Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Bjorken Flow from an AdS Schwarzschild Black Hole

James Alsup

University of Tennessee Department of Physics and Astronomy High Energy Theory Group

5th Aegean Summer School

J. Alsup and G. Siopsis, Phys. Rev. Lett. **101** (2008) arXiv:0712.2164 J. Alsup and G. Siopsis, Phys. Rev. D **79**, 066011 (2009) arXiv:0812.1818

> ୬ବ୍ଦ 1/18

Outline

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Introduction

- Relativistic Heavy Ion Collisions
- Bjorken Hydrodynamics

2

Hydrodynamics from AdS/CFT

- AdS Black Hole
- Time Dependence

Transformation

- Static Black Hole
- Oynamic Black Hole
- CFT Plasma
- Next-to-leading order
- Next-to-next-to-leading order

Bjorken Flow from AdS BH

J. Alsup

- Introduction RHIC Bjorken Hydrodynamics
- Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence
- Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO
- Summary

Experiment seems to suggest QGP is strongly coupled • creating hydrodynamic behavior [Starinets Lectures, ...]

Bjorken Flow from AdS BH

- J. Alsup
- Introduction RHIC Bjorken Hydrodynamics
- Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence
- Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO
- Summary

Bjorken suggested to study the central rapidity region

[Murray, BRAHMS Collaboration]

- "plateau" for particle production, $\frac{dN}{dy} = constant$, |y| < 1
- all particles share the same proper time, τ, and independent of Lorentz frame

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Initial conditions

Time	Energy Density	Temperature	C.O.M Energy
$ au_0$	ϵ_0	T_0	\sqrt{s}

Hydrodynamic equations

- respect symmetry of initial conditions (boost invariance)
- simple solutions from conservation and conformality

$$abla_{\mu}T^{\mu\nu} = 0, \quad T^{\mu}_{\mu} = 0, \quad T_{\mu\nu} = (\varepsilon + p)u_{\mu}u_{\nu} + pg_{\mu\nu} + t^{(diss)}_{\mu\nu}$$

$$\varepsilon = 3p = \frac{\varepsilon_0}{\tau^{4/3}} - \frac{2\eta_0}{\tau^2} + \dots, \ T = T_0 \left(\frac{1}{\tau^{1/3}} - \frac{\eta_0}{2\varepsilon_0\tau} + \dots \right), \ \dots$$

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Initial conditions

Time	Energy Density	Temperature	C.O.M Energy
$ au_0$	ϵ_0	T_0	\sqrt{s}

Hydrodynamic equations

- respect symmetry of initial conditions (boost invariance)
- simple solutions from conservation and conformality

$$abla_{\mu} T^{\mu\nu} = 0, \ T^{\mu}_{\mu} = 0, \ T_{\mu\nu} = (\varepsilon + p) u_{\mu} u_{\nu} + p g_{\mu\nu} + t^{(diss)}_{\mu\nu}$$

 $\varepsilon = 3p = \frac{\varepsilon_0}{\tau^{4/3}} - \frac{2\eta_0}{\tau^2} + \dots, \ T = T_0 \left(\frac{1}{\tau^{1/3}} - \frac{\eta_0}{2\varepsilon_0 \tau} + \dots \right), \ \dots$

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Initial conditions

Time	Energy Density	Temperature	C.O.M Energy
$ au_0$	ϵ_0	T_0	\sqrt{s}

Hydrodynamic equations

- respect symmetry of initial conditions (boost invariance)
- simple solutions from conservation and conformality

$$abla_{\mu} T^{\mu\nu} = 0, \quad T^{\mu}_{\ \mu} = 0, \quad T_{\mu\nu} = (\varepsilon + p) u_{\mu} u_{\nu} + p g_{\mu\nu} + t^{(diss)}_{\mu\nu}$$

$$\varepsilon = 3p = \frac{\varepsilon_0}{\tau^{4/3}} - \frac{2\eta_0}{\tau^2} + \dots, \ T = T_0 \left(\frac{1}{\tau^{1/3}} - \frac{\eta_0}{2\varepsilon_0\tau} + \dots \right), \ \dots$$

