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SUMMARY

• THE 3+1 SPLIT FORMALISM OF GRAVITY AND GENERALIZED ELECTRIC-
MAGNETIC DUALITY.

• TORSION AND THE GRAVITATIONAL MAGNETIC DEGREES OF FREEDOM.

• THE TORSION DOMAIN WALL 

• HOLOGRAPHY OF THE TORSION DW AND PARITY BREAKING IN THE 
BOUNDARY

• “GRAVITY SUPERCONDUCTIVITY”?
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σ⊥ , σ3σ⊥ = σ = ±1

TO MAKE CONTACT WITH THE METRIC FORMALISM WE NOTE:

WITH THE USUAL DEFINITIONS FOR THE VIELBEIN AND THE SPIN-CONNECTION

Rab = dωab + ωa
c ∧ ωcb , T a = dea + ωa

b ∧ eb (a, b = 0, 1, 2, 3)

σ⊥

σ3

THE 3+1 SPLIT IS A REFINED ADM FORMULATION FOR 4-D GRAVITY:

WE ASSUME A LOCAL 3-D SLICING AND SPLIT EVERYTHING ACCORDINGLY

[R. G. Leigh and T. P. (07)]
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THEY ARE VECTOR-VALUED ONE-FORMS ALONG THE SLICES

TO PROPERLY IDENTIFY THE “DREIBEIN” AND THE “ELECTRIC FIELD” AS THE 

CANONICAL “POSITION” AND “MOMENTUM” RESPECTIVELY, WE ADD THE  

GIBBONS-HAWKING BOUNDARY TERM.

 (IN THIS FORMALISM IT SIMPLY ARISES BY THE NEED TO CANCEL A TOTAL 

“TIME” DERIVATIVE TERM.)

THE BASIC NOVELTY IS THE INTRODUCTION OF THE “ELECTRIC” AND 

“MAGNETIC” FIELDS

Ki , Bi

IGH = 2σ⊥

∫

∂M
εijk Ki ∧ ε̃j ∧ ε̃k
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THEN THE ACTION TAKES A FORM REMINISCENT OF ELECTROMAGNETISM

IEH + IGH =
∫

dt ∧
[

˙̃εi ∧
(
−4σ⊥εijk ε̃j ∧Kk

)

+2σ⊥N

{
2d̃

(
Bi ∧ ε̃i

)
+ Bi ∧ T̃i

+εijk

[
σBi ∧Bj −Ki ∧Kj − σ⊥Λ

3
ε̃i ∧ ε̃j

]
∧ ε̃k

}

−4σ⊥N iεijk(D̃K)j ∧ ε̃k + 4Qi
(
Kj ∧ ε̃j

)
∧ ε̃i + 4q0

i

(
εi

jkT̃ j ∧ ε̃k
) ]
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(
Kj ∧ ε̃j

)
∧ ε̃i + 4q0
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(
εi

jkT̃ j ∧ ε̃k
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“HAMILTONIAN”

“GAUSS LAW” (D̃K)i ≡ (d̃Ki + ε jk
i Bk ∧Kj)
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KINETIC TERM
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Ki = Kij ε̃
j , Bi = Bij ε̃

j ⇒ K[ij] = 0 = B[ij]

THE “DREIBEIN” AND THE “ELECTRIC FIELD” ARE CONJUGATE VARIABLES.

SPATIAL TORSION CARRIES THE NON-DYNAMICAL “GRAVITATIONAL 

MAGNETIC” D.O.F. 

THE ZERO TORSION CONDITION RELATES THEM TO THE “DREIBEIN”.
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THE ANNOUNCED TALK WOULD HAVE CONTINUED AS...
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

Example 1: Electromagnetism

I =

∫

dt ∧

{

Ȧ ∧ ∗3E −
1

2
(E ∧ ∗3E + B ∧ ∗B) − A0d̃ ∗3 E

}

, B = ∗3d̃A

E !→ −B , B = ∗3d̃A !→ ∗3E

I !→

∫

dt ∧

{

−ȦD ∧ ∗3B −
1

2
(E ∧ ∗3E + B ∧ ∗B) + A0d̃ ∗3 B

}

, d̃AD = ∗3E

The Gauss Law maps to the Bianchi identity. Then, we can write:

The boundary modification is a Chern-Simons term.

I !→ ID = I −

∫
AD ∧ d̃A
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

The q-constraints give:

qαβ
⇒ K[α,β] = 0

and also:

εαβγ T̃
β
∧ ẽ

γ
= εαβγ d̃ẽ

β
∧ ẽ

γ
− σ⊥Bβ ∧ ẽ

β
∧ ẽα = 0

We require that the latter transforms like a vector under SO(3) rotations of 
the dreibein. The magnetic field term in an obstruction.

B[α,β] = ε
γ

αβVγ , V = Vαẽα , ẽα
!→ Λ

α
β ẽβ

The choice:
(

Λ
−1

)γ

β
d̃Λ

α
γ = σ⊥V δ

α
β ⇒ B[α,β] = 0

and shows that the antisymmetric part of the magnetic field is a gauge d.o.f.
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

However, since the magnetic field does not appear in the kinetic term, its 
variation gives an algebraic equation; the zero-torsion equation.

This is equivalent to choosing the de-Donder gauge:

εαβγ d̃ẽ
α
∧ ẽ

γ
= 0

T̃
α

= d̃ẽ
α

+ ε
αβγ

Bβ ∧ ẽγ = 0

Only the symmetric part of the magnetic field contributes to that.

