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Introduction

• QCD is by now a confirmed theory for the strong interactions

• Its coupling is strong in the IR and the theory confines color

♠ Solving the theory in this regime has only been approached for some

observable only by numerical lattice techniques

♠ A new arena for the theory is at high temperatures where the theory is

expected to deconfine.

• An (initially vague) expectation exists since 30 years ago : that heavy ion

collisions can be used to study this regime for QCD.

A Holographic Approach to QCD, Elias Kiritsis
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Where we fail so far in theory

• Interactions of hadrons at medium or low energy (little or no help from
lattice, partial help from chiral perturbation theory)

• Transport coefficients of the deconfined phase (not computable directly
from lattice, crucial for understanding current (RHIC) and future (LHC)
heavy-ion data)

• The phase structure and properties of dense matter (not computable
from lattice, important for understanding properties of nuclei, and dense
nuclear matter, like neutron stars)

• Exploring the strong dynamics of other QCD-like theories, eg.

♠ N=1 super- QCD. (a very interesting toy model and may be relevant for
nature)

♠ Technicolor theories

A Holographic Approach to QCD, Elias Kiritsis
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The heavy Ion experiments

• The energy density corresponding to the deconfinement transition is

Ec ∼ 1GeV/fm3 (1 fm=10−15 m, radius of a proton ' 0.8 fm)

• The idea is to collide heavy-ion nuclei with the hope that for a short while

they will create enough density and thermalize to probe the deconfined

phase. A series of experimental efforts was devised:

• The first attempt: 1 Gev/nucleon at LBL’s Bevalac. No signals.
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• The second attempt was made in AGS (Brookhaven) by sending 10

GeV/nucleon Si and Au nuclei on a fixed target. That amounted to 5

GeV/nucleon in the collision rest frame that was not enough!

• The next attempt was made at SPS (CERN). S and Pb nuclei were

accelerated and collided on fixed target with 17 Gev/nucleon in the collision

rest frame. That was still not enough!

• The CERN experiments after 15 years of running (in 2000) saw some

hints of collective behavior beyond the known hadronic interactions.

A Holographic Approach to QCD, Elias Kiritsis
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Relativistic Heavy Ion Collider (RHIC)

• The major breakthrough came

at RHIC: two beams of Au

or Cu nuclei colliding at 200

GeV/nucleon at the center-

of-mass frame.

• Four experimental collabo-

rations: BRAHMS, PHENIX,

PHOBOS, STAR.

• For every almost central Au+Au

collision we get about 7000

particles (fragments, most of

them mesons).

A Holographic Approach to QCD, Elias

Kiritsis
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RHIC head-on collision
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A Holographic Approach to QCD, Elias Kiritsis
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RHIC collision

A Holographic Approach to QCD, Elias Kiritsis
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The mid-rapidity range

• The crossing time for Au nuclei (with radius 8 fm) is ∼ 0.1fm/c ' 3× 10−25 seconds.

• The particles with small vL are produced after 1 fm/c ' 3×10−24 seconds. Those with
higher vL are produced later due to time dilation.

• Use the rapidity variable y = 1
2 log


1+

vL
c

1−vL
c


. ∆y is Lorentz invariant.

• The ”new matter” (free of fragments) is produced near y ' 0. This is what we are
looking for.

• This can be tested by looking at how much ”baryon” number is at mid-rapidity
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• Distribution of zero baryon number and net baryon number particles as a function of
rapidity (from BRAHMS)

• Each beam nucleon looses 73 ± 6 GeV on the average that goes into creating new

particles. Therefore there is 26 TeV worth of energy available for particle production.

A Holographic Approach to QCD, Elias Kiritsis
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Phases of a collision

The “initial” energy density is given by the Bjorken formula

A Holographic Approach to QCD, Elias Kiritsis
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Is there thermal equilibrium?

PHENIX (triangles), STAR(stars), BRAHMS (circles) PHOBOS (crosses) particle ratios,

at Au+Au (s=200 GeV) at mid-rapidity vs thermal ensemble predictions.

A Holographic Approach to QCD, Elias Kiritsis
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Ellipticity

• In an off-center collision, an initial elliptic pattern is produced.

• If the subsequent interactions are weak particles are free streaming and this elliptic
pattern is wiped-out

• If the interactions are strong, this pattern persists and is visible in the detectors.

