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Superconductivity 101 

 In conventional superconductors (Al, Nb, Pb, …)
 pairs of elections with opposite spin can bind to
 form a charged boson called a Cooper pair. 

 Below a critical temperature Tc, there is a
 second order phase transition and these bosons
 condense. 

 The DC conductivity becomes infinite. 

 There is an energy gap Δ for charged
 excitations. 



 Landau and Ginzburg proposed a
 phenomenological description of
 superconductivity in 1950. Phase transition is put
 in by hand. There is a complex field ψ and the
 free energy is assumed to be 

 Bardeen, Cooper, Schrieffer (BCS) proposed a
 microscopic theory of superconductivity in 1957. It
 predicts that the energy gap Δ is related to the
 critical temperature by Δ = 1.77 Tc. 



 The electron-phonon interaction is weak, and
 Cooper pairs are much larger than the
 interatomic spacing. 

 It was once thought that the highest Tc for a
 BCS superconductor was around 30o K. But in
 2001, MgB2 was found to be superconducting at
 40o K and is believed to be described by BCS.
 Some people now speculate that BCS could
 describe a superconductor with Tc = 200o.  



 The new high Tc superconductors were
 discovered in 1986. These cuprates (e.g.
 YBaCuO) are layered and superconductivity is
 along CuO2 planes.  

 Highest Tc today (HgBaCuO) is Tc = 134K. 

 Another class of superconductors discovered
 March 08 based on iron and not copper FeAs(…)
 Highest Tc = 56K. 

 The pairing mechanism is not well understood.
 Unlike BCS theory, it involves strong coupling.  

 AdS/CFT is an ideal tool to study strongly coupled
 field theories. 



                Taken from Sachdev, 0907.0008 

 Physics here described by
 CFT associated with
 quantum critical point xm 



AdS/CFT Dictionary 

   Gravity                             Superconductor 

   Black hole                          Temperature 

  Charged scalar field            Condensate 

 Need to find a black hole that has scalar hair
 at low temperatures, but no hair at high
 temperatures. 

This is not an easy task. 



 String theory has many “dilatonic” black holes
 with scalar hair, but this is a result of a coupling 

 F2 is a source for φ, so all charged black holes
 have nonzero φ. This “secondary hair” is not
 what we want. 

 Hertog (2006) showed that for a real scalar field
 with arbitrary potential V(φ), neutral AdS black
 holes have scalar hair iff AdS is unstable. 



 Gubser (2008) argued that a charged scalar
 field around a charged black hole would have
 the desired property. Consider 

 For an electrically charged black hole,
 the effective mass of Ψ is 

 But the last term is negative. There is a
 chance for nontrivial hair. 



 Quantum picture: If qQ is large enough, even
 extremal black holes create pairs of charged
 particles. In AdS, the charged particles can’t
 escape, and settle outside the horizon.  

Qi Qf<Qi Qf<Qi 

 Scalar
 field
 with
 charge
 Qi - Qf 

 This does not work for asymptotically flat
 spacetimes, but does work for asymptotically
 AdS spacetimes. 



 If you rescale A      A/q  and  Ψ      Ψ /q, then
 the matter action has a 1/q2 in front, so that
 large q suppresses the backreaction on the
 metric. 

 We will first consider this large q (probe) limit
 for a 2+1 dimensional superconductor (four
 dimensional bulk). Then we will generalize to
 other cases. 



Probe Limit 

 We use the planar neutral black hole 

where 

Hawking temperature 



 Assume a plane symmetric ansatz 

 The Maxwell equations imply that the phase of
 ψ must be constant, so can assume ψ is real.
 The field equations then take the form  



        We first consider the case m2 = - 2/L2.  

 Although the mass squared is negative, it is
 above the Breitenlohner-Freedman bound and
 hence does not induce an instability. It arises
 in several contexts in which the AdS4/CFT3
 correspondence is embedded into string
 theory. 



 The source for Maxwell’s equations includes a
 term |ψ|2 Aµ.  

 At the horizon where f(r0) = 0, ϕ must vanish in
 order for A = ϕ dt to have finite norm.  The field
 equations then implies that ψ and ψ’ are not
 independent. 

 So there are a two parameter family of solutions
 with regular horizons labeled by ϕ’(r0), ψ(r0). 

Boundary conditions 



 Asymptotically: 

 For ψ, either falloff is normalizable. After
 imposing the condition that either ψ(1) or ψ(2)

 vanish we have a one parameter family of
 solutions. 

