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Introduction

• Gauge-gravity duality provides a tool for studying sys-
tems at strong coupling. Has been mainly applied to
several problems of interest in nuclear physics.
e.g. Quark gluon plasma and Hydrodynamics.

• Recently, a growing interest in applying gauge-gravity
duality to condensed matter systems. This approach
could be helpful in a qualitative or even quantitative
manner, especially in extracting universal quantities.
e.g. Hall effect and quantum critical phenomena.
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Introduction

In light of these developments it is of interest to con-
sider the physics of different holographic models and
address questions such as

• How do these systems behave at low temperatures?

• Is their behaviour dependent on the details of the
particular system and how?

• Can we make a detailed comparison with what is
observed in nature?
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Introduction

Preview:

Consider diverse brane setups and study them at strong
coupling using holography. Examine the thermodynamic
properties (e.g. specific heat, speed of sound etc) at
low temperatures and the response of these systems to
small perturbations induced by oscillations. Determine
how the results vary from case to case.

Based on work in collaboration with A. Karch and
A.Parnachev [0908.3493].
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Outline

• Review of the various brane systems under study

• Specific Heat

• Thermodynamic Sound

• Zero Sound

• Resistivity

• Conclusion and Comments

• Open Questions
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Dp/Dq Systems

Consider a Dp/Dq brane system where the Dq brane
extends along 1 ≤ ds ≤ q spatial directions parallel to Nc
Dp branes with p < 5.

• Weak coupling: p+1 SYM theory interacting with
low energy degrees of freedom from p-q strings.

These generically involve fermions (and bosons) lo-
calized on the ds + 1 dimensional defect.

Stability: 4 or 6 ND directions.

• Strong Coupling: SYM ↔ Gravity and Flavor fields
↔ Induced brane geometry (DBI action)
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Dp/Dq systems

The near horizon solution of Dp branes at finite tem-
perature is

ds2 = H−1/2(−fdt2 + dx2
p) +H1/2

(
du2

f
+ u2dΩ2

8−p

)
eΦ = H

3−p
4 , C01...p = H−1

H(u) = (L/u)7−p, f(u) = 1− (uh/u)7−p

The temperature T is given in terms of uh via

uh =

(
4π

7− p

)2/(5−p)

T 2/(5−p)
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Dp/Dq Systems

Study the system at finite temperature and chemical
potential.

Finite temperature ⇒ Black Hole Dp-background

Chemical potential for the flavors ⇒ Temporal compo-
nent of the gauge field along the Dq brane worldvolume.

µ→A0

Unless an additional source is introduced, only the con-
figuration with the branes falling into the horizon of the
background geometry can support a non-trivial gauge
field and chemical potential (black hole embedding).
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Dp/Dq Systems

For massless flavors the brane profile is trivial ∂uX = 0.
The only field is turned on along the brane is A0(u).

SDBI = −N
∫
duuν

√
1−A′20 ,

where

ν =
(p− 7)(q − 2ds − 4 + p)

4
+ q − ds − 1 ,

The electric field on the brane satisfies

A′0 =
d̃√

u2ν + d̃2

with d̃ proportional to the baryon number density d as
d = (2πα′N )d̃.
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Dp/Dq Systems

The grand canonical potential Ξ is given by Ξ = −TSDBI
Evaluated on the specific solution for A0(u) along with
the chemical potential µ

µ =
∫ ∞
uh

A′t =

(
d̃

γ

)1
ν

− uh +O
[
u2ν+1
h

]
⇒
(
d̃

γ

)1
ν

' (µ+ uh)

Ξ = N
∫ ∞
uh

L = −
N

1 + ν
γ

(
d̃

γ

)1+1
ν

+O
[
u2ν+1
h

]
⇒

Ξ ' −
N

1 + ν
d̃µ−N d̃uh.

The temperature dependent piece of the grand canoni-
cal potential is equal to the change of mass of a string
in this background.
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Specific Heat

• Entropy density

sfluid = −
∂Ξ

∂T

∣∣∣∣
µ

= N d̃
∂uh

∂T
= d

∂∆m

∂T

Note: At finite density or chemical potential, the
entropy vanishes at zero temperature except for the
conformal case p = 3. No degeneracy.