A Holographic Approach to QCD, Elias Kiritsis
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Elliptic flow

• Such Elliptic flow has been observed recently in strongly coupled cold

gases.

A Holographic Approach to QCD, Elias Kiritsis
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Hydrodynamic elliptic flow

Elliptic flow data from STAR as a function of pT (right) compared to

relativistic hydrodynamics calculations with non-zero shear viscosity, from

Luzum+Romanschke (2008).

(see also PHOBOS data)
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• Finite-temperature (equilibrium) relativistic hydrodynamics describes well

the data with
η

s
' (0.05− 0.12) ~

• Perturbative (weak-coupling) QCD gives a large ratio: η
s ' 1

g4 log(1/g)
∼

(5− 10) ~.

• Conclusion :The QGP produced is strongly coupled.

• We need techniques to understand its physics: dynamics at finite tem-

perature.

A Holographic Approach to QCD, Elias Kiritsis
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A string theory for QCD:(Very) basic expectations

• Pure SU(Nc) d=4 YM at large Nc is expected to be dual to a string

theory in 5 dimensions only. Essentially a single adjoint field → a single

extra dimension.

♠ The four vector components are related by the expected Lorentz invariance of the

vacuum.

♠ Therefore: a single eigenvalue distribution → an extra dimension

♠ Intuition well tested in several matrix models including the “old-ones”.

♠ The counting of dimensions can become complicated by the presence of several fields,

“evanescent dimensions” and the knowledge/structure of RG topography.
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• The theory becomes asymptotically free and conformal at high energy

• Following on N=4 intuition we might expect that `AdS → 0 → singularity.

• There are several possibilities for such singularities:

(a) They are “mirage”: the geometry stabilizes at ` ∼ `s. (different examples from WZW
models and DBI actions).

(b) The singularity is resolved by the stringy or higher dimensional physics. The true string
metric is regular (some examples from higher dimensional resolutions)

(c) The singularity remains (not our case we think)

• The N=4 relation `4 ∼ λ ∼ 1
log r. seems to indicate a naked singularity.

• Another possibility is that the classical saddle point solution should asymp-

tote to a regular but stringy (` = `s) AdS5 in the Einstein frame . This

option has several advantages and provides a lot of mileage:

♠ It allows in principle the machinery of holography to be applied

♠ It realizes the geometrical implementation of the asymptotic conformal

symmetry of YM theory in the UV.

A Holographic Approach to QCD, Elias Kiritsis
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The low energy spectrum

♠ In YM only Tr[FF ] and maybe Tr[F ∧ F ] have a source. However many
operators can have a vev. We expect 〈O∆〉 ∼ (ΛQCD)∆.

♠ If that is the case this implies that many stringy states will have non-trivial
profiles in the vacuum solution.

♠ Operators of higher dimension are not important in the UV (that’s why

we can truncate the RG flow). In the bulk, they have positive m2, that suppresses their

solutions.

These are scalar YM operators with ∆UV > 4 → m2 > 0 or higher spin fields.

• Although higher dimension operators may become important in the IR, indications from

SVZ sum rules plus data suggest that the coefficients of higher dimension operators are

“unaturally” small.

• It seems a reasonable assumption to neglect all ∆ > 4 fields when looking
for the vacuum solution.

A Holographic Approach to QCD, Elias Kiritsis
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The minimal effective string theory spectrum

• NS-NS → gµν ↔ Tµν , Bµν ↔ Tr[F ]3 , φ ↔ Tr[F2]

• RR → Spinor5×Spinor5=F0 + F1 + F2 + (F3 + F4 + F5)

♠ F0 ↔ F5 → C4, background flux → no propagating degrees of freedom.

♠ F1 ↔ F4 → C3 ↔ C0: C0 is the axion, C3 its 5d dual that couples to
domain walls separating oblique confinement vacua.

♠ F2 ↔ F3 → C1 ↔ C2: C2 mixes with B2 because of the C4 flux, and is
massive. C1 is associated with baryon number (as we can see when we add
flavor).

• In an ISO(3,1) invariant vacuum solution, only gµν, φ, C0 = a can be
non-trivial.

ds2 = e2A(r)(dr2 + dx2
4) , a(r), φ(r)

A Holographic Approach to QCD, Elias Kiritsis
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(Many) holographic approaches to QCD

♠ Witten (1998): Start from N=4 d=5 superYM → the near horizon so-

lution is known (D4 brane in 10d) Put antiperiodic boundary conditions

around 5th circle to fermions: they acquire massesmf ∼ 1/R5.