 Solutions look boring, but they always have
 T/µ smaller than some bound. 



Dual field theory 
 Start with a 2+1 CFT with a global U(1)
 symmetry at temperature T. 

 Properties of the dual field theory are read off
 from the asymptotic behavior of the solution: 

µ = chemical potential, ρ = charge density 

If O is the operator dual to ψ, then 

                                    when ψ2 =0  

                                    when ψ1 =0.  



 Oi  has dimension i, and µ has dimension one,
 so Oi / Ti   and T/µ are dimensionless. 

Condensate (hair) as a function of T 



 Near the transition, there is a square root
 behavior 

 One can compute the free energy (euclidean
 action) of these hairy configurations and
 compare with the solution ψ = 0,  ϕ = µ - ρ/r.
 The free energy is always lower for the hairy
 configurations and becomes equal as T→Tc.  

      This is a second order phase transition. 



Generalize to other dimensions and 
other masses 

We use the planar neutral black hole (i = 1,…,d-1) 

where 

Hawking temperature 



 As before, we assume 

 The field equations are similar, but with a few
 d dependent coefficients 



 Asymptotically: 

 where 

 Typically, we need to impose ψ- = 0, in order
 for ψ to be normalizable. This gives a one
 parameter family of solutions. 

 If O is the operator dual to ψ, then O has
 dimension λ+ and 



Condensate (hair) as a function of T 

There is a second order phase transition at T = Tc. 



Conductivity 
 We want to compute the conductivity as a
 function of frequency. Start by solving for
 fluctuations in Ax in the bulk. Maxwell’s equation
 with zero spatial momentum and time
 dependence e-iωt gives 

 We want to solve this with ingoing wave
 boundary conditions at the horizon. 



For d = 3, the asymptotic behavior is 

The AdS/CFT dictionary says 

From Ohm’s law we obtain the conductivity  



O1 O2 

 Curves represent successively lower
 temperatures. Gap opens up for T < Tc.  

Consider first λ = 1, 2 (d = 3)  



There is a delta function at ω = 0 for all T < Tc.  

This can be seen by looking for a pole in Im[σ]. 

Simple derivation (Drude model): 

If E(t) = Ee-iωt,                              where k=ne2/m 

So 

For superconductors, τ→∞,   



More general derivation: 
 The Kramers-Kronig relations relate the real
 and imaginary parts of any causal quantity,
 such as the conductivity, when expressed in
 frequency space. 

 So the real part of the conductivity contains a
 delta function if and only if the imaginary part
 has a pole. One indeed finds a pole in Im[σ] at
 ω = 0 for all T < Tc.  



 Low temperature
 limit of
 conductivity 

 Solid line is
 real part.
 Dashed line is
 imaginary part. 



 If the BF bound is saturated, something
 interesting happens. 

 As you lower T, a new spike appears inside
 the gap. This looks like a new bound state of
 quasiparticles.  



 The d = 4
 conductivities at
 low T are similar. 

 Once again, if
 the BF bound is
 saturated new
 spikes appear. 



A robust feature 

 For both d=3 and d=4, and all λ > λBF 

 with deviations of less than 10%. In BCS
 theory, this ratio is about 3.5. This shows that
 the energy to break apart the condensate is
 more than twice the weakly coupled value. 
 (This is modified by higher order curvature effects in
 bulk, Gregory et al. 0907.3203. See talk by Kanno this
 afternoon.) 



 We saw before that 

 But the coefficient of the pole in Im σ(ω) is the
 superfluid density ns. Thus, we immediately get
 London’s eq. in the dual theory: 

                             Jµ = - ns Aµ 

 Numerically, we find (for T close to Tc) 

 with only a weak dependence on the dimension
 of the condensate.  



Correlation length 

 The retarded Green’s function (current-current
 two point function) is 

 Considering perturbations with eikx

 dependence, one can define a correlation
 length by expanding 



The d=3 correlation length. Near T = Tc: 



Part 1 Summary 

•  A simple gravitational theory can 
reproduce basic properties of a 
superconductor in both d=3 and d=4 
spacetime dimensions. 

•  When λ = λBF, new spikes appear in       
Re σ(ω). 

•  When λ > λBF;  ωg/Tc  ≈ 8 in all cases. 



Including backreaction 

Recall that our Lagrangian is 

To solve for the backreaction on the metric, set 

 Get four coupled nonlinear ODE’s. At the
 horizon, r = r0, g vanishes and χ is constant. 