• Specific Heat

cV = T
∂S

∂T

∣∣∣∣
d

= d T
∂2(∆m)

∂T 2
∼ T

2
5−p

For p = 4 the specific heat varies linearly with temper-
ature (Landau Fermi Liquid Theory). These results
remain valid for massive embeddings.
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Thermodynamic Sound

Another interesting property of the thermodynamics is
the speed of sound. Thermodynamic sound at low tem-
peratures can be deduced from the equation of state.

P =
N

1 + ν
γµν+1

ε = νP

⇒ c2
s =

∂ε

∂P
= 1/ν

For p = 3 we recover the conformal value c2
s = 1

3
. Unlike

the specific heat the speed of thermodynamic sound
depends on all integers p, q, ds characterizing the embed-
ding.
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Thermodynamic Sound

Speed of sound squared c2, for all Dp/Dq systems with p=2, 3 or 4

and 4 or 6 ND directions, as a function of ds, the number of spatial

dimensions. Color distinguishes p=4 (red), p=3 (green) and p=2

(blue).
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Zero Sound

Another property of several Dp/Dq systems at low tem-
peratures, is the existence of a mode with dispersion
relation

ω = u0q

This is a sound mode propagating in the collisionless
regime as the characteristic zero sound of Landau Fermi
Liquids. It appears as a pole in the density-density
correlation function [Karch, Son, Starinets][M.K, Par-
nachev].

Furthermore, the speed of this ”zero sound” is exactly
equal to the speed of thermodynamic sound. In Fermi
liquid theory this can be regarded as an indication of
strong quasiparticle interactions.
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Conductivity

Electrical conductivity was computed for all Dp/Dq sys-
tems [Karch-O’Bannon]. For metrics of the general
form

ds2 = −gttdt2 + gxxdx
2 + guudu

2 + gSSdΩ2
k=(q−ds−1)

it is given by

σfull =
√
σ2

0 + σ2

The density dependent part of the conductivity is

σ = d(2πl2s)g−1
xx

with gxx evaluated at u∗ such that gttgxx = (2πl2s)2E2

u∗ = uh

[
1 + (2πl2s)2 E

2

u7−p
h

] 1
7−p
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Resistivity

The density dependent resistivity is completely indepen-
dent of the probe.

1

σ
≡ ρ = λ

1
5−pu

7−p
2
h

√
1 + E2

u
7−p
h

d

It is easily related to the drag force experienced by a
string in the Dp background [Gubser, Herzog, Karch,
Kozcac, Yaffe]. When Fdrag = E quarks move with the
steady state velocity

vsteady =
E

λ
1

5−pu
7−p

2
h

√
E2

u
7−p
h

+ 1

The current produced by a density d of quarks jx = dvsteady
results in the resistivity above.
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Resistivity

The density independent resistivity is however depen-
dent on the details of the Dq probe.

σ0 ' e−Φg(ds−2)/2
xx g

k/2
SS

evaluated at u∗ ' uh +O
(
E2
)
.

The leading behavior at low temperatures is

ρ0 ' T x x = −
2

5− p

[
(p− 7)(q − 2ds − 2 + p)

4
+ q − ds − 1

]

Resistivity linear in temperature only for two systems:
p = 3, ds = 1 and p = q = 4, ds = 2.
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Resistivity

Resistivity scaling factor x, for all Dp/Dq systems with p=2, 3 or 4

and 4 or 6 ND directions, as a function of ds, the number of spatial

dimensions. Color distinguishes p=4 (red), p=3 (green) and p=2

(blue).
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Conclusions-Summary

• Several low temperature properties of the Dp/Dq
systems are insensitive to the details of the embed-
ding of the probe. Such are, the specific heat and
the density dependent piece of the conductivity.

• The manifestly q, ds independent results for the spe-
cific heat and the conductivity can be understood
from the dynamics of an external string in the back-
ground.

• The speed of thermodynamic sound and the density
independent part of the resistivity exhibit dependence
on the characteristics of the embedding.

• Zero sound propagation with a speed equal to that
of thermodynamic sound.

19



Open Questions

• Can we find a phenomenological theory consistent
with the data?

• Do these results predict new types of quantum liquids
that could be found in Nature?

• Is a fermionic quasiparticle description valid?

Compute the Lorentz number

L0 = lim
T→0

κ

σT
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Open Questions

• Employ a similar analysis to understand the physics
of Dq brane probes in the ABJM dual.

• Explore the implications of vanishing entropy at zero
temperature and fixed density.

• Interpolation between collisionless and hydrodynamic
regime.

• Further investigate the p = q = 4, ds = 2 case (strange
matter?).
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