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► As far as it is known, there is not any fundamental principle for 
which the space-time should be 3+1 dimensional….     Hence, 
“in principle” we can assume extra spatial dimensions.

► It can not be denied that, up to now,  the theoretical exploration of
extra dimensional models is rather hypothetical than based on well
established facts.

► Nevertheless, the construction of the extra dimensional models 
is guided by the requirement of physical consistency in order to
show possible ways on how the extra dimensions can be detectable
(or why are hidden) and to connect the extra-dimensional models
with a more fundamental theory in order to solve long-standing 
theoretical problems.   

Extra dimensions



Kaluza-Klein proposal (1921, 1926):

● The  unification of  gravity with electromagnetism can be  achieved

● Consider a five-dimensional flat space with the fifth dimension compactified

● The photon resides in the extra dimension   

Extra dimensions à la Kaluza-Klein  are hidden as a result of their size :
l ~ 10-33 cm. 

Need for energies as high as the Planck energy to make them detectable.  



Brane models  (1)

The modern idea of models with Extra Dimensions is connected with the 

Brane world picture

The ordinary matter (with exception 
of gravitons) is localised to a 3-D 
submanifold (brane)  embedded in a 
fundamental multi-dimensional space 
(bulk)

It is assumed that the brane picture is an 
effective model representation. It  
comes from a high-energy theory which 
appears at a fundamental scale M*

The extra dimensions should 
be so large as to non

contradict the observations

↓
For compactified extra  
dimensions their size can be
as big as a fraction of 
millimeter dependent from   
the number of extra 
dimensions



One of the main motivations for the Brane picture used in 
higher dimensional models is to give an answer to the :  

Hierarchy Problem

Why … MPl >> MEW ? 

Possible answer: The fundamental scale is M* ~ 1TeV
in a theory defined in a 4+n space

ADD model
Arkani-Hamed, Dimopoulos & Dvali 

Phys.Lett.B 1998

RS models
Randall & Sundrum

Phys.Rev.Lett. 1998 

Brane models  (2)



RS  model (1)

♦ Consider a five-dimensional Anti-DeSitter space (AdS5) 
● the extra dimension obeys to 

z = z + 2πr  &  z → -z   (S1/Z2   orbifolded) 
● negative cosmological constant Λ in the bulk

♦ Assume the existence of two branes resided along the extra dimension and
having opposite values of tension (energy density) σ.
● Matter is assumed on the branes while the gravity can be spread in the bulk

It is shown that the metric admitted for this set-up takes the form:

ds (z) η dx dx dz      (with a(z) e )a  2 2 μ ν 2 -k z
μν

The extra dimension becomes warped as a price of maintaining a
4D Lorentz space at every point of the extra dimension 
(non-factorizable geometry).

The model provides an exponential hierarchy expressed by the 
distance which separates the two branes along the extra coordinate.



RS   model  (2)
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A short introduction to the Lattice Gauge Theories
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Lattice Gauge Theories (1)

• Total Action for the System

• Quantization using the Functional Integral Formalism

Integrate over all possible Field configurations, we have a contribution from the classical 
solutions and the Quantum Fluctuations of the Fields.

• Calculate  Mean Values for the Physical Quantities (Order Parameters) and Green
Functions for the Field Propagation.

• depend from the coupling constants of the Fields and the external 
conditions  (Temperature, Magnetic Fields etc)



a

Lattice gauge theories (2)

• Wick rotation to Euclidean space time   t  -iτ

• Discretize space time                        ,   a is the lattice spacing                     

( )( ) igaA xU x e 
 

• Gauge Fields are defined in the links between the nodes of the lattice            

• Matter Fields, Fermions Ψ(x) and Bosons Φ(x) are defined at the lattice nodes

x n a 

The Gauge Field it is an element of the 
gauge group 
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We express the action term for the Gauge
Field  through the plaquettes.

Kinetic term for a Bosonic Field in the
fundamental representation.
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Lattice Gauge Theories (3)



(4+1)-dimensional  pure  U(1)  gauge  model



► What about a possible extension of the gauge field in the bulk?

► Is there any possibility of gauge localisation on the brane in the 
RS set-up?

The answer given in terms of  analytical work is negative …

Pomarol, Phys.Lett.B2000
Davoudiasl, Hewett & Rizzo, Phys.Lett.B2000

But …
since the localisation of the gauge field on the brane may 
involve strong coupling dynamics along the extra dimensions, 
the non-perturbative methods are necessary for giving an 
answer. 

