass).

30
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| o

| (a-L)P O (3R, MR, ) a

PR R e 15

’ -l bv(%R)mR’}’Qz -, 3.\ 35

| Mg =MF L™ aoayy - vo™ (3130
& v (Brymr.W (3.13c)

Z = /1_+2— an__zov

<
Ri)

So these guantities are just 'bhe renormalized quantities ( 3r , Mg

and in the case of 2 , 1) plus whatever poles are needed to

cancel the poles in the Feynman integrals. Given Ar 9 M and |28

the coefficient &, , by, and C, are unique,

Now we shall prove that : Ov», by and C» do not depend on My
and that Gy and Cy do not depend on My ( R} g is dimensionless).
Prom that it follows that ZZem does not depend on My and | .’
Proof: when we expand the Feynman integrals, in order to find the
poles and *subtruct them, 1ogarithms of i~ will appear, since o
appears only in the combinatibn wa" (multiplying the coupling
constant). Also, .in the residues of the poles Mg only appears in
polynomials (2). So we have positive powers of "mg only, and these
are independent of M. (no logarithms of ™Mg )e But Gy and cv
are dimensionless., They cannot therefore depend on p at all,
since if they did, |+ must enter in the combination (H/an;'—q,i.e.
with powers of ﬁg dei)ending on . , Logarithmic dependence on fi
is also forbidden since it will appear again as ‘P/"\P/’TY]R and %fmfa
are forbidden also, Non-dependence on }A ymeans that Guv and Cvw
do not depend on Mg either, since they are dimensionless. Now buo
has dimension of mass (as Mg and |+ have). With the same arguments
we can easily show that b,, is proportional to "Mg and by writting
’m; ’YYLR'ZIm s we deduce that i is independent of both },L and

MR.



32

Let us find now how ﬁ(%a) ’ X'm(gg)and X(gg) are derived from v,
by ana Cp . Differentiation (and succesive multiplication by o )

with respect to i of eq(3.13x)gives:

\P[@W )@t Ay + 22 (3.14)

Tt 1l i

| (m-4)*
We know that (}q%)\g is analytic (from 1ts position in the eq(3.4)
B

for FR ) at m=4 ., So we can write:
f! (M ’;rf %P‘)é: Xe + Xi (T=4) + %o (M-4) .- (5.'\5)
Applyiﬁg eq(3.15) in eq(3.14) we get:
X ~(0a3 32 )p
Xe=g.p | | (3.16)

Xy =0 for VYo

and the identities:

%Clw CBQV P v :2 .o
J\’b%R XO,J{_%%R)Q-PC\ v=2,3, (%.W)

Therefore by using the definition of ﬁ(gg) (eq(3.5)) we get:
| |

B(30) = (as- gggg')P | (2.19)

Similarly we get: '
ob, 4

"?Sm(%@=f>‘8k rgg;' p—

o, (319)
”Bbu by -

\%8’2 Yo+ 9% ngb" \ ,5—8; —,m—é y=2,3%

and 7 .

' 3(3e) =P3¢ 2;'12

<aCVI (aCu _ c ¢, (5207

: %8 38 = P3r Cv- (agk V=2,%
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Eq(3%.20) shows clearly that ¥(Qr) depends only on the residue Cyi of

the single pole.

Dependence of X function on the renormalization scheme(4).Consider

two renormalization schemes with the coupling constant % defined
o’ o

at the point where all external momenta equal M . If I g and rg

are renormalized inserted Green's functions (with the insertion of

the operator O ) then™:
=727 and R=ZT[" (521)

/ .
where 2, and < are the renormalization constants in the two schemes.,

Thus:

' /Te=2"/27 (3.92)

Now it is easy to see that:

Z\/'—_—- 7, F(9) =27 (1+8%+0(3%) (3.92)

Consider now the Y — function, From its definition (see eq(3.7)) we
get: |
Y = \u——fmz Z, pwz —Z,(p« 2.7 )F+

— L(n F)Z =

}A,alu«%Z +p.——’?mi- = Y+ ,—a?% F=

I

B‘\-@—g%F ‘g)(%) (534)
where @(g)is the P -function (see eg(3.5)). Now 15(5) can be written:
Pl8)=Pog’ f13% O(g7) (%.99)

Using eq(3.23) and eq(3.25), eq(3.24) becomes:

