NEXT TO LEADING N CALCULATIONS IN THE GROSS-NEVEU MODEL.

Nicholas D. Tracas

Physics Department, National Technical University, 15773 Zografou, Athens, Greece.

Nicholas D. Vlachos

Department of Theoretical Physics, University of Thessaioniki, 54006 Thessaloniki, Greece.

A systematic algorithm is given for calculating certain classes of diagarams in any order in perturbation theory. We use this method for calculating the next to leading \mathbf{N} terms for the $\boldsymbol{\beta}$-function in four and five loops.

1.INTRODUCTION

The Gross-Neveu model has been a useful ground for testing dymamical symmetry breaking in field theory. It is an asymptotically free two-dimensional fermion field theory with a quartic interaction. The model has been analyzed in the $1 / N$ approximation and found to exhibit dynamical breaking of the discrete chiral symmetry. The dynamical mass acquired by the fermion depends on a non trivial way on the coupling constant. Furthermore a rich bound state spectrum appears in the broken phase.

The Lagrangian of the model has the form

$$
\begin{equation*}
L=\bar{\Psi}(i \bar{\varphi}) \Psi+\frac{\lambda}{2}(\bar{\Psi} \Psi)(\bar{\Psi} \Psi) \tag{1}
\end{equation*}
$$

or in the so-called σ-formulation, which is more suitable for our calculations

$$
\begin{equation*}
L_{\sigma}=\bar{\Psi}(i \not \subset) \Psi-g(\bar{\Psi} \Psi) \sigma+\frac{\sigma^{2}}{2} \tag{2}
\end{equation*}
$$

where $g^{2}=\lambda$ and in both (Eq.1) and (Eq.2) we have suppressed the summation over the flavour index N of the fermion field Ψ. The field σ serves as an auxiliary one.

2. THE β-FUNCTION.

In perturbation theory the β-function takes the form

$$
\begin{equation*}
\beta(\lambda)=\beta_{1} \lambda^{2}+\beta_{2} \lambda^{3}+\beta_{3} \lambda^{4}+\ldots \tag{3}
\end{equation*}
$$

where β_{i} 's are expected to be polynomials of N. Each factor of N corresponds to a fermion loop (trace). Therefore for any loop order r, the highest term of β_{r} will be N^{r}. Nevertheless, for $r>1$ the only diagram contributing to the highest N can be constructed from r independent simple fermion loops. Clearly this diagram does not require any new counter terms; the one loop counterterm suffices to renormalize it. Furthemore, the equivalence of the $G-N$ to the Thirring model, for $N=1$, requires the β_{i} 's to vanish for that value of N. With all these cosiderations the general form of the r-coefficient of the β-function is

$$
\begin{equation*}
\beta_{r}=(N-1)\left(\beta_{r, r-2} N^{r-2}+\beta_{r, r-3} N^{r-3}+\ldots\right) \tag{4}
\end{equation*}
$$

The β-function has been calculated up to three loops and equals ${ }^{\mathbf{1 , 2}}$

$$
\begin{equation*}
\beta(\lambda)=(N-1)\left(-\frac{4 \lambda^{2}}{4 \pi}+\frac{8 \lambda^{3}}{(4 \pi)^{2}}-\frac{420 \lambda^{4}}{(4 \pi)^{3}}\right) \tag{5}
\end{equation*}
$$

The interesting point is the lack of a N^{2}-term in the λ^{4} coefficient. Let us see carefully what does this vanishing implies.
2.1. The scheme dependence of the β-function.

Under an N -independent analytic rescaling of the coupling

$$
\begin{equation*}
\lambda^{\prime}=\lambda+c_{2} \lambda^{2}+c_{3} \lambda^{3}+c_{4} \lambda^{4} \tag{6}
\end{equation*}
$$

the coefficients β_{1} and β_{2} remain scheme independent while β_{3} and β_{4} become

$$
\begin{gather*}
\beta_{3}^{\prime}=\beta_{3}-c_{2} \beta_{2}+\left(c_{3}-c_{2}^{2}\right) \beta_{2} \tag{7a}\\
\beta_{4}^{\prime}=\beta_{4}+2 \beta_{1}\left(c_{4}+2 c_{2}^{2}-3 c_{3} c_{2}\right)+\beta_{2} c_{2}^{2}-2 \beta_{3} c_{2} \tag{7b}
\end{gather*}
$$

It is then obvious that the highest N term of each $\boldsymbol{\beta}_{i}, i>$ 2 , is scheme independent. Therefore, a N -independent rescaling of the coupling could render β_{3} zero only in the case of vanishing highest N coefficient which is exactly what (Eq.4) shows. If this phenomenon, namely the vanishing of the sheme independent parts, were to persist in all orders, it would be a new step towards the understanding of mass generation.

In the following chapter we develope a recurrent technique for the evaluation of the highest N term of the β_{i} coefficient for arbitrary i.

3. EVALUATION OF THE HIGHEST N TERM

Each term of the β-function can be extracted from the infinite parts of the four- and two-poin functions. Simple considerations, which we present in details in ref (2), show that the only diagrams contributing to the desired highest N term are shown generically in (Fig.1), where the blobs represent corrections to the appropriate order. As far as the two-point function is concerned the only possible diagram is the one shown in (Fig.2a). The diagram in (Fig.1b) can be easily obtained by differentiating the two-point function with respect to m , a fermion mass which plays the role of an infrared regulator. Fi nally, the corrections to the σ-propagator, (Fig.1c), can

FIGURE 1.
The only diagrams contributing to the highest N term of the β-function.
be obtained in a similar way by differentiating the vacuam -to-vacuum diagram, shown in (Fig.2b), twice with respect to m .