K̂α
= Kα

= ρẽα , ρ2
= σ⊥Λ

Next use the shifted electric field:

IHP =

∫

dt ∧

{

˙̃eα
∧ Π̂α − 4σ⊥N

α
εαβγ(D̃K̂)β

∧ ẽ
γ

−2σ⊥Nεαβγ

(

Bα
∧ Bβ

+ K̂α
∧ K̂β

+ 2ρK̂α
∧ ẽβ

)

∧ ẽγ
]}

For, symmetric electric and magnetic fields and zero torsion we get:
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

Linearize as:

ẽα
= ẽα

+ Eα , N = 1 + n , Nα
= nα

Bα
= Bα

+ bα , K̂α
= K̂

α

+ kα

Make an educated guess for a nice background i.e. the vacuum: 

B
α

= 0 = K̂
α

The action becomes:

IHP =

∫

dt ∧
{

(Ėα + ρEα
∧ pα − 2σ⊥εαβγ(bα

∧ bβ + kα
∧ kβ) ∧ ẽγ

−4σ⊥ηαεαβγ d̃kβ
∧ ẽγ + n(4σ⊥d̃bγ + ρpγ) ∧ ẽγ

}

pα = −4σ⊥εαβγkβ
∧ ẽγ
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

The vanishing of the linear terms gives:

˙̃e
α

+ ρẽ
α

= 0

This is solved by (A)dS4:

ẽ0
= dt , ẽα

= e−ρtdxα , Kα
= ρẽα

Ricab = −

3σ⊥

L2
ηab , R = −

12σ⊥

L2

Finally - the duality map:

ε
αβγ

bβ ∧ ẽγ + d̃E
α
"→ ε

αβγ
kβ ∧ ẽγ + d̃E

α
= 0

kα
!→ −bα , bα

!→ kα E !→ E , p !→ −pD
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

The action dualizes to:

I !→ ID =

∫

dt ∧
{

−Ė
α
∧ pD,α − ρẼα

∧ pD,α

−2σ⊥εαβγ(bα
∧ b

β + k
α
∧ k

β) ∧ ẽ
γ

+4σ⊥nαεαβγ d̃bβ
∧ ẽγ + n(4σ⊥d̃kγ + ρpD,α) ∧ ẽγ

}

This differs from the initial action by ρ !→ −ρ

Nevertheless, this does not affect the second order e.o.m.

The constraints also dualize to:

Cα ≡ εαβγ d̃k
β
∧ e

γ
#→ −εαβγ d̃b

β
∧ ẽ

γ

C0 ≡ −σ⊥(d̃bγ − ρεαβγkα
∧ ẽβ) ∧ ẽγ

$→ −σ⊥(d̃kγ + ρεαβγbα
∧ ẽβ) ∧ ẽγ
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

Recall the linearized Bianchi identities:

B
α
T = −εαβγ d̃b

β
∧ ẽ

γ
+ · · ·

B0

T = −σ⊥(d̃kα + ρεαβγbβ
∧ ẽγ) ∧ ẽα + · · · = 0

The duality maps the constraints into the Bianchi identities. 

Cα !→ BT,α , C0 !→ B0

T BT,α !→ −Cα , B0

T !→ −C0
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Electric-Magnetic Duality in Linearized Gravity: The 3+1 split formalism

Lastly, we notice that the modified duality transformations;

kα
!→ −bα

− 2ρEα , bα
!→ kα

Leave the action invariant, up to additional terms in the constraints.

−8ρnαkβ ∧ ẽα ∧ ẽβ
8nΛεαβγE

β
∧ ẽ

γ
∧ ẽ

α

Using the relationship between the dual dreibein and the electric field;

E
α
β =

1

∂2
ε
α
δγ∂

γ
k

δ
β

we can show that the additional terms vanish. Hence, gravity 
with a c.c. requires a modified duality transformation. 
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U(1) gauge fields (electromagnetism) on AdS4 like in flat half-space

I = − c

4

∫
d4x
√

gFµνFµν = − c

4

∫ ∞
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dr
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An “esoteric” observation: electric-magnetic duality is a distinctive feature 

of AdS4/CFT3  [Witten, TCP,& Leigh (03-04)]

U(1) gauge fields (electromagnetism) on AdS4 like in flat half-space

I = − c

4

∫
d4x
√

gFµνFµν = − c

4

∫ ∞

ε
dr

∫
d3!xFµνFµν

Euclidean signature -> define electric-magnetic fields w.r.t. r-coordinate

I = −c

∫ ∞

ε
dr

∫
d3!x

[
Ei∂rAi −

1
2
(EiEi −BiBi)

]
, Bi = εijk∂jAk

Applications of Electric-Magnetic Duality (recall Subir’s Lecture)
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Our guide (Holography and AdS/CFT Corresondence)

δIon shell = −c

∫
d3"xEi(r, "x)δAi(r, "x)

∣∣∣
∞

ε
+ e.o.m + Dirichlet B.C.
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δIon shell = −c

∫
d3"xEi(r, "x)δAi(r, "x)

∣∣∣
∞

ε
+ e.o.m + Dirichlet B.C.

δW [Ai]
δAi("x)

= 〈Ji("x)〉Ai = cEi("x) =
∫

d3"y〈Ji("x)Jj("y)〉Aj("y)
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Our guide (Holography and AdS/CFT Corresondence)

δIon shell = −c

∫
d3"xEi(r, "x)δAi(r, "x)

∣∣∣
∞

ε
+ e.o.m + Dirichlet B.C.

A transformation to the dual set of variables

δW [Ai]
δAi("x)

= 〈Ji("x)〉Ai = cEi("x) =
∫

d3"y〈Ji("x)Jj("y)〉Aj("y)

Friday, September 25, 2009



Our guide (Holography and AdS/CFT Corresondence)

δIon shell = −c

∫
d3"xEi(r, "x)δAi(r, "x)

∣∣∣
∞

ε
+ e.o.m + Dirichlet B.C.