 Equations are invariant under two scaling
 symmetries: 

 The first can be used to set χ = 0 at infinity and
 the second can be used to set r0 = 1 (as long as
 T ≠ 0).  



 We have solved the bulk equations for finite q,
 including the backreaction on the metric for d =
 3,  and various m2 ≤ 0. 

 The qualitative behavior is unchanged (but the
 “robust feature”                       is less robust for
 q < 3).   

 There are two main differences. 



 The divergence in the dimension one
 condensate at low T is gone. 

 From bottom to top, the curves correspond
 to q = 1, 3, 6, 12 



For m2 close to BF bound,  Tc
 remains nonzero even when q=0 

 There is a new source of instability: nearly
 extremal charged AdS black holes are unstable
 to forming neutral scalar hair. 

 An extremal AdS black hole has a near horizon
 geometry AdS2 x R2. The BF bound for AdSd+1
 is m2

BF = - d2/4. Our scalar can be above the BF
 bound for AdS4, but below the bound for AdS2.  



General argument for instability  

 Consider a scalar field with mass m and charge
 q in the near horizon geometry of an extremal 
 Reissner-Nordstrom AdS black hole. Get a wave
 equation in AdS2 with effective mass 

 The extremal RN AdS black hole is unstable
 when this is below -1/4, the BF bound for AdS2.
 The condition for instability is 



Conductivity 

 The perturbed Maxwell field Ax now couples to
 the perturbed metric component gtx. One can
 solve for gtx in terms of Ax and get 

 If       
 The conductivity is again  



Reformulation of Conductivity Calculation 

 Introduce a new radial variable 

 Near the horizon                    
 and  asymptotically 

 The equation for the perturbed vector potential
 takes the form of a standard Schrodinger
 equation 



 with 

 Near the horizon, V vanishes exponentially. 
 At z = 0, V vanishes if the condensate has
 dimension greater than one, and 
 for  

 Want to solve this with ingoing wave boundary
 conditions at the horizon. Set V = 0 for z > 0,
 and send in a wave from the right 



Recall that if: 

The conductivity is:  

In our reformulation: 

               and 

        so 



The potential grows as T/Tc gets smaller 
                (for q= 10, λ = 2) 



 To see the delta function in Re σ at ω = 0, we
 need to have a pole in Im σ. From 

 it suffices that Ax
(0) and Ax

(1) are real and
 nonzero at  ω = 0. This is true for any positive
 V(z) that vanishes at the horizon: 

 If ω = 0, Schrodinger’s eq. implies Ax,zz > 0.
 So starting with Ax =1 at z = - ∞, and
 integrating to z =0, Ax

(0) and Ax
(1) are indeed

 real and nonzero. 



This also explains the spikes in Re σ at 
                nonzero frequency: 

 If the potential is high enough, the reflected
 wave can interfere destructively with the
 incident wave causing Ax

(0) to be very small. 

 Using standard WKB approximation, spikes
 occur when there exists ω satisfying 

 for some integer n, where V(-z0) = ω2. 



Ground State of Holographic
 Superconductors 

 The extremal Reissner Nordstrom AdS black
 hole has large entropy and T =0. If this was
 dual to a condensed matter system, it would
 mean the ground state was highly degenerate. 

 The extremal limit of the hairy black holes is
 not like Reissner Nordstrom. It has zero
 horizon area (r0/µ      0 as T       0). It also has
 zero charge (except when q=0). 



 The near horizon behavior depends on m, q. 
 Typically, the solution is not smooth at r = 0. 

 Schrodinger potential still vanishes at the
 horizon, so Re σ(ω) ≠ 0 at low frequency even
 at T = 0. There is no hard gap. 

 Typically, V = c/z2 near the horizon, so  

 Re σ(ω) vanishes at T = 0 as ω       0. 



Case 1: m = 0 and q2 > 3/4 

 Recall: 

The near horizon solution is given by 

 The coefficients are functions of q and α. The
 exponent α is chosen to satisfy the boundary
 condition at infinity. 



 The exponent is always small, and vanishes
 for  q = 1.02. The solution is nonsingular
 (curvature is always finite at r = 0) and is
 completely smooth when α = 0. 



 Low temperature
 solutions approach
 T=0 solution. 

 Dotted blue curve is
 T=0 solution with
 q=1. Black curves
 are successively
 lower temperature
 solutions. 



 These solutions approach AdS4 near r = 0
 (with the same value of the cosmological
 constant as infinity).  

 The holographic superconductor has
 emergent conformal symmetry in the infrared. 