<ロ><西><三><三><三><三><三><三><三><三><三>< 5/18

AdS₅ Black Hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Duality

At $T \sim T_C \mathcal{N} = 4$ SYM and QGP become more similar

- For Bjorken hydrodynamics dual description

 → introduce time dependence and same symmetries
 into bulk metric
- AdS₅ Schwarzschild black hole approximate solution for large longitudinal proper time, τ [Janik and Peschanski, Janik Lectures]

$$ds^2 = rac{1}{ ilde{z}^2} \left(-(1-rac{2\mu ilde{z}^4}{ au^{4/3}}) d au^2 + au^2 dy^2 + (d ilde{x}^\perp)^2 + rac{d ilde{z}^2}{1-rac{2\mu ilde{z}^4}{ au^{4/3}}}
ight)$$

▶ Dual CFT stress-energy tensor follows Bjorken!
 ● Holographic Renormalization g_{µν} ⇒ ⟨T_{µν}⟩ [Skenderis Lectures]

AdS₅ Black Hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Duality

At $T \sim T_C \mathcal{N} = 4$ SYM and QGP become more similar

- For Bjorken hydrodynamics dual description

 → introduce time dependence and same symmetries
 into bulk metric
- AdS₅ Schwarzschild black hole approximate solution for large longitudinal proper time, τ [Janik and Peschanski, Janik Lectures]

$$ds^2 = rac{1}{ ilde{z}^2} \left(-(1-rac{2\mu ilde{z}^4}{ au^{4/3}}) d au^2 + au^2 dy^2 + (d ilde{x}^\perp)^2 + rac{d ilde{z}^2}{1-rac{2\mu ilde{z}^4}{ au^{4/3}}}
ight)$$

▶ Dual CFT stress-energy tensor follows Bjorken!
 ● Holographic Renormalization g_{µν} ⇒ ⟨T_{µν}⟩ [Skenderis Lectures]

Time Dependence

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Thermodynamics

- Temperature and entropy are well understood for a static black hole
- Concepts change with time dependence

Several approximate solutions have been found [Heller, Janik,

Sin, Nakamura, Kim, Buchel, Benincasa ...]

- higher orders in τ [Janik Lectures]
 - $\eta/s = 1/4\pi$, relaxation time, ...
 - break down at 3rd order
- Eddington-Finklestein coordinates [Hubeny Lectures]

< 口 > < 冊

- redefinition of expansion parameter τ
- good to all orders
- use of apparent horizon

Time Dependence

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Thermodynamics

- Temperature and entropy are well understood for a static black hole
- Concepts change with time dependence

Several approximate solutions have been found [Heller, Janik,

Sin, Nakamura, Kim, Buchel, Benincasa ...]

- higher orders in τ [Janik Lectures]
 - $\eta/s = 1/4\pi$, relaxation time, . . .
 - break down at 3rd order

Eddington-Finklestein coordinates [Hubeny Lectures]

< 口 > < 冊

- redefinition of expansion parameter τ
- good to all orders
- use of apparent horizon

Time Dependence

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Thermodynamics

- Temperature and entropy are well understood for a static black hole
- Concepts change with time dependence

Several approximate solutions have been found [Heller, Janik,

Sin, Nakamura, Kim, Buchel, Benincasa ...]