The gauge field  in extra dimensional space



● Assume the RS metric :   22
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● Consider a 5-dim abelian gauge model in the background of the  RS metric:
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● In the Euclidean space the gauge action reads:

We get a model with two different couplings, one defined on the 4D subspace 
and the second (bigger ) along the extra dimension. 

P. Dimopoulos, K.F., A. Kehagias and G. Koutsoumbas
NPB 2001

Abelian Gauge field in the RS background
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On the lattice we define the pure U(1) Wilson gauge action with anisotropic couplings:
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Link variables:

Plaquettes:

The Fu-Nielsen proposal for dimensional reduction from  lattice
anisotropic models ( couplings  ≠  )

Phase diagram becomes richer:  A new phase appears …

Fu and Nielsen 
NPB 1984, 1985

β it is inverse to the square of the gauge coupling



Four Dimensional Subspaces (branes)

Bulk Bulk Bulk

β β β

β΄ β΄ β΄

transverse
direction

Geometric picture



LAYER PHASE 

The potential between heavy test charges is closely connected with the Wilson loops:
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1.  W (L ,L ) exp σL L            (Confining  phase,  1 , 5)

2.  W (L ,L ) exp τ(L L )      (Coulomb   phase,  1 , 5)

3.  W (L ,L ) exp τ(L L )        

4.  W (L ,L ) exp σ (L L )
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Phase Diagram from Mean Field analysis

Fu and Nielsen 
NPB 1984, 1985

Confining  phase

5D-Coulomb 



Phase Diagram ― Monte Carlo Study
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Basic order parameters

● 4D (or space) plaquette  :

● extra dimension (or transverse) plaquette :

P

) β (β/2 2O

) β (  
Dβ
11 2 O

[ <<1, strong coupling ]

[ >>1, weak coupling ]

﴾ D is the dimension of the space ﴿

Behaviour of the Plaquette in the two limits of the coupling values 



=1.0

♦

Confining – 5D Coulomb Phase Transition

~ [1-(1/5)] : 5D-Coulomb phase

~  /2: Confining phase

Big hysteresis loop
Two-state signal

1st order PT

● P. Dimopoulos, K.F., A. Kehagias and  
G. Koutsoumbas

NPB 2001
● Hulsebos, Korthals-Altes and Nicolis

NPB 1995



Confining – Layer  Phase Transition 

=0.2

♦

● As the lattice volume becomes bigger the transition becomes steeper
● For <<1, PS   →    /2 : Confining phase
● For >>1, PS → (1-1/4) : 4D-Coulomb phase
● For all ,   P5 ≈ /2=0.1 (constant) → extra dimension is confined !!

P.Dimopoulos, K.F.,  S.Vrentzos
Phys.Rev.D 2006



Identification of the phases using the helicity modulus

Helicity modulus in the 
transverse direction, h5 takes 
zero value for all values of . 

Confinement along the 
extra dimension

The helicity modulus is an order parameter; it gives the
response of the system to an external elecrtomagnetic 
flux. It is defined through the second derivative of the 
free energy: [Vettorazzo and P. de Forcrand, NPB 2004 ] 
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In the confinement phase the system does not feel 
any changes due to the external flux. On the contrary
in the Coulomb phase the system reveals a response.

The space-like and the transverse-like helicity modulus are: 
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=0.2

● h() = 0  in the confining phase
● h() ≠ 0  in the Coulomb phase  



• We impose an external flux Φ  changing the gauge field in a set of links
(twisted boundary conditions)

2 1 2 3 4 5 2 1 2 3 4 5( , 1, , , ) ( , 1, , , ) iU x L x x x x U x x x x x e    

• We can spread the flux  Φ  to the  (1,2)  plain by a change in the links, then we 
have  flux                     through each plaquette in the  (1,2) plane.

• Confinement phase:  The correlation length ξ is small (one or two a), so the Free 
Energy of the system is independent from the flux that we impose changing the 

boundary conditions    h(β)=0.

• Coulomb phase:  Infinite correlation length (massless photon),  the boundary 
conditions act to the whole system   the Free Energy dependent from the flux  

 h(β) is non zero.
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2( ) (0) ...

2 ( )
R VF F

L L 
 


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• Coulomb phase:

where V is the volume of the system.

