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AdS-BH
Metric in Schwarzschild coordinates:

ds2 = −f (r)dt2 + dr2/f (r)+ r2dΩ2
k , f (r) = r2 + k −μ/r 2 , (1)

where k = +1, 0, 1. for spherical, flat and hyperbolic horizons.
Hawking temperature and mass of the BH:

T =
2r2

e + k
2πre

, E =
3Vk

16πG5
r2
e (r2

e + k) , (2)

where re is the radius of the event horizon.
k = 1 (spherical horizon):

For μ � 1, we have T ∼ μ1/4/π.
For μ � 1, we have T ∼ 1/(2π μ1/2).
No black holes with T below

√
2/π.

For larger T , the lower-mass black hole is unstable.
The larger-mass solution is dual to the high-temperature
deconfined phase of the gauge theory (Witten).
The confined phase corresponds to pure AdS space (μ = 0) with a
compactified Euclidean time direction.
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Metric in isotropic coordinates:

z4 =
16

k2 + 4μ

r2 + k
2 − r

√
f (r)

r2 + k
2 + r

√
f (r)

. (3)

Invert:

r2 =
α + βz2 + γz4

z2 , α = 1 , β = −k
2

, γ =
k2 + 4μ

16
. (4)

The metric becomes

ds2 =
1
z2

[
dz2 −

(
1 − γz4

)2

1 + βz2 + γz4 dt2 +
(
1 + βz2 + γz4)dΩ2

k

]
.

(5)
For the Schwazschild geometry, the isotropic coordinates cover
the two regions of the Kruskal-Szekeres plane outside the
horizons.
The same happens for (τ, z) for AdS-BH. The region (re,∞) of r
is covered twice by z taking values in (0,∞).

N. Tetradis University of Athens

The Temperature and Entropy of CFT on Cosmological backgrounds



Static boundary Time-dependent boundary Temperature Entropy

Temperature

The temperature of the CFT is identified with the Hawking
temperature of the BH.

It can be calculated by switching to Euclidean time and
eliminating the conical singularity at the horizon (ze = γ−1/4).

T is given by

T =
1√
2 π

(
k2 + 4μ

(k2 + 4μ)
1/2 − k

)1/2

. (6)
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Energy and pressure
For a metric of the form

ds2 =
1
z2

[
dz2 + gμνdxμdxν

]
, gμν = g(0)

μν + z2g(2)
μν + z4g(4)

μν + . . .

(7)
the stress-energy tensor of the CFT is (Skenderis)

T (CFT )
μν =

1
4πG5

{
g(4) − 1

2
g(2)g(2) +

1
4

Tr
[
g(2)
]

g(2)

− 1
8

((
Tr
[
g(2)
])2

− Tr
[
g(2)g(2)

])
g(0)

}
μν

.(8)

This gives for a static background

T (CFT )
tt = 3T (CFT )

ii =
3
(
k2 + 4μ

)
64πG5

. (9)

.
The total energy E = T (CFT )

tt Vk is larger than the mass of the
black hole by a constant (Casimir energy) for a curved horizon
(k �= 0).N. Tetradis University of Athens
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Entropy
Standard derivation

The thermal energy of the CFT is determined from the partition
function Z through the relation E = −∂(ln Z )/∂(1/T ). We need not
compute Z , as we have already determined the energy.
The entropy is given by S = E/T + ln Z , where we must omit the
Casimir contribution to the energy.
The temperature is a function of μ. Differentiating with respect to μ
we obtain dS/dμ = (1/T )dE/dμ. A simple integration gives

S =
Vk

4G5
r3
e . (10)

The entropy is proportional to the surface of the event horizon.
An intuitive derivation

Consider an infinitesimal variation of the parameter μ.
The volume Vk of the boundary is not affected.
The variation of μ generates a variation of the internal energy E of
the system that can be attributed to a change of its entropy S.
Assuming that the process takes place sufficiently slowly, we have
dE = TdS. A simple integration gives the entropy.
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LFRW boundary

Consider a boundary with the form of a LFRW spacetime

g(0)
μν dxμdxν = −dτ2 + a2(τ)dΩ2

k . (11)

The AdS-BH metric can be written as

ds2 =
1
z2

[
dz2 −N 2(τ, z)dτ2 + A2(τ, z)dΩ2

k

]
(12)

A2 = α(τ) + β(τ)z2 + γ(τ)z4 , N =
Ȧ
ȧ

(13)