A transformation to the dual set of variables

Ei !→ iB̃i

Bi !→ −iẼi
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Bi !→ −iẼi
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Two bulk theories 

(in terms of the two sets of variables) 

Two boundary

1-pt functions (responses)
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= Ẽi(!x) ≡ iBi(!x) = iεijk∂jAk(!x)
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δÃk(!x)
δAj(!y)

〈J̃i(!x)J̃j(!y)〉 =
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= Ẽi(!x) ≡ iBi(!x) = iεijk∂jAk(!x)

〈Ji(!x)Jj(!y)〉 =
δEi(!x)
δAj(!y)

= iεilk∂l
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δÃk

δAj
, Π̃ij(!p) = −εilkpl

δAk

δÃj
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generalizes to e.m. 
tensor and higher-spin 
currents [TCP,& Leigh (03-04)]
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EQUIVALENT TO AN INITIAL VALUE PROBLEM (I.E. SETTING UP THE INITIAL 

“POSITION” AND INITIAL “VELOCITY” AT THE ASYMPTOTIC BOUNDARIES.) FROM 

THIS POINT OF VIEW, THE SUBTRACTION OF DIVERGENCES CORRESPONDS TO 

SUITABLE CANONICAL TRANSFORMATIONS. [D. Mansi, T.P. and G. Tagliabue (08)]

•BULK SELF-DUAL CONFIGURATIONS CORRESPOND TO IMPOSING A 

PARTICULAR  CONFORMALLY INVARIANT RELATIONSHIP BETWEEN THE INITIAL 

“POSITION” AND “VELOCITY”. SUCH CONFIGURATIONS ARE THE BULK 

EXTENSIONS OF BOUNDARY DATA DESCRIBED BY THE 3-DIMENSIONAL 

GRAVITATIONAL CHERN-SIMONS THEORY. [D. Mansi, T.P. and G. Tagliabue (08)]
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RAB = dAB + ωA
C ∧ ωCB , A,B = (−1, 0, 1, 2, 3)

AND THE CURVATURE TOO

R−1a ≡ T a = dω−1a + ω−1
b ∧ ωba ≡ dea + eb ∧ ωba

RAB

Rab = dωab + ωa
c ∧ ωcb

THE ZERO TORSION CONDITION CONNECTS THE VIELBEIN AND THE SPIN 

CONNECTION

TA = 0⇒ deA + ωA
B ∧ eB = 0

TORSION AND THE GRAVITATIONAL MAGNETIC D.O.F. 

SPLIT THE SPIN CONNECTION AS

ωAB
ωab

ω−1a ≡ ea
a, b = 0, 1, 2, 3
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P5 = − 1
8π2
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B ∧RB

A = · · · = − 1
8π2

Ra
b ∧Rb

a +
1

4π2
CNY

CNY = T a ∧ Ta −Rab ∧ ea ∧ eb

HENCE, ON COMPACT MANIFOLDS THE NIEH-YAN CLASS IS THE DIFFERENCE 

BETWEEN TWO INTEGERS.

CONSIDER ADDING THE N-Y CLASS TO THE GRAVITATIONAL ACTION WITH A 

CONSTANT COEFFICIENT

INY = −2σ⊥θ

∫ (
T a ∧ Ta −Rab ∧ ea ∧ eb

)
= −2σ⊥θ

∫
d (T a ∧ ea)
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THEN WE FIND FOR THE SO(5) PONTRYAGIN CLASS

P5 = − 1
8π2

RA
B ∧RB

A = · · · = − 1
8π2

Ra
b ∧Rb

a +
1

4π2
CNY

CNY = T a ∧ Ta −Rab ∧ ea ∧ eb

HENCE, ON COMPACT MANIFOLDS THE NIEH-YAN CLASS IS THE DIFFERENCE 

BETWEEN TWO INTEGERS.

CONSIDER ADDING THE N-Y CLASS TO THE GRAVITATIONAL ACTION WITH A 

CONSTANT COEFFICIENT

INY = −2σ⊥θ

∫ (
T a ∧ Ta −Rab ∧ ea ∧ eb

)
= −2σ⊥θ

∫
d (T a ∧ ea)

IEH + IGH + INY =
∫

dt ∧
[
˙̃εi ∧

(
−4σ⊥εijk

[
Kj − θBj

]
∧ ε̃k

)
+ 2σ⊥θεijkḂi ∧ ε̃j ∧ ε̃k

+ · · ·
]

WE OBTAIN:
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IMPLICATIONS FOR 
2+1D FLUID DYNAMICS
(IN PROGRESS..)
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θ !→ F (t)

CONSIDER NOW PROMOTING THETA TO AN X-DEPENDENT PARAMETER. 

THE SIMPLEST CASE IS:

I ≡ IEH + IGH −
∫

dF ∧ T a ∧ ea

IT IS CONVENIENT TO HAVE F(t) AS THE CANONICAL VARIABLE. THIS REQUIRES 

A CANONICAL TRANSFORMATION I.E. THE CORRESPONDING “GH”-TERM. 

OUR MODEL IS FINALLY: 

THE E.O.M. ARE:

εabcd eb ∧
(

Rcd − 1
3
Λec ∧ ed

)
+ dF ∧ Ta = 0

εabcd T c ∧ ed +
1
2
dF ∧ eb ∧ ea = 0

CNY = T a ∧ Ta −Rab ∧ ea ∧ eb = 0
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θ !→ F (t)

CONSIDER NOW PROMOTING THETA TO AN X-DEPENDENT PARAMETER. 

THE SIMPLEST CASE IS:

I ≡ IEH + IGH −
∫

dF ∧ T a ∧ ea

IT IS CONVENIENT TO HAVE F(t) AS THE CANONICAL VARIABLE. THIS REQUIRES 

A CANONICAL TRANSFORMATION I.E. THE CORRESPONDING “GH”-TERM. 

