Phase Structure of Defect Theories

Paolo Benincasa

CPT & Mathematical Science Dept, Durham

September, 24th 2009 - 5th Aegean Summer School, $M\eta\lambda o \zeta$

P.B. - to appear

Phase Structure of Defect Theories

CPT & Mathematical Science Dept, Durham

< ∃ >

Motivations	Chem Pot	HQL	Conclusion

- 2 Holographic framework
- 3 Chemical Potential
- 4 Holographic Quantum Liquids

5 Conclusion

-

Motivations	Chem Pot	HQL	Conclusion

- 2 Holographic framework
- 3 Chemical Potential
- 4 Holographic Quantum Liquids

5 Conclusion

Motivations	Chem Pot	HQL	Conclusion
•00			

• No complete picture for strongly coupled gauge theories

 $\mathsf{QCD}/\mathsf{QGP}$ investigated mainly via lattice simulation

• Strongly correlated systems for condensed matter

Quantum critical points Superconductors Superfluids Quantum liquids Quantum Hall Effect Graphene

Motivations 0●0	Framework 0000	Chem Pot 000000	HQL 00	Conclusion
So far Intersect	ing brane models s	studied for:		
Holograp	hic duals to large-	N QCD Sakai, Burrin	enski, Mateos, My Sugimoto gton, Sonneschein	ers, Winters
\sim Holog	raphic dual to CFI	_: Chen, Hashimoto,	Matsuura	
Models o	of Superconductors	; { Ammon, Erdme Peeters, Powell,	nger, Kaminski, K Zamaklar	erner
Quantum	n Hall Effect { M D Fi	yers, Wapler avis, Kraus, Shah ujita, Li, Ryu, Takaya	nagi	
Holograp	hic Quantum Liqu	uids: Karch, Son, St	tarinets	
			▲□▶ ▲圖▶ ▲ ≧▶ ▲	(■) ■ ●) < (●)

Motivations	Framework	Chem Pot	HQL	Conclusion
00●	0000	000000	00	00

Here...

Analytic study of the phase structure for all BPS intersections

Focus on the plane (T, μ)

- First order phase transition \rightarrow QCD (?)
- \bullet Second order phase transition $\ \rightarrow \$ condensed matter
- Third order phase transition (less common)
 - Gross-Witten model (\rightarrow also large-N)

Motivations	Framework	Chem Pot	HQL	Conclusion

- 2 Holographic framework

- ∢ ≣ ▶

Motivations	Framework	Chem Pot	HQL	Conclusion
000	●000	000000	00	00

Gauge/Gravity Correspondence

Introduction of flavour degrees of freedom [Karch, Katz]

< ∃ →

Motivations	Framework	Chem Pot	HQL	Conclusion
000	0●00	000000	oo	00

Flavour degrees of freedom

BPS intersections $\rightarrow Dp/D(p+4-2k)$ branes

	0	1	 p-3	p-2	p-1	р	p+1	p+2	p+3	p+4	 8	9
Dp	Х	X	 Х	Х	X	X						
<i>k</i> = 0	Х	X	 Х	Х	X	X	Х	Х	Х	X		
k = 1	Х	X	 Х	Х	X		Х	Х	Х			
k = 2	Х	X	 Х	Х			Х	Х				

Probe approximation:

M D(p+4-2k)-branes in a background generated by N Dp-branes ($M \ll N$).

$$ds_{T}^{2} = d\rho^{2} + \rho^{2} \left(d\theta^{2} + \sin^{2}\theta d\Omega_{3-k}^{2} + \cos^{2}\theta d\Omega_{4-p+k}^{2} \right) = d\varrho^{2} + dy^{2} + \varrho^{2} d\Omega_{3-k}^{2} + y^{2} d\Omega_{4-p+k}^{2},$$

hypermultiplet in the fundamental representation

Motivations	Framework	Chem Pot	HQL	Conclusion
000	0000	000000	00	00
		,		
Two clas	ses of embeddings	s for the $D(p+4)$	– 2 <i>k</i>)-branes	
1 line	ar embedding x^p =	$= z(a) (k \neq 0)$		
		$= 2(\ell)(\kappa \neq 0)$		
\rightarrow I	massless excitation	S;		
٠	$x^{p} \equiv z(\rho), \theta(\rho)$	= 0		

Susy broken, massless excitations;

- $z(\varrho) = \text{const.}, \ \theta(\varrho) = 0$ Susy system.
- angular embedding θ = θ (q) → massive excitations
 "quark"-mass = mass of the string stretching between the bulk and the boundary