- higher orders in τ [Janik Lectures]
 - $\eta/s = 1/4\pi$, relaxation time, . . .
 - break down at 3rd order
- Eddington-Finklestein coordinates [Hubeny Lectures]
 - redefinition of expansion parameter τ
 - good to all orders
 - use of apparent horizon

Static to Dynamic solutions

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Exact Solution

Time dependent metric is known exactly in 3 dimensions

 equivalent to static AdS Schwarzschild black hole [Kajantie, Louko, Tahkokallio]

Gives rise to 2-dim Bjorken hydrodynamics

 Temperature, entropy are understood from conformal transformation

 \Rightarrow but 3-dim gravity is special

Can this be done in other than 3 dimensions? 5-D? *JA and G. Siopsis*

Static to Dynamic solutions

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Exact Solution

Time dependent metric is known exactly in 3 dimensions

 equivalent to static AdS Schwarzschild black hole [Kajantie, Louko, Tahkokallio]

Gives rise to 2-dim Bjorken hydrodynamics

 Temperature, entropy are understood from conformal transformation

 \Rightarrow but 3-dim gravity is special

Can this be done in other than 3 dimensions? 5-D? *JA and G. Siopsis*

AdS₅ static black hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

AdS Schwarzschild black hole

Large AdS₅ Schwarzschild black hole exact solution

$$R_{\mu
u} - \left(rac{1}{2}R + \Lambda_5
ight)g_{\mu
u} = 0, \ \ \Lambda_5 = -6$$

 $ds^2 = rac{1}{z^2}\left(-(1 - 2\mu z^4)dt^2 + dec x^2 + rac{dz^2}{1 - 2\mu z^4}
ight)$

the horizon occurs at

$$z_H=(2\mu)^{-1/4}, \ \ ec{x}\in \mathcal{R}^3$$

with temperature

$$T_H = \frac{1}{\pi Z_+}$$

AdS₅ static black hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

AdS Schwarzschild black hole

Large AdS₅ Schwarzschild black hole exact solution

$$R_{\mu\nu} - \left(\frac{1}{2}R + \Lambda_5\right)g_{\mu\nu} = 0, \quad \Lambda_5 = -6$$

$$ds^2 = \frac{1}{z^2}\left(-(1 - 2\mu z^4)dt^2 + d\vec{x}^2 + \frac{dz^2}{1 - 2\mu z^4}\right)$$

the horizon occurs at

$$\mathbf{z}_{H} = (\mathbf{2}\mu)^{-1/4}, \quad \vec{\mathbf{x}} \in \mathcal{R}^{3}$$

with temperature

$$T_{H} = \frac{1}{\pi Z_{+}}$$

AdS5 dynamic black hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

AdS₅ boundaries

Two types of boundaries

$$ds^2_{\mathrm{b.h.}} \rightarrow rac{1}{z^2} \left(-dt^2 + dec{x}^2 + dz^2
ight) \ ds^2_{\mathrm{Bjorken}} \rightarrow rac{1}{ec{z}^2} \left(-d au^2 + au^2 dy^2 + (dec{x}^{\perp})^2 + dec{z}^2
ight)$$

- Instead of z = const. hypersurfaces at the boundary, slice with ž = const.
 - \Rightarrow gives rise to flowing hydrodynamics

AdS₅ dynamic black hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

For
$$\tau \to \infty$$
 with \tilde{x}^{\perp} , τy , and $\frac{\tilde{z}}{\tau^{1/3}}$ fixed
 $t = \frac{3}{2}\tau^{2/3}$, $x^1 = \tau^{2/3}y$, $x^{\perp} = \frac{\tilde{x}^{\perp}}{\tau^{1/3}}$, $z = \frac{\tilde{z}}{\tau^{1/3}}$

Transformed Metric

$$ds_{\text{b.h.}}^{2} = \frac{1}{\tilde{z}^{2}} \left[-\left(1 - \frac{2\mu\tilde{z}^{4}}{\tau^{4/3}}\right) d\tau^{2} + \frac{d\tilde{z}^{2}}{1 - \frac{2\mu\tilde{z}^{4}}{\tau^{4/3}}} + \tau^{2}dy^{2} + (d\tilde{x}^{\perp})^{2} \right] + \mathcal{O}(\tau^{-4/3})$$