OUR MODEL IS FINALLY: 

THE E.O.M. ARE:

εabcd eb ∧
(

Rcd − 1
3
Λec ∧ ed

)
+ dF ∧ Ta = 0

εabcd T c ∧ ed +
1
2
dF ∧ eb ∧ ea = 0

CNY = T a ∧ Ta −Rab ∧ ea ∧ eb = 0

THE BIANCHI’S (FOR NON-ZERO TORSION) ALSO HOLD

dRa
b −Ra

c ∧ ωc
b + ωa − c ∧Rc

b = 0
Ra

b ∧ eb = dT a + ωa
b ∧ T b
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T a ∧ ea =
3
2
∗4 dF =

(
dea + ωa

b ∧ eb + Ωa
b ∧ eb

)
∧ ea

FROM THE SECOND E.O.M. WE FIND

Friday, September 25, 2009



T a ∧ ea =
3
2
∗4 dF =

(
dea + ωa

b ∧ eb + Ωa
b ∧ eb

)
∧ ea

FROM THE SECOND E.O.M. WE FIND

TORSIONLESS CONNECTION 

= ZERO
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T a ∧ ea =
3
2
∗4 dF =

(
dea + ωa

b ∧ eb + Ωa
b ∧ eb

)
∧ ea

FROM THE SECOND E.O.M. WE FIND

TORSIONLESS CONNECTION 

= ZERO

⇒ Ωa
b =

σ

4
εacd

b∂cF ed

SUBSTITUTING THIS BACK, WE OBTAIN THE E.O.M. FOR TORSIONLESS GRAVITY 

COUPLED TO A MASSLES PSEUDOSCALAR - F-  COMING FROM THE ACTION

I = IEH + IGH − 3
4

∫
dF ∧ ∗4dF
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T a ∧ ea =
3
2
∗4 dF =

(
dea + ωa

b ∧ eb + Ωa
b ∧ eb

)
∧ ea

FROM THE SECOND E.O.M. WE FIND

TORSIONLESS CONNECTION 

= ZERO

⇒ Ωa
b =

σ

4
εacd

b∂cF ed

SUBSTITUTING THIS BACK, WE OBTAIN THE E.O.M. FOR TORSIONLESS GRAVITY 

COUPLED TO A MASSLES PSEUDOSCALAR - F-  COMING FROM THE ACTION

I = IEH + IGH − 3
4

∫
dF ∧ ∗4dF

NOTICE THE - SIGN, CONSISTENT 

WITH A EUCLIDEAN PSEUDOSCALAR
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2
3
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∫
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√
2
3

∫
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= IEH + IGH − 1
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∫
d(C ∧ ∗4dC)
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3
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I = IEH + IGH +
1
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∫
H ∧ ∗4H +

√
2
3

∫
C ∧ d ∗4 H

= IEH + IGH − 1
2

∫
dC ∧ ∗4dC +

∫
d(C ∧ ∗4dC)

USING THE E.O.M FOR THE TWO-FORM POTENTIAL (KALB-RAMOND)

H =
√

3
2

dC

LAGRANGE MULTIPLIER
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EQUIVALENTLY, WE CAN USE A THREE-FORM  -H- 

∗4dF =
2
3
H

I = IEH + IGH +
1
3

∫
H ∧ ∗4H +

√
2
3

∫
C ∧ d ∗4 H

= IEH + IGH − 1
2

∫
dC ∧ ∗4dC +

∫
d(C ∧ ∗4dC)

USING THE E.O.M FOR THE TWO-FORM POTENTIAL (KALB-RAMOND)

H =
√

3
2

dC

LAGRANGE MULTIPLIER

SPACETIME-DEPENDENT COUPLINGS FOR TOPOLOGICAL INVARIANTS BRING ON 

ADDITIONAL D.O.F. INTO THE GAME: THEY ENLARGE THE HOLOGRAPHIC 

APPLICATIONS. 

(NO NEED FOR KINETIC TERMS - CONTRARY TO PECCEI-QUINN)
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LOOK FOR AN EXACT SOLUTION OF THE FORM (“DOMAIN WALL ANSATZ”)

ε̃i = eA(t)dxi , N = 1 , N i = 0
Ki = k(t)ε̃i , Bi = b(t)ε̃i

ΠA = −4σ⊥k(t) , ΠF = 2σb(t)

THEN WE OBTAIN THE SIMPLE DYNAMICAL SYSTEM WITH ACTION:

I =
∫ ∞

−∞
dt

∫
d3!xe3A(t)

[
ȦΠA + ḞΠF −

(
1
2
σ3Π2

F +
1
2
σ⊥Π2

A +
2
3
Λ

)]

THE TORSION DOMAIN WALL
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THEY GIVE THE USUAL DOMAIN WALL E.O.M.

Ä + 3Ȧ− 3a2 = 0 , Ä =
1
12

σΘ̇2

Θ̈ + 3Θ̇Ȧ , Ȧ2 +
1
36

σΘ̇2 − a2 = 0

Λ = −3σ⊥a2 , a =
1
L

, F (t) =
2
3
Θ(t)
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POSITIVE  FOR EUCLIDEAN PSEUDOSCALAR.
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THEY GIVE THE USUAL DOMAIN WALL E.O.M.

POSITIVE  FOR EUCLIDEAN PSEUDOSCALAR.

ALLOWS EXACT NON-TRIVIAL SOLUTION!

Ȧ(t) ≡ h(t) = a tanh 3a(t− t0)
POSITION OF THE DW 

SET TO ZERO
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THE TORSION DOMAIN-WALL

THEY GIVE THE USUAL DOMAIN WALL E.O.M.

POSITIVE  FOR EUCLIDEAN PSEUDOSCALAR.

ALLOWS EXACT NON-TRIVIAL SOLUTION!

Ȧ(t) ≡ h(t) = a tanh 3a(t− t0)
POSITION OF THE DW 

SET TO ZERO

Ä + 3Ȧ− 3a2 = 0 , Ä =
1
12

σΘ̇2

Θ̈ + 3Θ̇Ȧ , Ȧ2 +
1
36

σΘ̇2 − a2 = 0

Λ = −3σ⊥a2 , a =
1
L

, F (t) =
2
3
Θ(t)

Θ(t) = ±2 arctan
(
e3at

)
, e2A(t) = α2 [2 cosh 3at]

2
3

ds2 = dt2 + e2A(t)d"x2
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THE TORSION DOMAIN-WALL

THEY GIVE THE USUAL DOMAIN WALL E.O.M.