* Although we have for the two schemes the same g defined at the
same point }.L » we could have different Z , This is not quite true

in the case where minimal substraction procedure is used.
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=%+ i%—%(m—o(gl) B(a) =

=%+ (1-0082) 2oq (B19°+ B35+ O(gh) =
=Y + 2afogt-.. (3.26)

Therefore we note that the coefficient. of ggkdiffers in the two schemes,
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Chapter 4 s The Operator Product Expansion €H)

The operator product expansion expresses the product of local

operators AY) andBE) in terms of operators O; in the limit x-y-=0O3

AW Blx) 2= Z Colx-4) Oi (9) (4.1

where the C 's are c-number: functions, generally singular. By saying
that this is an operator expansion we mean that the singularities

are independent of the matrix elements:

<o<lAB\B7——>,LZC<<o<JOLl?>> (4.9)

where the C 's are independent of & and ?’ .
A B O o, o ‘
1fd ,d,d andd are the (mass) dimensions of A,B,C:and O.,

then the follwing equation must hold:

)C' dA-l— dB—- JOL’
x=2y 4 Che /] (4 5)
C"(X"”’—?<><—>’> :<><—>f>

From eq(4.3) we can easily see that the operator O with the

o
smallest dimension A dominates for x— Yy , since the corresponding
A B 1O¢
is the most singular (Cl-v—a—fJ maximum)

~ Operator Product Expansion and the AT/2 rule ., Wilson (1) first

proposed a mechanism for explaining the A®/2 rule through the Opérator
Product Expansion (0.P.E.). To lowest order in the weak interaction,
the matrix element for a weak non leptonic transition is expected

to be of the form:
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CERl o~ [ d% DM FTEF > (4.4)

where |f) and |{>are final and initial hadronic states, J is the weak
hadronic current (¥*) and.%jgvﬁﬁis the W—boson propagator. The matrix
element of T(TJ) is completely determined by strong interactions.
z 2 P

Now for x being space~like (x<© ) and for X]Mw=! and assuming that
!WV¢>>ilGdK1 GeV is consider to be a typical Hadronic mass), then the
contribution to the integral of eq(4.4) comes from small xand in this
region we can use the 0.P.E., for the T-product of the two weak

currents:

T (3T () = 2 Cix) OL(0) (4.5)
L

The mass dimension of a spinor field is 35 . So the product
has dimension 6 ( since each current involves two spinor fields).

If Jq'is the dimension of the operator O, then we have:

or

o d
Colx e (M or Cooa k(508 (4.6

Having eq(4.6) in mind we can rewrite eq(4.5) in the forms

- . w4 o (&)
T(300T%e) = T SR oo + 2 bj(m) 0y () +--
(4.7)

)are operators with dimensions 4 and 6 respectively

where OE4) and OJ'(c
and m is a hadronic mass parameter, In the free field theory, the C},bfs
are dimensionless. In general they show deviation from naive scaling
and they are singular when x—o. But in asymptotically free gauge

theories, this deviation is only logarithmic,

(*) We consider here only charged weak currents since the neutral
current is strangeness conserving and therefore does not contribute

to the processes.




37

So Wilson proposed : if we can show that the operator which have |AS|=|,
AT=/9 requires a sufficiently stronger singularity than the operator
with |AS)=| , A1=4 %, theAl=)y rule is demonstated. Let us see how this

comes aboute If
dl/?_ ds,
Cva (Mx)~ £n (mx) , Cya (mx) ~Am ()

where Cy and Cs/q_ are the coefficients in the Wilson expansion
corresponding to the operators with |ASls\ , AT-Y, and A¥j¥ respectively,

then from eq(4.4) we gets

dy-d% .
<EIHN O pz0y,% m* <E{Onli>

(the integration in eq(4.4) which leads to the above equation will
be made explicitly in Chapter 5)., Since M ~100GeV and m~GeV (typical
hadronic mass), then 129 %}‘;—Nlo and reasonable values of 3% and 63/7_
could give the desired value of the enhancement. For example , if

z 1.3 R
Jlﬁ_ds/z ~41.3 4then —?rn(.MmL:)nsQO confirming the experimental results.