Scalars get one loop masses m2
s ∼ g2

5/R3
5

• At low energies the theory is expected to be pure YM in 4d.

• The dual solution that describes this theory is an AdS-like soliton solution:

It has a cigar in the r − x5 plane. This caps-off the geometry and imposes

confinement.

• The solution is strongly coupled in the UV. This leads to the black-M5

solution that regulates the UV singularity.

• In the regime where the solution is reliable the glueball masses are of the

same order as the KK masses (∼ 1/R5)
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♠ Klebanov-Strassler (2000). This is a theory that describes a cascading

set of gauge theories (the number of colors is “cutoff dependent”) .

• In the IR asymptotes to a confining pure gauge theory.

• In the UV it has a rather complicated behavior that defies a simple

description.

♠ Maldacena-Nunez (2000). This is based on a gauge supergravity solution

of Chamseddine and Volkov. It describes an M5-brane (little string theory)

wrapped on a two cycle in a CY manifold down to four-dimensions with

N=1 supersymmetry.

• In the IR the theory is similar to N=1 sYM

• The UV asymptotics coincide with 6d CFT based on M5-branes.

A Holographic Approach to QCD, Elias Kiritsis
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AdS/QCD

♠ A basic phenomenological approach: use a slice of AdS5, with a UV cutoff, and an IR
cutoff. Polchinski+Strassler

♠ It successfully exhibits confinement (trivially via IR cutoff), and power-like behavior in
hard scattering amplitudes

♠ It may be equipped with a bifundamental scalar, T , and U(Nf)L × U(Nf)R, gauge fields
to describe mesons. Erlich+Katz+Son+Stepanov, DaRold+Pomarol

Chiral symmetry is broken by hand, via IR boundary conditions. The low-lying meson

spectrum looks ”reasonable”.
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♠ Shortcomings:

• The glueball spectrum does not fit very well the lattice calculations. It

has the wrong asymptotic behavior m2
n ∼ n2 at large n.

• Magnetic quarks are confined instead of screened.

• Chiral symmetry breaking is input by hand.

• The meson spectrum has also the wrong UV asymptotics m2
n ∼ n2.

• at finite temperature there is a deconfining transition but the equation

of state is trivial (conformal) (e-2p) and the speed of sound is c2s = 1
3.

A Holographic Approach to QCD, Elias Kiritsis
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Improved Holographic QCD: a model

• We would like to write down a model that captures the holographic

behavior of YM and in particular the running of the coupling constant:

• The basic fields will be gµν, φ, a. We can neglect a when studying the

basic vacuum solution (down by N−2
c ).

• In the IR the action should have two derivatives and admit solutions with

weak curvature (in the string frame)

SEinstein = M3N2
c

∫
d5x

√
g

[
R− 4

3

(∂λ)2

λ2
+ V (λ)

]
, λ = Nc eφ

• Although in the UV we expect higher derivatives to be important we will

extend this by demanding that the solution is asymptotically AdS5 and the

’t Hooft coupling will run logarithmically.

• Although we do not expect this simple model to capture all aspects of

YM dynamics we will se that it goes a long way.

A Holographic Approach to QCD, Elias Kiritsis
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The UV solution

• In order to obtain an asymptotically AdS5 solution V should become a
constant when λ → 0.

• We therefore write an expansion for the potential in the UV as

lim
λ→0

V (λ) =
12

`2


1 +

∞∑

n=1

cnλn




• The potential should be strictly monotonic to drive the theory to strong
coupling without IR fixed points.

• In particular, the UV fixed point should NOT be a minimum of the
potential.

• The vacuum solution ansatz is

ds2 = e2A(r)(dr2 + dxµdxµ) , λ(r)

and is the most general one that preserves 4d Poincaré invariance.

A Holographic Approach to QCD, Elias Kiritsis
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• We may choose the holographic “energy” scale (renormalization group

scale) as the scale factor in the Einstein frame

E = eAE

This asymptotes properly in the UV, E ∼ 1/r, is everywhere monotonic

and becomes zero in the IR. This is a choice (scheme). Physical quantities

do not depend on this choice.