POSITIVE  FOR EUCLIDEAN PSEUDOSCALAR.

ALLOWS EXACT NON-TRIVIAL SOLUTION!

Ȧ(t) ≡ h(t) = a tanh 3a(t− t0)
POSITION OF THE DW 

SET TO ZERO

Ä + 3Ȧ− 3a2 = 0 , Ä =
1
12

σΘ̇2

Θ̈ + 3Θ̇Ȧ , Ȧ2 +
1
36

σΘ̇2 − a2 = 0

Λ = −3σ⊥a2 , a =
1
L

, F (t) =
2
3
Θ(t)

Θ(t) = ±2 arctan
(
e3at

)
, e2A(t) = α2 [2 cosh 3at]

2
3

ds2 = dt2 + e2A(t)d"x2

INTEGRATION CONSTANT

SETS SCALE OF SPATIAL SLICES

Friday, September 25, 2009



Friday, September 25, 2009



NON-SINGULARRa
b

Friday, September 25, 2009



NON-SINGULARRa
b

T i = −σ3

2
Ḟ εi

jk ε̃j ∧ ε̃k #= 0

Friday, September 25, 2009



NON-SINGULARRa
b

T i = −σ3

2
Ḟ εi

jk ε̃j ∧ ε̃k #= 0

!1.5 !1.0 !0.5 0.0 0.5 1.0 1.5
t

2

4

6

8eA(t)

Θ(t) =
3
2
F (t)
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H = Θ̇V ol3 = +± 6a ˆV ol3 ≡ Ĥ ˆV ol3

ˆV ol3 =
1
6
εijkdxi ∧ dxj ∧ dxk CONSTANT: “EXTERNAL 
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VARIES WITHIN THE DW:

“MAGNETIC INDUCTION”
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IN THE “KALB-RAMOND” REPRESENTATION WE FIND:

H = Θ̇V ol3 = +± 6a ˆV ol3 ≡ Ĥ ˆV ol3

ˆV ol3 =
1
6
εijkdxi ∧ dxj ∧ dxk

THIS GIVES THE “TOPOLOGICAL QUANTUM NUMBER” OF THE DW:

∫
∗4H = ±2π

CONSTANT: “EXTERNAL 

MAGNETIC FIELD”

VARIES WITHIN THE DW:

“MAGNETIC INDUCTION”
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IN THE “KALB-RAMOND” REPRESENTATION WE FIND:

H = Θ̇V ol3 = +± 6a ˆV ol3 ≡ Ĥ ˆV ol3

ˆV ol3 =
1
6
εijkdxi ∧ dxj ∧ dxk

THIS GIVES THE “TOPOLOGICAL QUANTUM NUMBER” OF THE DW:

∫
∗4H = ±2π

THE ON-SHELL ACTION OF THE TORSION DW IS ZERO. EXPLICITLY:

ITDW
o.s. = 4a2

∫
εijkdxi ∧ dxj ∧ dxk

∫ L

−L
dt e3A(t) =

(
6

∫
ˆV ol3

)
4
3
aα3e3aL

CONSTANT: “EXTERNAL 

MAGNETIC FIELD”

VARIES WITHIN THE DW:

“MAGNETIC INDUCTION”

Friday, September 25, 2009



IN THE “KALB-RAMOND” REPRESENTATION WE FIND:

H = Θ̇V ol3 = +± 6a ˆV ol3 ≡ Ĥ ˆV ol3

ˆV ol3 =
1
6
εijkdxi ∧ dxj ∧ dxk

THIS GIVES THE “TOPOLOGICAL QUANTUM NUMBER” OF THE DW:

∫
∗4H = ±2π

THE ON-SHELL ACTION OF THE TORSION DW IS ZERO. EXPLICITLY:

ITDW
o.s. = 4a2

∫
εijkdxi ∧ dxj ∧ dxk

∫ L

−L
dt e3A(t) =

(
6

∫
ˆV ol3

)
4
3
aα3e3aL

THIS IS REMOVED BY 2-TIMES THE STANDARD ADS4 COUNTERTERM: 

2 · Ict = −4a

3

∫

∂M
εijk di ∧ dxj ∧ dxk = −4a

3
α3 e3aL

(
6

∫
ˆV ol3

)

CONSTANT: “EXTERNAL 

MAGNETIC FIELD”

VARIES WITHIN THE DW:

“MAGNETIC INDUCTION”
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IN THE “KALB-RAMOND” REPRESENTATION WE FIND:

H = Θ̇V ol3 = +± 6a ˆV ol3 ≡ Ĥ ˆV ol3

ˆV ol3 =
1
6
εijkdxi ∧ dxj ∧ dxk

THIS GIVES THE “TOPOLOGICAL QUANTUM NUMBER” OF THE DW:

∫
∗4H = ±2π

THE ON-SHELL ACTION OF THE TORSION DW IS ZERO. EXPLICITLY:

ITDW
o.s. = 4a2

∫
εijkdxi ∧ dxj ∧ dxk

∫ L

−L
dt e3A(t) =

(
6

∫
ˆV ol3

)
4
3
aα3e3aL

THIS IS REMOVED BY 2-TIMES THE STANDARD ADS4 COUNTERTERM: 

2 · Ict = −4a

3

∫

∂M
εijk di ∧ dxj ∧ dxk = −4a

3
α3 e3aL

(
6

∫
ˆV ol3

)

ONE FOR EACH ASYMPTOTIC 

ADS4 REGION

CONSTANT: “EXTERNAL 

MAGNETIC FIELD”

VARIES WITHIN THE DW:

“MAGNETIC INDUCTION”