α = a2 , β = − ȧ2 + k
2

, γ =
(ȧ2 + k)2 + 4μ

16a2 . (14)
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Horizons

The difference with the static case is that now the coordinate z
spans a larger part of the Schwarzschild geometry.
We have

(r ′)2
=

ȧ2 + f (r)
z2 . (15)

∂r/∂z vanishes behind the static event horizon, at

z2
m(τ) =

4a2(τ)(
(ȧ2 + k)

2
+ 4μ

)1/2
. (16)

The region (rm,∞) of r is covered twice by the coordinate z
taking values in (0,∞).
An important surface is defined by N (τ, za(τ)) = 0. It has

z2
a(τ) =

4a2(τ)

aä +
(
(ȧ2 − aä + k)

2
+ 4μ

)1/2
. (17)
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Example: a(τ) = λτ
We have

r2
m = r2

a =
1
2

[
−k̃ +

(
k̃2 + 4μ

)1/2
]

, (18)

where k̃ = k + λ2. The static event horizon has

r2
e =

1
2

[
−k +

(
k2 + 4μ

)1/2
]
. (19)

It can be checked that rm = ra ≤ re.

For λ = 0 all three surfaces defined by rm, ra and re coincide.
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Apparent event horizon: Vanishing expansion of outgoing null
geodesics.

Fefferman-Graham coordinates vs. Eddington-Finkelstein
coordinates

The out/ingoing null geodesics obey (dz(τ)/dτ)± = ∓N (τ, z)
and define a surface of areal radius A(τ, z(τ))/z(τ) = r(τ).

The growth of the volume of this surface is proportional to the
total time derivative of r along the light path, i.e. to(

dr
dτ

)
±

= ṙ + r ′
(

dz
dτ

)
±

= N
(

ȧ
z
∓ r ′

)
, (20)

The expansion of outgoing null geodesics vanishes on the
surface parametrized by za(τ), for which N = 0.
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General expression for the temperature
A thermalized system fluctuates at the microscopic level with a
characteristic time scale of order 1/T . For strongly coupled
theories, this scale determines the interaction rates that keep the
system thermalized.
At the macroscopic level, the system (e.g. the Universe) may
evolve with a different, much longer, characteristic time scale.
A temperature T can be assigned to the AdS-Schwarzschild
solution with a time-dependent boundary when the variation of
the scale factor is negligible at time intervals of order 1/T .
This requires T � ȧ/a.
We can calculate the temperature as for the static case
assuming that a(τ) and its time derivatives are constant.
For μ �= 0 we have

T (τ) =
1

2π

∣∣∣∣4a − äz2
a

Aaza

∣∣∣∣ , (21)

where Aa = A(τ, za).
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Zero acceleration
For a(τ) = λτ the temperature is (with k̃ = k + λ2)

T =
1√
2 πa

⎛
⎜⎝ k̃2 + 4μ(

k̃2 + 4μ
)1/2

− k̃

⎞
⎟⎠

1/2

. (22)

The temperature is redshifted by the scale factor a(τ).
The proportionality constant is not just the temperature in the
static case. The two expressions differ by the change of the
effective curvature k → k̃ = k + λ2.
This modification is natural as the total curvature of the boundary
metric is proportional to k̃ for a = λτ .
For sufficiently large λ we have k̃ > 0 for any value of k . The
behavior similar to that of a CFT on a sphere.
The temperature diverges for λ4 � μ. This is analogous to the
divergence of the temperature for a static background with k = 1
and μ → 0 (unstable configuration).
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Non-zero acceleration

Consider a = τν and constant ν for large τ . Also concentrate on
the case k = 0.

For 0 < ν < 1 the expansion is decelerating and for τ → ∞ we
always have ȧ4 	 μ. The curvature of the boundary geometry
becomes negligible relative to the thermal energy of the CFT. In
the same limit the apparent horizon approaches the event
horizon. Ta becomes equal to the static temperature.

For ν > 1 the expansion is accelerating and at late times we
have ȧ4 � μ. The apparent horizon deviates strongly from the
event horizon and ra eventually approaches zero. The product Ta
diverges asymptotically for τ → ∞. The regime ȧ4 � μ is
equivalent to the μ → 0 limit for the static case with k = 1. For
ν > 1 the solution always approaches this regime at late times.
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Apart from the rescaling by a, there are two qualitatively different
types of evolution.

1 For ν < 1 the CFT corresponds to a black hole with a mass that
grows relative to the scale of the curvature induced by the
expansion.