 $Chemical \ potential \ \rightarrow \ non-trivial \ world-volume \ gauge \ field$

$$F_{[2]} = -f'(\varrho) dt \wedge d\varrho$$

Finite temperature \rightarrow Black D*p*-brane background

Phase Structure of Defect Theories

CPT & Mathematical Science Dept, Durham

Motivations	Chem Pot	HQL	Conclusion

- 2 Holographic framework
- 3 Chemical Potential
- 4 Holographic Quantum Liquids

5 Conclusion

Motivations	Framework	Chem Pot	HQL	Conclusion
000	0000	●00000	oo	00

Chemical potential axis

Two first integral of motions: $f(\varrho) \rightarrow c_f$ and $y(\varrho) \rightarrow c_y$ Chemical potential & embedding function

$$\mu = \int_{\varrho_{\min}}^{\infty} d\varrho \frac{c_f}{\sqrt{\varrho^{2(3-k)} + c_f^2 - c_y^2}}, \qquad y(\varrho) = \int_{\varrho_{\min}}^{\varrho} d\varrho \frac{c_y}{\sqrt{\varrho^{2(3-k)} + c_f^2 - c_y^2}}$$

$$\varrho_{\min} = \begin{cases} \left(c_y^2 - c_f^2\right)^{\frac{1}{2(3-k)}} & \text{for } c_f^2 - c_y^2 < 0 \rightarrow \text{ brane/anti-brane phase} \\ 0, & \text{for } c_f^2 - c_y^2 > 0 \rightarrow \text{ black-hole crossing phase} \end{cases}$$

Order of the phase transition \rightarrow Check the grand potential Ω

$$\Omega = \left. - S_{\mathsf{D}(\mathsf{p}+\mathsf{4}-2k)}^{(y)} \right|_{\mathsf{ren}} = \left. - \lim_{\Lambda \to \infty} \left[\left. S_{\mathsf{D}(\mathsf{p}+\mathsf{4}-2k)}^{(y)} \right|_{\mathsf{on-shell}} + \left. S_{\mathsf{D}(\mathsf{p}+\mathsf{4}-2k)}^{(y)} \right|_{\mathsf{ct}} \right] \right]$$

Motivations	Chem Pot	HQL	Conclusion
	00000		

Chemical potential axis

Grand-potential:

$$\Omega = \begin{cases} a_1 \left(\mu^2 - m^2\right)^{\frac{4-k}{2}}, & \mu > m \\ a_2 \left(m^2 - \mu^2\right)^{\frac{4-k}{2}}, & \mu < m \end{cases} \begin{cases} \frac{\partial \Omega}{\partial \mu}\Big|_{\mu \to m} = 0 \\ \frac{\partial^2 \Omega}{\partial \mu^2}\Big|_{\mu \to m} \to \infty \end{cases}$$

Second order phase transition \forall systems with k = 0, 1

$$k = 2 ?$$

Different physical interpretation \rightarrow non-trivial transverse embedding mode does not correspond to a mass-deformation.

Phase Structure of Defect Theories

CPT & Mathematical Science Dept, Durham

 Motivations
 Framework
 Chem Pot
 HQL
 Conclusion

 000
 0000
 00000
 00
 00

Chemical Potential-Temperature plane

Equation of motion for the gauge field and the embedding function:

$$\begin{aligned} f'(\varrho) &= c_{f} \frac{\mathbf{h}_{-}}{\mathbf{h}_{+}^{5-\rho}} \frac{\sqrt{1+(y')^{2}}}{\sqrt{c_{f}^{2}+\varrho^{2(3-k)}\mathbf{h}_{+}^{4\frac{3-k}{7-\rho}}}} \\ 0 &= \frac{y''}{1+(y')^{2}} + \frac{3-k}{\varrho}y' + 2\left(\frac{\hat{\sigma}_{h}}{\sigma}\right)^{7-\rho} \frac{\varrho y'-y}{\sigma^{2}\mathbf{h}_{-}\mathbf{h}_{+}} \left[3+k-\rho+(4-k)\left(\frac{\hat{\sigma}_{h}}{\sigma}\right)^{7-\rho}\right] - \\ &- \frac{c_{f}^{2}}{c_{f}^{2}+\varrho^{2(3-k)}\mathbf{h}_{+}^{4\frac{3-k}{7-\rho}}} \left[\frac{3-k}{\varrho}y'-2(3-k)\left(\frac{\hat{\sigma}_{h}}{\sigma}\right)^{7-\rho} \frac{\varrho y'-y}{\sigma^{2}\mathbf{h}_{+}}\right] \end{aligned}$$

Analytic approach: small density expansion $c_f \rightarrow 0$ as for the D3/D7 system $_{\rm [Faulkner,\ Liu]}$

Motivations		Chem Pot	HQL	Conclusion
000	0000	000000	00	00

Chemical Potential-Temperature plane

Subtle perturbative expansion in $c_f \rightarrow$ two regions:

1 Region 1: $\varrho \in [\varrho_{\Lambda}, \infty[$

2 Region 2:
$$\varrho \rightarrow \tau = c_f^{-\frac{1}{2-k}} \varrho, \tau \in [\tau_h, \Lambda]$$

Perturbative soln in the two region and match them in the limit $c_{\rm f}$ \to 0, ϱ_{Λ} \to 0, Λ \to ∞

Scaling $c_f^{\frac{1}{2-k}}$? \leftarrow from the T = 0 case.