Friday, September 25, 2009



Friday, September 25, 2009



HOLOGRAPHY OF THE TORSION DOMAIN WALL

Friday, September 25, 2009



HOLOGRAPHY OF THE TORSION DOMAIN WALL

ε̃i = αe±t

(
1 + 0 +

1
3
e∓6at + · · ·

)
dxi , t→ ±∞
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THE CFTs AT THE TWO ASYMPTOTIC REGIMES CONTAIN A PSEUDOSCALAR 

OPERATOR WITH DIM=3. THIS MAY BE VIEWED AS AN ORDER PARAMETER FOR 

PARITY SYMMETRY BREAKING. 
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IN WORDS:

THE CFTs AT THE TWO ASYMPTOTIC REGIMES CONTAIN A PSEUDOSCALAR 

OPERATOR WITH DIM=3. THIS MAY BE VIEWED AS AN ORDER PARAMETER FOR 

PARITY SYMMETRY BREAKING. 
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ψ̄a(/∂ − ie/A)ψa +

G

2N
(ψ̄aψa)2 − 1

4M
FijFij

]
, a = 1, 2, .., N

Z =
∫

(Dψ̄a)(Dψa)(Dσ)(DAi)e−
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d3!x[ψ̄a(/∂+σ−ie/A)ψa− N
2G σ2− 1

4M FijFij]
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4M FijFij]

SWITCH OFF ELECTROMAGNETISM AND INTEGRATE OUT THE FERMIONS

Z = (Dσ) exp
{

N

[
Tr log(/∂ + σ)− 1

2G

∫
σ2

]}
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(Dψ̄a)(Dψa)(Dσ)(DAi)e−
R

d3!x[ψ̄a(/∂+σ−ie/A)ψa− N
2G σ2− 1

4M FijFij]

SWITCH OFF ELECTROMAGNETISM AND INTEGRATE OUT THE FERMIONS

Z = (Dσ) exp
{

N

[
Tr log(/∂ + σ)− 1

2G

∫
σ2

]}

EXPAND THE AUXILIARY FIELD AS σ = σ∗ +
1√
N

λ TO GET THE GAP EQUATION

1
G

=
∫ Λ d3!p

(2π)3
2

!p2 + σ∗
= (Tr1)

[
Λ
π2
− |σ∗|

π2
arctan

Λ
|σ∗|

]
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σ∗ = −2G
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〈ψ̄aψa〉 = ±m

WE WILL SHOW THAT STARTING FROM ONE THE TWO VACUA ABOVE AND 

DEFORMING THE THEORY BY A MARGINAL DEFORMATION WITH A FIXED 

COUPLING, WE WILL FIND THE OTHER “MIRROR” VACUUM.

WE START FROM THE VACUUM AND COUPLE THE GAUGE FIELDSσ∗ = m

Z =
∫

(Dψ̄a)(Dψa)(DAi)e−
R

d3!x[ψ̄a(/∂+m−ie/A)ψa− N
2G m2+···− 1

4M FijFij]
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FOR N=ODD WE CAN INTEGRATE OUT THE FERMIONS TO OBTAIN AN 

EFFECTIVE ACTION FOR THE GAUGE FIELDS AS:

Z ≈
∫

(DA) exp
[
SCS −

1
4M

F 2 + · · ·
]
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EFFECTIVE ACTION FOR THE GAUGE FIELDS AS:

Z ≈
∫

(DA) exp
[
SCS −

1
4M

F 2 + · · ·
]

SCS = i
ke2

4π

∫
d3"x εijkAi∂jAk , k =

N

2

HAD WE STARTED FROM THE VACUUM, WE WOULD HAVE OBTAINEDσ∗ = −m

k = −N

2

HOWEVER, WE CAN REACH THE σ∗ = −m VACUUM BY A DEFORMATION!

JUST ADD Sdef
CS = −iq

∫
A ∧ dA , q =

Ne2

4π
TO THE σ∗ = m VACUUM

AND THE FERMIONIC INTEGRATION WILL LEAD TO THE σ∗ = −m VACUUM.
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THE TORSION DOMAIN WALL  AS ABRIKOSOV DOMAIN WALL ?

THE BULK VIEW OF THE TORSION DW

ΠF =
2
3
Θ̇

|h(t)| = |Ȧ(t)|

“ORDER PARAMETER” FOR THE 

SUPERCONDUCTING/NORMAL 

STATE TRANSITION

“MAGNETIC INDUCTION”

THE TORSION DW RESEMBLES TWO SUPERCONDUCTING REGIONS 

(ASYMPTOTICALLY ADS4 SPACES) JOINED BY A NORMAL-STATE REGION 

(FLAT SPACE). PERHAPS A JOSEPHSON JUNCTION?
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0 = (ḣ + h2) dt ∧ ε̃i
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⇒
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0 = (ḣ + h2) dt ∧ ε̃i

T̃ i = 0

⇒
Ri

0i0 = −3a2α

Ri
jij = 0

FLAT SPATIAL 

SLICE

THE CORE OF THE DW IS THREE-DIMENSIONAL HERE (IT SUPPORTS A 3-FORM) 

IN CONTRAST TO THE TWO-DIMENSIONAL ABRIKOSOV WALL IN 

SUPERCODUCTIVITY (THAT SUPPORTS THE ELECTROMAGNETIC 2-FORM).

HENCE WE HAVE “GRAVITY SUPERCONDUCTIVITY”

THE ANALOG OF THE EXTERNAL MAGNETIC FIELD IS: COSTANTH̃ ∼ α3

THE PENETRATION LENGTH (I.E. DECAY OF THE MAGNETIC INDUCTION” IS:

λ ∼ 1
3a

Friday, September 25, 2009



THE SPACE AT t=0 IS FLAT. I.E. WE THINK IN TERMS OF A PSEUDOSCALAR 

COUPLED TO GRAVITY

Ri
j = −σ⊥h2ε̃i ∧ ε̃j

Ri
0 = (ḣ + h2) dt ∧ ε̃i

T̃ i = 0

⇒
Ri

0i0 = −3a2α
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jij = 0

FLAT SPATIAL 

SLICE

THE CORE OF THE DW IS THREE-DIMENSIONAL HERE (IT SUPPORTS A 3-FORM) 

IN CONTRAST TO THE TWO-DIMENSIONAL ABRIKOSOV WALL IN 

SUPERCODUCTIVITY (THAT SUPPORTS THE ELECTROMAGNETIC 2-FORM).