 \Rightarrow Bjorken dual metric in large τ limit

AdS₅ dynamic black hole

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

• For
$$\tau \to \infty$$
 with \tilde{x}^{\perp} , τy , and $\frac{\tilde{z}}{\tau^{1/3}}$ fixed
 $t = \frac{3}{2}\tau^{2/3}$, $x^1 = \tau^{2/3}y$, $x^{\perp} = \frac{\tilde{x}^{\perp}}{\tau^{1/3}}$, $z = \frac{\tilde{z}}{\tau^{1/3}}$

Transformed Metric

$$ds_{\text{b.h.}}^2 = \frac{1}{\tilde{z}^2} \left[-\left(1 - \frac{2\mu \tilde{z}^4}{\tau^{4/3}}\right) d\tau^2 + \frac{d\tilde{z}^2}{1 - \frac{2\mu \tilde{z}^4}{\tau^{4/3}}} + \tau^2 dy^2 + (d\tilde{x}^{\perp})^2 \right] + \mathcal{O}(\tau^{-4/3})$$

 \Rightarrow Bjorken dual metric in large τ limit

Boundary Theory

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Thermodynamics

Flowing thermo. may be calculated at boundaries

$$ds^2_{z
ightarrow 0} = au^{-2/3} \left[ds^2_{ ilde{z}
ightarrow 0} + \mathcal{O}(rac{ ilde{x}^i ilde{x}^j}{ au^2})
ight]$$

For conformal transformation in 4 dimensions

$$ilde{g}^{(boundary)}_{\mu
u}= extbf{e}^{-2\phi}g^{(boundary)}_{\mu
u}$$

$$\Rightarrow \tilde{T} = e^{\phi}T$$
 , $\tilde{s} = e^{3\phi/2}s$

Temperature and entropy of fluid are found as

Bjorken Flow from exact solution of Einstein equational مرمد

Boundary Theory

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Thermodynamics

• Flowing thermo. may be calculated at boundaries

$$ds_{z \to 0}^2 = au^{-2/3} \left[ds_{\tilde{z} \to 0}^2 + \mathcal{O}(rac{ ilde{x}^i ilde{x}^j}{ au^2})
ight]$$

For conformal transformation in 4 dimensions

$$ilde{g}^{(boundary)}_{\mu
u}={
m e}^{-2\phi}g^{(boundary)}_{\mu
u}$$

 $\Rightarrow \tilde{T} = e^{\phi}T$, $\tilde{s} = e^{3\phi/2}s$

Temperature and entropy of fluid are found as

► Bjorken Flow from exact solution of Einstein equations! 12/18

Next-to-leading order

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Can viscosity be understood from a Schwarzschild BH? *JA and G. Siopsis*

Higher orders

Respect boost and transverse coordinates invariance

- Introduce terms $O(1/\tau)$
 - systematically done with Mathematica

$$t = \frac{3}{2}\tau^{2/3} - C_1 \ln \tau + \frac{f_1(v)}{\tau^{2/3}}, \quad z = \tilde{z} \left(\frac{1}{\tau^{1/3}} - \frac{C_1}{\tau}\right)$$
$$x^1 = \tau y \left(\frac{1}{\tau^{1/3}} - \frac{C_1 + b_1(v)}{\tau}\right), x^\perp = \tilde{x}^\perp \left(\frac{1}{\tau^{1/3}} - \frac{C_1 + c_1(v)}{\tau}\right)$$

• with $v = \tilde{z}/\tau^{1/3}$ kept fixed and C_1 , $b_1(v)$, $c_1(v)$ to be determined

Next-to-leading order

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Dual conformal field theory

- $b_1(v)$, $c_1(v)$ can be found with next-to-leading order Einstein equations
 - possible divergences
- Stress-energy tensor and thermo can then be calculated
- viscous Bjorken hydrodynamics with

$$\eta_0 = 2\mathcal{C}_1 \varepsilon_0 \longrightarrow \eta/s = rac{3\mathcal{C}_1}{2\pi} (2\mu)^{1/3}$$