From an expansion in the lattice gauge action,



Layer – 5D Coulomb  Phase Transition 

=1.4

♦

► As the system passes to the 5D-Coulomb phase the extra fifth dimension ceases 
to be confined : h5 passes from zero to a non-zero value

• Finite size scaling analysis gives evidence for a second order Phase Transition



● A finite size scaling analysis assumes:

) LC1 (β(L)β -(1/v)
1



γ/ν
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Evidence for a 2nd PT  

* Volumes bigger than V=145 have to be used in order to confirm  this evidence

Layer – 5D Coulomb  Phase Transition

5D 
percolation

U(1) 
anisotropic

Gaussian

ν 0.57 0.57(5) 0.50

γ 1.18 1.24(44) 1.00

0.35028(53), 0.44(15)   



It can be shown numerically on the lattice:

♦ how it can be identified a phase (Layer) which is
coulombic on the four-dimensional subspace while 
it exhibits confinement along the extra dimension

♦ The Layer phase is stable and it is well separated from 
the confinement phase and the five-dimensional
Coulomb phase

♦ the potential between two test charges (on a single layer)   
in the layer phase is that of a 4D Coulomb interaction  (~1/r) 
and it is distinguishable from the potential of the 5D Coulomb
phase (which  goes as ~1/r2 )

( K.F. and  S.Vrentzos, Phys.Rev.D 2008)

P.Dimopoulos, K.F.,  S.Vrentzos
Phys.Rev.D 2006



Finite Temperature, pure U(1) 5D model:
Absence of the Layer Phase



Finite Temperature

Lattice size:  3
5 5,t S SV L L L L L 

Temperature:
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Zero Temperature case

t SL L
Infinite Temperature, Dimensional Reduction

1tL 

The physical system is defined in a Eucledian space time with compactified 
the temporal direction.   Periodic boundary conditions for Bosons,   

antiperiodic for Fermions.
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[ Vettorazzo and de Forcrand, NPB 2004 and PLB 2004 ] 

Limiting Planes in the Three Dimensional Phase Diagram:
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[ K.F. and  S.Vrentzos, Phys.Rev.D 2008 ]

[ P.Dimopoulos, K.F. and S.Vrentzos, 
Phys.Rev.D 2006 ]
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Three Dimensional Phase Diagram



• helicity modulus:  hS, ht, hS5, ht5

• Polyakov loop: 
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Fq = Free energy of a static charge

Confining  Phase  Fq Infinite, <|Pt|>  0

Order  Parameters



Phase  Diagram  for   Lt=2

[ K.F. and  S.Vrentzos, Phys.Rev.D 2008 ]



Lt=2,    Confining – “Layer” Phase Transition
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Lt=2,   “Layer” – 5D Coulomb Phase Transition
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• The layer phase for zero temperature (with a massless photon on the brane and
confinement in the extra transverse dimensions) gives its place  

to a deconfined phase at non-zero temperature.

• In this new phase the three spatial dimensions and the transverse one  form
a 4d subspace with confining properties, while the temporal direction 

shows a Coulombic behaviour.

• The critical temperature for the deconfinement is the temperature where the 
four dimensional Coulomb phase disappears.

• The brane models are well studied mainly in the zero temperature case, but if we
imagine that our brane world is a part of the Universe history then a study of the

brane models at high temperature is required. 

• In this toy model of five dimensional U(1) anisotropic lattice gauge theory we 
believe that we have all the required essential characteristics, though 

neglecting the gravity effects.



Remarks & Conclusions

● (D+1)-dimensional gauge models with anisotropic couplings can
reveal a new kind of D-dimensional phase which we call Layer. 
It is a D-dimensional Coulomb phase accompanied by confinement 
along the extra dimension. 

● The necessary condition for the layer phase formation is that the 
D-dimensional gauge model must already have two distinct phases.
Hence the minimum dimensionality is D=4 for the pure U(1) model 
and D=5 for the pure SU(2) model.

● Extra dimensional lattice gauge models with anisotropic couplings can 
be “inspired” in an extra dimensional space described by the RS metric.          



● The study of the 5D-Abelian Higgs model with anisotropic couplings 
shows that a Layer phase exists in the broken phase: we get a set of
4-dimensional subspaces in the Higgs phase which do not comunicate
due to confinement along the extra direction.      

● The 5D anisotropic SU(2)-Higgs model in the adjoint representation 
shows two main features:
► The inclusion of the scalar field is responsible for the formation 

of a 4–dimensional  layer (higgs) phase in a model with non-abelian 
dynamics

► The confinement along the extra dimension is of the non-abelian type   

● The existence of the layer phase in the phase diagram of (4+1)D lattice 
gauge models with anisotropic couplings supports the conjecture of an 
effectively four-dimensional world embedded in a bulk of extra dimensions.