HENCE WE HAVE “GRAVITY SUPERCONDUCTIVITY”

THE ANALOG OF THE EXTERNAL MAGNETIC FIELD IS: COSTANTH̃ ∼ α3

THE PENETRATION LENGTH (I.E. DECAY OF THE MAGNETIC INDUCTION” IS:

λ ∼ 1
3a

THE COHERENCE LENGTH (I.E. DECAY OF THE ORDER PARAMETER) IS:

ξ ∼ 1
6a
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THE ANALOG OF THE QUANTIZED MAGNETIC FLUX IS:
∫

∗4H = 2π

NOTICE THAT THIS IS AN “ELECTRIC FLUX”!

INDEED, DERIVING ONCE MORE THE E.O.M. WE OBTAIN A LANDAU-GINSBURG 

EQUATION FOR THE ORDER PARAMETER!

ḧ− 6Λh− 18h3 = 0

HENCE IT IS NATURAL TO INTERPRET:

Λ = −3σ⊥a2 = −3σ⊥
1
L2
∼ T − Tc

AND THE PENETRATION AND COHERENCE LENGTH DIVERGE AS:

(T − Tc)
1
2

FINALLY, THE ANALOG OF TEMPERATURE IS THE COSMOLOGICAL CONSTANT.
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NORMAL PHASE FOR Λ=0. IS IT TYPE I OR TYPE II?
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4aα3 sinh
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2

THIS IS POSITIVE, SO NAIVELY THE CONFIGURATION IS LESS FAVORABLE 

(REPULSION).

HOWEVER, THE DWS RESIDE IN A CURVED SPACETIME, HENCE TO DRAW A 

CONCLUSION WE SHOULD CALCULATE THE FORCE BETWEEN THEM AS THEY 

MOVE APART.
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PUT THE SYSTEM IN [-L,L] AND CONSIDER A DW LOCATED AT t0. 

eA(t−t0) = α (2 cosh 3a(t− t0))
1
3 → IL

on−shell =
(
6 ˆV ol3

) 4
3
aα3e3a(L−t0)

THEN, THE ON-SHELL ACTION OF TWO DWS LOCATED AT ±L

2
IS:

I±L/2 =
(

4
3
a2 ˆV ol3

)
4aα3 sinh

3aL

2

THIS IS POSITIVE, SO NAIVELY THE CONFIGURATION IS LESS FAVORABLE 

(REPULSION).

HOWEVER, THE DWS RESIDE IN A CURVED SPACETIME, HENCE TO DRAW A 

CONCLUSION WE SHOULD CALCULATE THE FORCE BETWEEN THEM AS THEY 

MOVE APART.

F = −
∂I±L/2

∂L
∝ − cosh

3aL

2
< 0
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SO WE SEEM TO HAVE A SUPERCONDUCTING PHASE FOR T<Tc(Λ<0) AND A 

NORMAL PHASE FOR Λ=0. IS IT TYPE I OR TYPE II?

PUT THE SYSTEM IN [-L,L] AND CONSIDER A DW LOCATED AT t0. 

eA(t−t0) = α (2 cosh 3a(t− t0))
1
3 → IL

on−shell =
(
6 ˆV ol3

) 4
3
aα3e3a(L−t0)

THEN, THE ON-SHELL ACTION OF TWO DWS LOCATED AT ±L

2
IS:

I±L/2 =
(

4
3
a2 ˆV ol3

)
4aα3 sinh

3aL

2

THIS IS POSITIVE, SO NAIVELY THE CONFIGURATION IS LESS FAVORABLE 

(REPULSION).

HOWEVER, THE DWS RESIDE IN A CURVED SPACETIME, HENCE TO DRAW A 

CONCLUSION WE SHOULD CALCULATE THE FORCE BETWEEN THEM AS THEY 

MOVE APART.

F = −
∂I±L/2

∂L
∝ − cosh

3aL

2
< 0 ⇒

THEY ATTRACT EACH OTHER:

TYPE-I SUPERCONDUCTOR
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IN TYPE-I SUPERCONDUCTORS, VORTICES (DWS HERE) CLUMP TOGETHER TO 

FORM REGIONS OF NORMAL PHASE. THERE IS ALSO A CRITICAL MAGNETIC 

FIELD WHICH DESTROYS THE SUPERCONDUCTOR.
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THE DWS CARRY THE FLUX (I.E. THEIR NUMBER IS DETERMINED BY THE FLUX). 

WHAT IS THE LOWEST ENERGY CONFIGURATION SATISFYING THE ABOVE?

TAKE n EQUALLY SPACED DWS IN A REGION OF SIZE L0

Friday, September 25, 2009



IN TYPE-I SUPERCONDUCTORS, VORTICES (DWS HERE) CLUMP TOGETHER TO 

FORM REGIONS OF NORMAL PHASE. THERE IS ALSO A CRITICAL MAGNETIC 

FIELD WHICH DESTROYS THE SUPERCONDUCTOR.

PUT THE SYSTEM IN [-L,L] AND CONSIDER THE FLUX QUANTIZATION CONDITION

∫
∗4H = 2LĤ

THE DWS CARRY THE FLUX (I.E. THEIR NUMBER IS DETERMINED BY THE FLUX). 

WHAT IS THE LOWEST ENERGY CONFIGURATION SATISFYING THE ABOVE?