Chemical potential:

$$\mu = m(T) + \mathfrak{s}_{1}(T) c_{f} - \mathfrak{s}_{2}(T) c_{f} \log c_{f} + \mathcal{O}(c_{f}^{2})$$
$$\mathfrak{s}_{2}(T)|_{k=1} = 0$$

Motivations		Chem Pot	HQL	Conclusion
000	0000	000000	00	00

Chemical Potential-Temperature plane

Phase transitions

$$rac{\partial^2 \Omega}{\partial \mu^2} \sim rac{1}{\mathfrak{s}_1 - \mathfrak{s}_2 - \mathfrak{s}_2 \log c_f} \stackrel{c_f o 0}{\longrightarrow} \left\{ egin{array}{c} 0 & k = 0, \ rac{1}{\mathfrak{s}_1} & k = 1, \mu > m \end{array}
ight.$$

Second order phase transition for k = 1

$$\frac{\partial^{3}\Omega}{\partial\mu^{3}}\Big|_{k=0} \sim \frac{\mathfrak{s}_{2}(T) c_{f}^{-1}}{\left[\mathfrak{s}_{1}(T) - \mathfrak{s}_{2}(T) - \mathfrak{s}_{2}(T) \log c_{f}\right]^{2}} \to \infty$$

Third order phase transition for $k = 0$

Motivations	Chem Pot	HQL	Conclusion
	00000		

Phase Diagram

CPT & Mathematical Science Dept, Durham

Motivations	Chem Pot	HQL	Conclusion

- 2 Holographic framework
- 3 Chemical Potential
- 4 Holographic Quantum Liquids

5 Conclusion

Motivations	Chem Pot	HQL	Conclusion
		•0	

Massless Hypermultiplet: Holographic Quantum Liquids

Position of the probe branes in the transverse space fixed to wrap the maximal S^{3-k}

Non-trivial profile for $F_{[2]}$

Specific heat at low temperature:

$$c_v \stackrel{T \to 0}{\sim} T^{2(3-k)}$$

Quantum liquids:

 $c_{v} \stackrel{\tau \to 0}{\sim} \begin{cases} T^{p-k} & \text{Bose liquids} \\ T & \text{Fermi liquids} \\ T^{\alpha(K)} & \text{Luttinger liquids,} \quad \alpha(K) = \begin{cases} \frac{1}{2(K^{-1}-1)} \frac{\text{repulsive}}{\text{interaction}} \\ 2(K-1) \frac{\text{attractive}}{\text{interaction}} \end{cases}$

Motivations		Chem Pot	HQL	Conclusion
000	0000	000000	00	00

Massless Hypermultiplet: Holographic Quantum Liquids

• Bose Liquids:

$$p = 6 - k \longrightarrow D5/D7$$

• Fermi Liquids: Never right scaling

• Tomonaga-Luttinger liquids: (p - k = 1)

$$K = \begin{cases} 4\frac{3-k}{13-4k} & \frac{\text{repulsive}}{\text{interaction}} \\ 4-k & \frac{\text{attractive}}{\text{interaction}} \end{cases}$$

Zero-sound mode:

$$\omega = \pm \frac{q}{\sqrt{3-k}} - i \frac{q^2}{2(3-k)\mu_0} + \mathcal{O}\left(q^3\right)$$

Phase Structure of Defect Theories

CPT & Mathematical Science Dept, Durham

Motivations	Chem Pot	HQL	Conclusion

- 2 Holographic framework
- 3 Chemical Potential
- 4 Holographic Quantum Liquids

э

伺 ト く ヨ ト く ヨ ト

Motivations 000	Framework 0000	Chem Pot 000000	HQL oo	Conclusion ●0

- Conclusion
 - Phase diagram for codimension-k defect theories with massive hypermultiplet
 - First order phase transition on the temperature axis Second order phase transition on the chemical potential axis
 - Transition line in the (μ, T) :
 - **1** k = 0: third-order phase transition
 - 2 k = 1: second-order phase transition
 - QCD would like a first order phase transition However:
 - German
 Gross-Witten model is at large N
 - ② ∃ (several) examples of 2nd order phase transition: Codimension-1 systems for condensed matter physics? Graphene?

Motivations 000	Framework 0000	Chem Pot 000000	HQL 00	Conclusion ○●
More to do				

- D3/D7 system with codimension-1 intersection
 - charge transport properties studied [Myers, Wapler]
 - Q quantum hall plateau transition [Davis, Kraus, Shah]

However:

- system is completely unstable with no world-volume flux
- issue of stability partially addressed only in [Myers, Wapler]:
 ∃ a window of possible stability with a self-dual instanton configuration ansatz for F_[2] for some q₇.

To do:

- complete analysis of the stability of the system
- massive hypermultiplet with chemical potential \rightarrow phase-diagram (μ , T)
- $\bullet\,$ massless hypermultiplet with gauge fields \rightarrow quantum fluids?