 The bulk solutions describe charged scalar
 solitons. 



Case 2: m2 < 0, q2 > |m2|/6 

 The near horizon solution is given by 

 β is a fixed function of m and q. φ0 can be
 adjusted to satisfy boundary condition at
 infinity. 



 Dotted blue curve is
 T=0 solution with
 q=10, m2 = -2.    
 Red curves are
 successively lower
 temperature solutions. 



 Near r = 0, the metric takes the form 

 There is a mild null singularity. 

 The holographic superconductor has emergent
 Poincare symmetry (but not conformal
 symmetry) in infrared. 



Embedding in String Theory 

 Gubser et al. (0907.3510) realized the d = 4,   
 m2 = -3, q=2 model in type IIB string theory. 

 Gauntlet et al. (0907.3796) realized the d=3,   
 m2 = -2, q=2 model in M theory. 

 Both used Sasaki-Einstein compactifications,
 where the scalar is the size of the U(1) fibration. 



 In the d = 4 example, the condensate is bilinear
 in the fermions, like a Cooper pair. 

 The truncation of supergravity leads to 
 potentials, V(ψ), that have more than one 
 extremum. There are smooth zero temperature
 solutions which interpolate between two AdS
 solutions with different radii of curvature 
 (Gubser, Pufu, and Rocha, 0908.0011).  

 They find Re σ(ω) = k ωδ  for small ω. 



Adding magnetic fields (d=3) 
 Large B fields destroy superconductivity.
 Superconductors must perform work B2V/8π to
 expel an applied field B from volume V. The
 thermodynamic critical field is 

 where F is the free energy. 

 Claim: If we add a magnetic field perpendicular
 to our 2+1 superconductor, Bc (T) = 0.  



 To expel B from disk of radius R, the
 superconductor must do work ~ R3. The
 difference in free energy is only ~ R2. 



 Starting at low T and large B, the material is in
 the normal phase. Now lower B. 

 Type I superconductors have a first order
 phase transition at B = Bc below which the
 material becomes superconducting everywhere
 and B = 0. 

 Type II superconductors have a second order
 phase transition at B = Bc2 > Bc where
 superconducting droplets form.  

Holographic superconductors are Type II. 



 Start with Reissner-Nordstrom AdS metric with
 both electric and magnetic charges. Write        
 dx2 + dy2 = du2 + u2dφ2. Then Aφ = Bu2/2. 

 Since we are interested in the onset of
 superconductivity, we can assume ψ is small.
 The solution takes the form ψ(r,u) = R(r) U(u). 

 U(u) satisfies the Schrodinger equation for a
 2D harmonic oscillator, so 

 Numerically, we find solutions for R(r) exist for
 B less than a critical value Bc2 > 0.  



 The critical field Bc2 as a function of T. From
 top to bottom the curves are q = 12, 6, 3, 1.
 Below the curves, there are superconducting
 droplets (cf. Albash and Johnson, 0804.3466). 

O1    O2 



 Holographic superconductors cannot expel a B
 field since the U(1) symmetry is not gauged. 
 But they do produce currents whose
 backreaction would cancel the B field. 
 (see also Maeda and Okamura, 0809.3079) 

 The superconducting droplets generate
 currents around their edge. One can see this
 by going to second order in ψ. Find: 

                  Aφ = Bu2/2 + Aφ(1)/r 



Vortex solution 
 Montull, Pomarol, Silva, 0906.2396;
 Albash and Johnson, 0906.1795 

 When a magnetic field starts to penetrate a
 superconductor, it forms vortices which
 contain quantized flux: B = 2πn. These can
 be found by solving PDE’s in the bulk. 

 Consider ansatz: 

   ψ = ψ(r,u) eiφn,  At = At(r,u),  Aφ = Aφ(r,u)    



u

 From the asymptotic behavior of ψ, one sees
 that superconductivity is suppressed inside
 the vortex: 

Taken from Montull, Pomarol, Silva, 0906.2396 



 The symmetry of a superconductor refers to the
 energy gap near the Fermi surface:  

s-wave 
d-wave 

 The fact that our bulk solution is rotationally
 invariant means that this is an s-wave
 superconductor. 

Energy
 gap 

 Fermi
 surface 



Part 2 Summary 

•  There are two distinct instabilities which cause 
condensate (hair) to form at low T. 

•  The conductivity is simply related to a reflection 
coefficient in a scattering problem 

•  There is no hard gap (Re σ(ω) ≠ 0 at T = 0). 
•  Holographic superconductors are Type II. 