TAKE n EQUALLY SPACED DWS IN A REGION OF SIZE L0

PROCEED AS ABOVE TO CALCULATE THE FLUX QUANTIZATION CONDITION. WE 

OBTAIN A RELATIONSHIP BETWEEN THE NUMBER OF DWS, THE MAGNETIC FIELD 

AND THE SIDE OF THE “DROPLET”. 
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FOR A GIVEN EXTERNAL FLUX THE PREFERRED CONFIGURATION IS A DW 

“DROPLET” OVER A FINITE REGION. THE SIZE OF THE REGION ASYMPTOTES TO:

Friday, September 25, 2009



FOR A GIVEN EXTERNAL FLUX THE PREFERRED CONFIGURATION IS A DW 

“DROPLET” OVER A FINITE REGION. THE SIZE OF THE REGION ASYMPTOTES TO:

L0 =
Ĥ
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FOR A GIVEN EXTERNAL FLUX THE PREFERRED CONFIGURATION IS A DW 

“DROPLET” OVER A FINITE REGION. THE SIZE OF THE REGION ASYMPTOTES TO:

L0 =
Ĥ

6a
2L = α3 2L , ⇒ Ĥcr = 6a CRITICAL MAGNETIC FIELD
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THE GRAVITY SUPERCONDUCTIVITY PHASE DIAGRAM

(THE WORMHOLE/DW TRANSITION)
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∗H

−Λ
flat space

flat w/h
g → ∞

flat w/h

flat w/h

g finite

g → 0
e.flux = 3π

e.flux = 3π

e.flux = 3π

torsion vortex
e.flux = 2π

AdS w/h
g → 0

e.flux → 3π

AdS w/h
g → ∞

e.flux → 2π

H = 6ρ

SC phase

normal phase

Figure 1: Appearance of different objects in gravity phase diagram

2 multi-wormholes configuration

For torsion vortex we already know that multi-vortex configuration corresponds to having vortices

sitting next to each other in t coordinate. For wormholes, apart from this type of multi-wormhole

(figure 2a)), there’s an extra type of multi-wormhole configuration generically shown in figure2b),

where many “parent universes” (either flat or AdS space) are connected by wormholes (called baby

universe in the literature, see for ex [2] ) However, in contrast to dS parent universe which has finite

volume, flat and AdS parent universe is infinitely large and so very highly suppressed from being

produced. Thus, multi-wormhole configurations with exactly 2 parent universes as in figure2c)

energetically dominate. As a result, figure2a) and 2c) are the only 2 types of multi-wormholes that

we will be considering.

Now suppose we have 3 unit-charge g = ĝ wormholes (supposed ĝ exists. It can be thought of

as the charge where the associated neck’s radius a0 is of string scale) approaching each other. In

appropriate situation they can form a bound state with charge g = 3ĝ and a larger neck’s radius,

as shown in figure 3. This bound state should be nothing but the g = 3g0 wormhole solution we

had. Thus, wormhole solutions with g > g0 are identified with bound states of the fundamental,

2

THE GRAVITY SUPERCONDUCTIVITY PHASE DIAGRAM

(THE WORMHOLE/DW TRANSITION)
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2 multi-wormholes configuration

For torsion vortex we already know that multi-vortex configuration corresponds to having vortices

sitting next to each other in t coordinate. For wormholes, apart from this type of multi-wormhole

(figure 2a)), there’s an extra type of multi-wormhole configuration generically shown in figure2b),

where many “parent universes” (either flat or AdS space) are connected by wormholes (called baby

universe in the literature, see for ex [2] ) However, in contrast to dS parent universe which has finite

volume, flat and AdS parent universe is infinitely large and so very highly suppressed from being

produced. Thus, multi-wormhole configurations with exactly 2 parent universes as in figure2c)

energetically dominate. As a result, figure2a) and 2c) are the only 2 types of multi-wormholes that

we will be considering.

Now suppose we have 3 unit-charge g = ĝ wormholes (supposed ĝ exists. It can be thought of

as the charge where the associated neck’s radius a0 is of string scale) approaching each other. In

appropriate situation they can form a bound state with charge g = 3ĝ and a larger neck’s radius,

as shown in figure 3. This bound state should be nothing but the g = 3g0 wormhole solution we

had. Thus, wormhole solutions with g > g0 are identified with bound states of the fundamental,

2

THE GRAVITY SUPERCONDUCTIVITY PHASE DIAGRAM

(THE WORMHOLE/DW TRANSITION)
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2 multi-wormholes configuration

For torsion vortex we already know that multi-vortex configuration corresponds to having vortices

sitting next to each other in t coordinate. For wormholes, apart from this type of multi-wormhole

(figure 2a)), there’s an extra type of multi-wormhole configuration generically shown in figure2b),

where many “parent universes” (either flat or AdS space) are connected by wormholes (called baby

universe in the literature, see for ex [2] ) However, in contrast to dS parent universe which has finite

volume, flat and AdS parent universe is infinitely large and so very highly suppressed from being

produced. Thus, multi-wormhole configurations with exactly 2 parent universes as in figure2c)

energetically dominate. As a result, figure2a) and 2c) are the only 2 types of multi-wormholes that

we will be considering.

Now suppose we have 3 unit-charge g = ĝ wormholes (supposed ĝ exists. It can be thought of

as the charge where the associated neck’s radius a0 is of string scale) approaching each other. In

appropriate situation they can form a bound state with charge g = 3ĝ and a larger neck’s radius,

as shown in figure 3. This bound state should be nothing but the g = 3g0 wormhole solution we

had. Thus, wormhole solutions with g > g0 are identified with bound states of the fundamental,

2

THE GRAVITY SUPERCONDUCTIVITY PHASE DIAGRAM

(THE WORMHOLE/DW TRANSITION)

Strominger & Giddings (88) Gutperle & Sabra (02)
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DISTINCTIVE) FEATURES OF ADS4/CFT3. 

•THE 3+1-SPLIT FORMALISM IS QUITE USEFUL AND 

INSIGHTFUL

•TORSIONAL D.O.F. CORRESPOND TO INTERESTING 

BOUNDARY PHENOMENA.

•“GRAVITY SUPERCONDUCTIVITY”? 
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