0.P.E. and Renormalization Group Eguation. The renormaliza‘tion group
equation for the Wilson coefficients are easily derived. One simply
considers the short distance expansion of Green's function of products
of operators, and explores the conseciuences of the renormalization
group equation satisfied by these Green's functions,

Consider the short distance expansion of the operators A and B’ ¢

ACOBo) 5% T Cilxgr mm) O ()

where g, m and b are defined as in Chapter 3 and 0; are operators
with the appropriate quantum numbers.,

. n
The above expansion means that the inserted Green's function T;B

Mhe = <o TS AGOBE T g0}y (4.8)

can be expressed, when x-e , as an asymptotic expansion:
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?C[(X:g)m; &) Gho; where ] (4.9)
Goai = <0 | TLO1 T ey} o)

Now the n-particle Green's function with the insertion of A and B
satisfies the Renormalization Group Equation

[ s * Byt Y~ Z Ie(®) + 3 3a )] Tig =©

(4.10)

where XA and \5?: are the anomalous dimensions of A and B. In our case A
and B are conserved or partially conserved currents which have zero
anomalous dimensions. (). Also we can replase the sum over K=1i,m by
M/y times the anomalous dimension ¥ ssince all external particles
are the same,

Bearing in mind that the Green's function with the insertion of O
satisfy the Renormalization Group Equation, we conclude:

[/A%—PF)—S—g—'ﬂ-xmm%ﬁ —Xi(%)] Ci(xg,m, ) =0 4

The Wilson coefficients behave as if it were Green's function of A, B
and O (irreducible with respect to 0 ).

The above consideration applies in the case where no mixing of 0 's
arises. In this case, the operators 0; are not multiplicatively
renormalized and therefore the anomalous dimension ) takes the form

of a matrix Yij. So, eq(4.11) becomes @

2 ‘
|35 + By b i | G Cogmip) = 3 € (o gumif)
‘ _ (4.12)
Now the solution to eq(4.11) and eq(4.12) are given :

(*) The electromagnetic current, being a conserved current, is not
renormalized and therefore has zero anomalous dimension, since

anomalous dimension arises from renormalization itself. By current
algebra ‘all currents, including partially conserved currents, have

zero anomalous dimension,
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6i(q7v2»‘é~’f”>= a‘(i:%ﬂ‘)- €7<P[’ f: d¥ Xa(%caﬁ)}

and
Ci (Fhargm) < Cycagm) ew[T{- [ & 3,30

where Bj is the Fourier transform of C, g and W are the effective
coupling constant and the effective mass, and T refers to t-ordering.
Note. In general the R.G.E. which the o obeys must have a term which
depends on the gauge parameter 3
$(g &) ex :</L‘@%°(>“%
But it can be shown (2), in the case where 0 is a gauge invariant
éperator (current etc) or S-matrix element this term can be eliminated

from the R.G.E.,

(*) since (¥)is a matrix, in general X-,j(t/) does not commute with Xl'd(t”)'
Consider the third term of the expansion of exp[-{ T =
't - ’ ‘l:, e ” {// 4 /"
SEAAELES TRCORRETY TN NELSPIEL)
where we must have 1>t >t” . So t-ordering takes care of that situation.




Chapter 5 : Weak Non-Leptonic Amplitudes

Consider a gauge theory based on a group structure of the form:
G=G;®Gy

igrhere Gs is the non-abelian gauge group of the strong interaction and
Gw is the gauge group of weak and electromagnetié interactions, The -
two groups are a.ssumed to commute with each other. This means that
the gluons of the strong interaction are neutral under weak and
electromagnetic interactions and that the weak gauge bésons have no
strong interactions. Gsis specified to be the colour Su(3) group,
while Gwcan be specified to be the SU(2) ® U(1) group of Weinberg-
Salam (1) extended to hadrons. The colour symmetry is unbroken. The
coupling constant for the strong interaction is g and for the weak
interaction is g ( actually in the SU(2)®U(1) model there are two
coupling constants g, and é related by the tangent of the Weinberg
angle @w:%wta’ne wzg/. The electromagnetic coupling constant e is
€= gwsi'new = %W%//(%zw+%,2>'4. The Fermi weak coupling constant G is
related to g, by'ééj_%; % where M, is the mass of W meson).

We are interested in an arbitrary transition between hadronic
states to order gf,\, and to all orders in g. Then the non-leptonic

effective hamiltonian can be written' (2):

Huw =z Mic [[d DG5S ) T I

. T
G [ate DOGMR) T (e J7 @)

40
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+ (¥“8%$ exchanae)
-+ (%aé?&es QKCthaQ)_

whereI)QéVﬁD‘is the propagator for a scalar particle of mass M, Mg
is the mass of the neutral gauge boson and.éois the neutral weak
hadronic current.