• We may now solve the equations perturbatively in λ around λ = 0 and

r = 0 (this is a weak coupling expansion) to find

1

λ
= L− b1

b0
logL + · · · , L ≡ −b0 log(rΛ)

eA =
`

r

[
1 +

4

9 log rΛ
+O

(
log log rΛ

log2 rΛ

)]

21



The identification is

c1 =
8

9
b0 , c2 =

23 b20 − 36 b1

34
, c3 = −2

324 b2 + 124 b30 + 189 b1b0

37

with

V =
12

`2

[
1 + c1λ + c2λ2 + c3λ3 + · · ·

]

dλ

d logE
≡ β(λ) = −b0λ2 + b1λ3 + b2λ4 + · · ·

♠ The asymptotic expansion of the potential is in one-to-one correspon-

dence with the perturbative β-function. This can be verified by a more

rigorous renormalization procedure.
Gursoy+Papadimitriou

A Holographic Approach to QCD, Elias Kiritsis
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An assessment of IR asymptotics

• We define the superpotential W as

V (λ) =
4

3
λ2

(
dW

dλ

)2
+

64

27
W2

• We parameterize the UV (λ → 0) and IR asymptotics (λ →∞) as

V (λ) ∼ λQ(logλ)P

• We characterize the presence of confinement by calculating the heavy

quark potential via the Wilson loop.

lim
R→∞,T→∞

R/T→0

〈W(R, T )〉 = e−TV (L) , V (L) = σs L + · · ·

• All confining solutions have an IR singularity.

There are several types of solution for W :

• There is only one “Good type” solution.

W (λ) ∼ (logλ)
P
2 λ

Q
2
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It leads to a ”good” IR singularity, confinement, a mass gap, discrete

spectrum of glueballs and screening of magnetic charges if

4
√

2

3
> Q >

4

3
or Q =

4

3
and P > 0

.

• The asymptotic spectrum of glueballs is linear if Q = 4
3 and P = 1

2.

• All other families of solutions are ”bad” in that they either have no

confinement or lead to a a bad singularity.

A Holographic Approach to QCD, Elias Kiritsis
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Selecting the IR asymptotics

The Q = 4/3, 0 ≤ P < 1 solutions have a singularity at r = ∞. They
are compatible with

• Confinement (it happens non-trivially: a minimum in the string frame scale factor )

• Mass gap+discrete spectrum (except P=0)

• “good+repulsive” singularity (like in the linear dilaton vacuum).

• Rstring → 0 justifying the original assumption. More precisely: the string frame metric

becomes flat at the IR .

♠ It is interesting that the lower endpoint: P=0 corresponds to linear
dilaton and flat space (string frame). It is confining with a mass gap but
has continuous spectrum.

• For linear asymptotic trajectories for fluctuations (glueballs) we must
choose P = 1/2

V (λ) =∼ λ
4
3
√

logλ + subleading as λ →∞

A Holographic Approach to QCD, Elias Kiritsis

23



Summary

• We argued that an Einstein dilaton system with a potential can cap-
ture some important properties of YM: asymptotic freedom in the UV and
confinement in the IR

S ∼
∫ [

R− 4

3
(∂φ)2 + V (φ)

]

• The potential is regular in the UV

V → 12

`2

[
1 + c1λ + c2λ2 + · · ·

]

• In the IR it should behave as

V ∼ λ
4
3(logλ)P

for linear trajectories P = 1/2.

• We can solve the equations of motion with λ → 0 in the UV.

• The intermediate behavior of the potential is not fixed (phenomenological
parameters).

• Once the potential is fixed, the solutions have only one parameter: ΛQCD

A Holographic Approach to QCD, Elias Kiritsis
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Adding flavor

• To add Nf quarks qI
L and antiquarks qĪ

R we must add (in 5d) space-filling

Nf D4 and Nf D̄4 branes.