No constraint on viscosity transport coefficient \Rightarrow at next-to-next-to-leading order

Issue of Divergences

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Identification of Bulk Divergence

Linear combinations of Riemann tensor components may be formed with a vielbein e_a^A

$$\mathcal{R}_{abcd}=\mathbf{e}^{A}_{a}\mathbf{e}^{B}_{b}\mathbf{e}^{C}_{c}\mathbf{e}^{D}_{d}\mathcal{R}_{ABCD}$$

Divergence is indication of geometry's singular nature

Flowing metric up to the $\mathcal{O}(1/\tau)$ terms $b_1(v), \ldots$ is divergent

$$\mathcal{R}_{0101} = 1 + 2\mu v^4 + \frac{32\mathcal{C}_1 \mu^2 v^8}{\tau^{2/3}} \frac{1}{1 - 2\mu v^4}$$

Terms $\mathcal{O}(1/\tau^{4/3})$ contribute to \mathcal{R}_{abcd} which give regularity • dependent on *y* and x^{\perp}

 $\Rightarrow \mathcal{R}_{0101} = 1 + 2\mu v^4 - \frac{8\mathcal{C}_1 \mu v^4}{2^{2/3}}$

Issue of Divergences

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Identification of Bulk Divergence

Linear combinations of Riemann tensor components may be formed with a vielbein e_a^A

$$\mathcal{R}_{abcd}=e^{A}_{a}e^{B}_{b}e^{C}_{c}e^{D}_{d}\mathcal{R}_{ABCD}$$

Divergence is indication of geometry's singular nature

Flowing metric up to the $\mathcal{O}(1/\tau)$ terms $b_1(v), \ldots$ is divergent

$$\mathcal{R}_{0101} = 1 + 2\mu v^4 + \frac{32\mathcal{C}_1 \mu^2 v^8}{\tau^{2/3}} \frac{1}{1 - 2\mu v^4}$$

Terms $\mathcal{O}(1/\tau^{4/3})$ contribute to \mathcal{R}_{abcd} which give regularity • dependent on *y* and x^{\perp}

 $\Rightarrow \mathcal{R}_{0101} = 1 + 2\mu v^4 - \frac{8C_1 \mu v^4}{2^{2/3}}$

15/18

Issue of Divergences

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Identification of Bulk Divergence

Linear combinations of Riemann tensor components may be formed with a vielbein e_a^A

$$\mathcal{R}_{abcd}=e^{A}_{a}e^{B}_{b}e^{C}_{c}e^{D}_{d}\mathcal{R}_{ABCD}$$

Divergence is indication of geometry's singular nature

Flowing metric up to the $\mathcal{O}(1/\tau)$ terms $b_1(v), \ldots$ is divergent

$$\mathcal{R}_{0101} = 1 + 2\mu v^4 + \frac{32\mathcal{C}_1 \mu^2 v^8}{\tau^{2/3}} \frac{1}{1 - 2\mu v^4}$$

Terms $\mathcal{O}(1/\tau^{4/3})$ contribute to \mathcal{R}_{abcd} which give regularity • dependent on *y* and x^{\perp}

$$\Rightarrow \mathcal{R}_{0101} = 1 + 2\mu v^4 - \frac{8\mathcal{C}_1 \mu v^4}{\tau^{2/3}}$$

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Transformation

Alter the transformation to include next-to-next-to-leading order, $\mathcal{O}(\tau^{4/3})$

• introduce $a_2(v), b_2(v), c_2(v), f_2(v)$ and C_2

• y and x^{\perp} dependence is unavoidable

Flowing metric must be perturbed by power law perturbation to produce boost invariant flow

$$ds_{\text{perturbed}}^2 = ds_{\text{b.h.}}^2 - \frac{1}{\tilde{z}^2} \left[\frac{v^2 \mathcal{A}(v)}{\tau^{4/3}} d\tilde{z}^2 + 2\mathcal{A}_{\mu} d\tilde{x}^{\mu} d\tilde{z} \right]$$