Let us consider the first term in eq(5.1). We can expand the time
ordered product of weak currents in terms of local operators of
given canonical dimensions (see eq(4.7)):

T(,003 1) =2 catmd oo + T cltmx Og ()4

: X ¢ (5.9)
éf)and Cf@are local operators of canonical dimension 4 and 6 respectively
(the dots stand for operators of higher canonical dimensions).C: and.
Cé7are singular functions of x, and m is a mass parameter, Dimension
2 operators do not appear in the Wilson expansion (2,3). 0dd dimension
operators, dimension 3 or 5, could in principle appear in eq(5.2).
However since fractional powers of %2 are not allowed, these operators
enter the expansion multiplied by one power of mass, So that the
corresponding coefficient ((mx) have behaviour similar to that of
dimension 4 and 6 operators.

Wé have to recall at this point that since the theory we are
discussing is asymptotically free in the strong sector the C- -
coefficients have ét most logarithmic singularities for x—=O 3

C(mx) ~ x («?/nvrnzxzﬂd (5.3)
d being a computable number in the pertubation theory,
Now, operators of dimension 4, or less, are responsible for terms

2 ,
of order o (vGMy), But these operators can be reabsorbed into

counterterms of(igmm&Z), (see also Appendix F).
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Operators of dimension 6 give leading contribution to é{m_:
)

G idl K (An %z% da 0, () (5. 4)
(Cld is the exponent in eq(5.3))

Operators of dimension larger than 6 give leading contribution to
g(m_ which is smaller with respect to those given in eq(5.4), by at
least one power of MZN and therefore completely negligible.

Thus the leading contribution toduL from the first term in eq(5.1)
is given by eq(5.4), i.e. by dimension-6 and =5 operators. Notice
that these operators contribute to non-leptonic amplitudes terms of

order @

R CC R X I

which may be considerably enhanced or suppressed (depending upéen the

sign of d) with respect to the naive estimate é{m"’ G o In fact what

Gallaird and Lee found in their one-loop calculations (4) was d7zo

for Al= -}2- and d<o for AI=2l,—?’2- operators leading to AI=5 enhancement
inJm_ (as#o),

.The same discussion applies to the second term in eq(5.1) but in
our case (AS#o) the neutral current piece is excluded since by
construction ( in the G.I.M. model (5)) jdo is strangeness
conserving (8%=0),

Consider now the third term in eq(5.1), namely the case of physical
and unphysical Higgs scalar meson exchange, The coupling constant
of Higgs scalars to the quarks is of the order:

%zs ~ G m C 5.6)
m being a hadronic mass scale (ese. the quark mass in aquark model).
Thus Higgs exchange terms are explicity of order G . But here we
have: the problem that Ms ( the mass of the Higgs scale;.r) is not

restricted by the theory. So we consider two extreme alternatives:
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i) Ms 2 Mw>>m
ii) Ms mm
In case i) short distance behaviour is relevant. But eq(5.6) shows
that only operators of dimension 4 or less can give rise to terms
comparable to those in eq(5.4). Again such operators can be dropped
out frmmZQNL. In case ii) the short distance expansion is useless.
In our case; where Aﬁﬁ% Higgs exchange terms certainly do not
contribute since they are hypercharge conserving,

Finally tadpole exchange terms do not matter since they only
contribute to the mass matrix of the quarks and can be reabsorbed
like all dimension-4 or less operators, into counterterms afé&mm@

The net conclusion of the foregoing discussion is that we must
consider all operators of dimension 5 oré€ appearing in the short
distance.expansion of'T(3JV3+a®> coming from the first term of eq(5.1).
These operators must possess the correct guantum numbers i.e.p¥3=h
CP=+\ 4 AC=O and be colour singlets. We can classify them as follows
according to the number of fermion fields:

* i)Operators with no fermion fields., These can be disregarded, since

they can only constucted out of gluons and thus have ASo,

ii)Operators with two fermion fields. These operators cannot contain

Aﬂég bieces, since the maximum isospin of a single quark isT=5 . In
this class, those containing gluons through covariants derivatives
only, can be reduced by the equation of motion (d}iﬂhy¥=0) to
operators of lower dimension and therefore disregarded. Operators where
gluon fields appear explicity trough(Ei;cannot be.present, so long as.