2 For ν > 1 the effective mass of the black hole seems to diminish
and eventually vanish for τ → ∞.

More precisely, the two quantities that characterize the different
types of evolution are the Casimir and the thermal energy of the
CFT. For ν < 1 the Casimir energy becomes negligible at late
times, while for ν > 1 it dominates over the thermal energy.
The deconfined phase of the CFT is dual to the large-mass
solution with the same temperature. It seems reasonable to
interpret the black-hole configuration with an accelerating
boundary as dual to a CFT in the deconfined phase on an
accelerating FLRW background geometry.
It is also likely that such a configuration is unstable. The form of
the entropy gives more indications of this instability.
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dS boundary

For a = exp(Hτ), k = 0 we have a deSitter (dS) boundary.

For μ �= 0 and large τ , the temperature quickly approaches the
value T = H/(

√
2 π). This differs from the standard dS

temperature by a factor
√

2.

The configuration with μ �= 0 on a background with a = exp(Hτ)
cannot evolve continuously to pure dS space.

Set a = exp(Hτ), k = 0, μ = 0 directly in the metric. This gives
N (τ, z) = 1 − H2z2/4. Despite the absence of a black hole, a
conical singularity still exists at za = 2/H for periodic Euclidean
time.

The location of the singularity is τ -independent for a dS
boundary. No assumptions are needed about the relative size of
T and H.

The singularity can be eliminated for an appropriate value of the
temperature. This gives T = H/(2π).
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Stress-energy tensor

The stress-energy tensor of the dual CFT for a cosmological
boundary is determined via holographic renormalization:

〈(T (CFT ))ττ 〉 =
3

64πG5

(ȧ2 + k)2 + 4μ

a4 (23)

〈(T (CFT ))i
i 〉 =

(ȧ2 + k)2 + 4μ − 4aä(ȧ2 + k)

64πG5a4 , (24)

The conformal anomaly is

g(0)μν〈T (CFT )
μν 〉 = −3ä(ȧ2 + k)

16πG5a3 . (25)

The Casimir energy density is ∼ (ȧ2 + k)2/a4 and reflects the
total curvature of the boundary metric. For ȧ4 >∼ μ it becomes
comparable to or dominates over the thermal energy ∼ μ/a4 of
the CFT.
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The boundary geometry can be made dynamical if one
introduces an Einstein term for the boundary metric and employs
mixed boundary conditions.

The resulting Friedmann equation is

(
ȧ
a

)2

+
k
a2 =

8πG4

3

{
1

16πG5

[(
ȧ2 + k

)2

a4 +
4μ

a4

]
+ ρ

}
. (26)
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Entropy

Consider an infinitesimal adiabatic variation of μ that takes place
within a time interval that is sufficiently small for the evolution of
a(τ) to be negligible. In contrast to the determination of the
temperature, the required time for the variation can be made
arbitrarily small by sending dμ → 0.

The fundamental relation dE + pdV = TdS can be employed for
the determination of the entropy. The volume a3Vk of the
boundary remains constant, while the temperature is a function
of μ (and a, ȧ, ä).

We find

S =
Vk

4 G5

(Aa

za

)3

− 3Vk

32 G5

(
ȧ2 + k

)
ä

a

∫ za

Aa(z)dz + F (a, ȧ, ä),

(27)
where za is the location of the apparent horizon in isotropic
coordinates, and Aa/za in Schwarzschild coordinates.
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Specific cases
For a(τ) = λτ

S =
Vk

4G5

(Aa

za

)3

=
Vk

4G5
r3
a , (28)

where the areal distance of the apparent horizon ra is constant.
For a decelerating expansion (ä < 0) the total entropy at late
times is proportional to the area of the apparent horizon. The
apparent horizon approaches the event horizon, while its area
increases. Asymptotically, the two become identical. In this limit,
the temperature and entropy density scale with simple powers of
a.
For an accelerating expansion (ä > 0) the total CFT entropy
decreases with time. This is a sign that the corresponding
configuration is unstable or metastable. Our interpretation is that
this configuration corresponds to a high-temperature CFT in the
deconfined phase on an accelerating background. This must be
unstable relative to the confined phase. The latter is described
by the pure AdS geometry with periodic time.
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Comments

The Schwarzschild coordinate r and the isotropic coordinate z
are related through r = a(τ)/z. The five-velocity of an observer
at fixed z is (z/a, ȧ, �0). The temperature seen by such an
observer is not just the redshifted static temperature.

When are the corrections relevant in the real world?
For H4 � ρCFT . Assume H2 ∼ ρ̄/M2

Pl , where ρ̄ is the energy
density that drives the expansion. Then

ρCFT � ρ̄

M4
Pl

ρ̄. (29)
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