FIGURE 2.
a)The only diagram contributing to the highest N term of the wave function renormalization constant. b) vacuum diagram.

The building block for all calculations is the one-loop correction to the σ-propagator, shown in (Fig.3), which we denote by $\Sigma(k)$. Separating out the infinite part we can write

$$
\begin{equation*}
\Sigma(k)=-N \omega\left(2 I-k^{2} \zeta(k)+4 m^{2} \zeta(k)\right) g^{2} \tag{8a}
\end{equation*}
$$

$$
\begin{gather*}
\text { where } \\
\qquad I=\int \frac{d^{2 \omega} p}{(2 \pi)^{2 \omega}} \frac{1}{\left(p^{2}-m^{2}\right)} \tag{8b}\\
\zeta(\dot{k})=\int \frac{d^{2 \omega} p}{(2 \pi)^{2 \omega}} \frac{1}{\left(p^{2}-m^{2}\right)\left((p+k)^{2}-m^{2}\right)} \tag{8c}
\end{gather*}
$$

and 2ω is the dimension of the space-time. The integral I contains the UV divergence foi $\omega=1$ while $\zeta(k)$ is finite. Now the vacuum-to-vacuum diagram shown in (Fig.2b) can be written as

$$
\begin{equation*}
V(m)=i^{(j-1)} \int \frac{d^{2 \omega} k}{(2 \pi)^{2 \omega}}[\Sigma(k)]^{(j-1)} \tag{9}
\end{equation*}
$$

while'(Fig.2a) takes the form

$$
\begin{gather*}
W(p, m)= \\
-i^{(j+1)} g^{2} \int \frac{d^{2 \omega} k}{(2 \pi)^{2 \omega}}[\Sigma(k)]^{(j-1)} \frac{(p-\not p)+m}{(p-k)^{2}-m^{2}} \tag{10}\\
=A p+B m
\end{gather*}
$$

FIGURE 3.

The one-loop correction to the σ-propagator.

The infinite parts of A and B are not independent but related through the simple relation

$$
\operatorname{Inf} . \operatorname{Part}(A)=(1-1 / \omega) \operatorname{Inf} \cdot \operatorname{Part}(B)
$$

Considering all the above we can reduce all integrals needed to be evaluated into the form

$$
\begin{align*}
& K(a, b)=\int \frac{d^{2 \omega} p}{(2 \pi)^{2 \omega}}\left(p^{2}\right)^{a}[\zeta(p)]^{b} \tag{11}\\
& a \geq 0, b \geq 1, a \leq b
\end{align*}
$$

Now, $K(a, b)$ respects the following powerful recurrent formula

$$
\begin{align*}
K(a+1, b) & =\frac{2 m^{2}(2 a-b-2 \omega) K(a, b)}{(b+1) \omega-2 b+a+1} \\
& +\frac{2 b(\omega-1) I K(a, b-1)}{(b+1) \omega-2 b+a+1} \tag{12a}
\end{align*}
$$

with the following initial values

$$
\begin{gather*}
K(0,0)=0 ; \quad K(0,1)=I^{2} \\
K(0, j)=Z^{j}, j>1 \tag{12b}
\end{gather*}
$$

where

$$
\begin{equation*}
Z^{j}=\int \frac{d^{2 \omega} p}{(2 \pi)^{2 \omega}}[\zeta(p)]^{j} \tag{12c}
\end{equation*}
$$

which are finite for $j>1$.
Counterterms can be incorporated in that scheme by simply replacing $\Sigma(k)$ by

$$
\Sigma(k)-\operatorname{Inf} \cdot \operatorname{Part}[\Sigma(k)]
$$

The only ones which have to be considered separetely are the ($j-1$)-loop wave-function counterterms contained in the j -loop vacuum-to-vacuum diagram.

Now, the desired infinite part of the σ-propagator and the vertex can be taken as

$$
\begin{gather*}
\frac{g^{2}}{2(j-1)}\left(\partial_{m}\right)^{2} V(m) \tag{13a}\\
g \partial_{m} W(\not p, m) \tag{13b}
\end{gather*}
$$

correspondingly.
The recurrent formula of (Eq.12a) can be manipulated by means of a standard algebraic computer package, in any order. As an example we present the highest N term of the β-function in 4 - and 5 -loops

$$
\begin{equation*}
\text { 4-loops: } \frac{\lambda^{5}}{(4 \pi)^{4}} N^{3}\left(-\frac{64}{3}\right) \tag{14}
\end{equation*}
$$

5-loops: $\quad \frac{\lambda^{6}}{(4 \pi)^{5}} N^{4}\left(32+8 m^{2} Z^{2}+8 m^{4} Z^{3}\right)$

4.CONCLUSIONS

In this work we attempted to check whether the simple form of the 3 -loop $\boldsymbol{\beta}$-function persists to higher orders too. The results found do not support the above conjecture. Nevertheless, the algorithm developed can in principle be used for evaluating next to leading N corrections in any order.

REFERENCES

1. W. Wetzel, Phys. Lett. 153B (1985) 297.
2. N.D. Tracas and N.D. Vlachos, Phys. Lett. 236 (1990) 333
"Analytic results for the Gross-Neveu Model β - Function in Three Loops", N.D. Tracas and N.D. Vlachos, preprint NTUA-10/1990, THES-TP 90/02.