“we are concerned with left-handed weak currents, as we are. The

reason is simple., The operators appearing in the short distance

o
expansion of 'F(j&;)shw):xre symmetric in the exchange of the two
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currents. Therefore they must be proportional_to {L+>Li}+_,where LF
is defined through the weak current 3;4:

Jp= P gu Lty (5.7)
where % is the quark field. This anticommutator must be purely £5=°
in order to avoid AS#0 neutral transition at order G& ,

The only remaining two-fermion operators are those of dimension 5
containing a mass matrix. These operators do not mix with operators
of dimension 6 and in fact it can be shown (4) that they only matter
in theories where both V-A and V+4 currents exist,

iii)Operafors with four fermionfields,There are two operators in this:

class: 0' and 0% (  ‘ther possibilities can be expressed as linear

combinations of them) ¢

O =(Gul (3 T¥) (P47 (13T ¥) (5.8)
0= ( G [ (1-19) 12P) (PrH1-(1-3) E4¥) (5.9

where £ is the SU(3) matrices (see Appendix‘A).

The above discussion implies that we have to restrict ourselves to
the operators 0! and 0% . As we shall see 0% and 0% are not :
maltiplicatively renormalized.. In other words, strong interactions
to.the above effective operators mix - them. All these will be shown
explicitly in the calculation of the one~loop diagrams,

The only terms in eq(5.8) and eq(5.9) with as=1 ,4C=0 , and

a 8T=%, component are of the form(Gp)(Fn) .

VOﬁé—loop correction. We will now reproduce the results of Gaillard

and Lee, Altarelli and Maiani, using dimensional regularization. As
4 2 . .

we have just said, there are two operators 0 and O appearing in

the Wilson expansion, namely:

O ' =(33¥ (-3 IP) (PAu (4 In) (5.10)
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0%=(3 049 Lp) (PYulg) ') (s.1)

2
where L is the unit (colour) matrix and t are the SU(3) matrices.

There are 12 one-~loop diagrams, as shown in fig(5.1):

V) p
IXTI
P 1a n
I T »
2b 3o 2h
+ Xt
e

G
fig(5.1)
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Of course the divergent parts of 1a and 1b are the same. This applies
to 2a and 2b and so on, Moreover the difference between 1a and 4a
is in the t-algebra only (the same for 2 and 5, 3 and 6 ).

Since all the diagrams have logarithmic singularities, the infinite
part, in which we are interested, does not depend on external momenta,
Thus we perform the calculation with zero external momenta, we give to
the gluon the Leibbrand-Capper mass m=m{n), and, to simplify the
calculation, we give the same mass to all fermions, Now in general
(a,nd this is especially true in the second=loop order), the J-algebra

must be done in n-dimensions. So we can write:

["laeszé FA At Om® (5.12)
or if e=n-4
E;gjebro.=Ao+A)€+ A2€+0 (e3) (s.12)
where of éou,rse
( Efgebva ,2_:1 A" (5.4)

Now the integration with respect to the internal momentum will
have a divergent part, préportional to 51—'_;,: —‘é— and a finite part
(for n=4 ) .

imbegedd I = 2 + b+ ce+ole?) (5.15)

So, the diagram D is:

D=[—g +o +Ce +OLE) [Aa'f‘ Ae+ Aze?+0£ei)] =

(5-18)
-8 Lq A +bhe+0LO

From this last relation we can see that the residue (the coefficient
of Ve ), depends only on Ao s as far as %-—algebra is conserned,
which means that in the one-~loop order we can perform the X-algebra
in A=dimensions, without fear of losing anything.

We evaluate one of the diagrams for demonstration. The others can

be evaluated in the same way.
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Diagram 4b. Applying Feynman rules for Q.C.D. (see Appendix D ) we

get:

+ M b -+ e _2__
L%fdk (ax\*cxxsvw“'mz"tw(w ()t ’““25 m)

The above can be written, isolating the momentum integral:

B U & ct—k%a (3 0 EYITEPI Gy Fags) £ o ) +
-m A

4 N b - byPLA =y ke g 1Dy 18
(e alss (Wwu 65?£ 3P (B3 Humg¥ gFtn)]

(where the terms proportional to k) or k\, vanish because of symmetric

integration). Now using Appendix C we get:

[ ko iy { (z2) % (ot [
@ (Kemd)®  (amn F(3) 3BA

[mk ,mi _ o V4, , ,§
Skam‘ﬂ S EN (gn)n rm{ NES)) (m) L’m)

The first one has an infinite part I.P. (see Appendix C)

I.