 $\mathcal{A}(v)$ is a gauge freedom and \mathcal{A}_{μ} kills y, x^{\perp} dependence

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Transformation

Alter the transformation to include next-to-next-to-leading order, $\mathcal{O}(\tau^{4/3})$

- introduce $a_2(v), b_2(v), c_2(v), f_2(v)$ and C_2
- y and x^{\perp} dependence is unavoidable
- \Rightarrow Flowing metric must be perturbed by power law perturbation to produce boost invariant flow

$$ds_{\text{perturbed}}^2 = ds_{\text{b.h.}}^2 - \frac{1}{\tilde{z}^2} \left[\frac{v^2 \mathcal{A}(v)}{\tau^{4/3}} d\tilde{z}^2 + 2\mathcal{A}_{\mu} d\tilde{x}^{\mu} d\tilde{z} \right]$$

 $\mathcal{A}({m v})$ is a gauge freedom and \mathcal{A}_μ kills ${m y}, {m x}^\perp$ dependence

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Solution

- The Einstein equations allow for the solutions to b₂(v), c₂(v), f₂(v)
 - $a_2(v)$ remains arbitrary due to $\mathcal{A}(v)$
- The solution has a divergent curvature invariant $\mathcal{R}^2 = R_{ABCD} R^{ABCD}$ at the horizon

\Rightarrow Constraint on C_1

lonsingular for only

$$\mathcal{C}_1 = rac{1}{6(2\mu)^{1/4}} \qquad \Rightarrow \qquad \qquad rac{\eta}{s} = rac{1}{4\pi}$$

• Equivalent to AdS perturbations and subleading approximate solutions

17/18

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Solution

- The Einstein equations allow for the solutions to b₂(v), c₂(v), f₂(v)
 - $a_2(v)$ remains arbitrary due to $\mathcal{A}(v)$
- The solution has a divergent curvature invariant $\mathcal{R}^2 = R_{ABCD} R^{ABCD}$ at the horizon

 \Rightarrow Constraint on C_1

Nonsingular for only

$$\mathcal{C}_1 = \frac{1}{6(2\mu)^{1/4}} \qquad \Rightarrow \qquad \frac{\eta}{s} = \frac{1}{4\pi}$$

 Equivalent to AdS perturbations and subleading approximate solutions

17/18

Bjorken Flow from AdS BH

J. Alsup

Introduction RHIC Bjorken Hydrodynamics

Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence

Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

Solution

- The Einstein equations allow for the solutions to b₂(v), c₂(v), f₂(v)
 - $a_2(v)$ remains arbitrary due to $\mathcal{A}(v)$
- The solution has a divergent curvature invariant $\mathcal{R}^2 = R_{ABCD} R^{ABCD}$ at the horizon

 \Rightarrow Constraint on C_1

Nonsingular for only

$$C_1 = \frac{1}{6(2\mu)^{1/4}} \qquad \Rightarrow \qquad \qquad \frac{\eta}{s} = \frac{1}{4\pi}$$

- Equivalent to AdS perturbations and subleading approximate solutions
- ୬ ଏ ୯ 17/18

Summary

Bjorken Flow from AdS BH

J. Alsup

- Introduction RHIC Bjorken Hydrodynamics
- Hydrodynamics from AdS/CFT AdS Black Hole Time Dependence
- Transformation Static Black Hole Dynamic Black Hole CFT Plasma NLO NNLO

Summary

- Ideal Bjorken hydrodynamics found by slicing near the boundary of a large AdS Schwarzschild black hole
- Viscous dissipation accounted for as well
 - Exact solution that asymptotically approaches Bjorken Dual at NLO
 - Has been generalized to d-dim AdS space
- Value for flowing system's viscosity found by perturbing AdS black hole at NNLO

Future study of QNMs around flowing geometry \Rightarrow thermalization, ellipticity, ...