(tadpole cancellation=gauge anomaly cancellation)

• The qI
L should be the “zero modes” of the D3 −D4 strings while qĪ

R are

the “zero modes” of the D3 − D̄4

25



• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)L gauge

fields AL
µ. The low-lying fields on the D̄4 branes (D̄4 − D̄4 strings) are

U(Nf)R gauge fields AR
µ . They are dual to the J

µ
L and JR

µ

δSA ∼ q̄I
L γµ (AL

µ)
IJ

qJ
L + q̄Ī

R γµ (AR
µ )

ĪJ̄
qJ̄
R = Tr[Jµ

L AL
µ + J

µ
R AR

µ ]

• There are also the low lying fields of the (D4 − D̄4 strings), essentially

the string-theory “tachyon” TIJ̄ transforming as (Nf , N̄f) under the chiral

symmetry U(Nf)L × U(Nf)R. It is dual to the quark mass terms

δST ∼ q̄I
L TIJ̄ qJ̄

R + complex congugate

• The interactions on the flavor branes are weak, so that A
L,R
µ , T are as

sources for the quarks.

• Integrating out the quarks, generates an effective action Sflavor(A
L,R
µ , T ),

so that A
L,R
µ , T can be thought as effective qq̄ composites, that is : mesons

25-



• On the string theory side: integrating out D3 −D4 and D3 − D̄4 strings

gives rise to the DBI action for the D4 − D̄4 branes in the D3 background:

Sflavor(A
L,R
µ , T ) ←→ SDBI(A

L,R
µ , T ) holographically

• In the ”vacuum” only T can have a non-trivial profile: T IJ̄(r). Near the

AdS5 boundary (r → 0)

T IJ̄(r) = MIJ̄ r + · · ·+ 〈q̄I
L qJ̄

R〉r3 + · · ·

Casero+Kiritsis+Paredes

• A typical solution is T vanishing in the UV and T →∞ in the IR. At the

point r = r∗ where T = ∞, the D4 and D̄4 branes “fuse”. The true vacuum

is a brane that enters folds on itself and goes back to the boundary. A

non-zero T breaks chiral symmetry.

• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars,

the U(Nf)A Goldstone bosons.

25-



• The WZ part of the flavor brane action gives the Adler-Bell-Jackiw

U(1)A axial anomaly and an associated Stuckelberg mechanism gives an

O

(
Nf
Nc

)
mass to the would-be Goldstone boson η′, in accordance with the

Veneziano-Witten formula.

• We can derive formulae for the anomalous divergences of flavor currents,

when they are coupled to an external source.

• T=0 is always a solution. However it is excluded from the absence of IR

boundary for the flavor branes: Holographic Coleman-Witten theorem.

• Fluctuations around the T solution for T, A
L,R
µ give the spectra (and

interactions) of various meson trajectories.

• A GOR relation is satisfied (for an asymptotic AdS5 space)

m2
π = −2

mq

f2
π
〈q̄q〉 , mq → 0

A Holographic Approach to QCD, Elias Kiritsis
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Shortcomings

Not everything is perfect: There are some shortcomings localized at the

UV

• The conformal anomaly (proportional to the curvature) is incorrect.

• Shear viscosity ratio is constant and equal to that of N=4 sYM.

(This is not expected to be a serious error in the experimentally interesting

Tc ≤ T ≤ 4Tc range.)

Both of the above need Riemann curvature corrections.

• Many other observables come out very well both at T=0 and finite T

A Holographic Approach to QCD, Elias Kiritsis
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Finite temperature

The theory at finite temperature can be described by:

(1) The “thermal vacuum solution”. This is the zero-temperature solution

we described so far with time periodically identified with period β.

(2) “black-hole” solutions

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + dxidxi

]
, λ = λ(r)

♠ We need VERY UNUSUAL boundary conditions: The dilaton (scalar) is

diverging at the boundary so that λ ∼ eφ → 1
log r → 0

♠ The boundary AdS is NOT at a minimum of the potential.

• Such type of solutions have not been analyzed so far in the literature.

A Holographic Approach to QCD, Elias Kiritsis
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General phase structure

• For a general potential (with no minimum) the following can be shown :

i. There exists a phase transition at finite T = Tc, if and only if the zero-T

theory confines.

ii.This transition is of the first order for all of the confining geometries,

with a single exception described in iii:

iii. In the limit confining geometry b0(r) → e−Cr, λ0 → e
3
2Cr, (as r → ∞),

the phase transition is of the second order and happens at T = 3C/4π.

This is the linear dilaton vacuum solution in the IR.

iv. All of the non-confining geometries at zero T are always in the black

hole phase at finite T. They exhibit a second order phase transition at

T = 0+.

A Holographic Approach to QCD, Elias Kiritsis
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Temperature versus horizon position

Α>1

Α=1

Α<1

T_min

T_min

r_min

rh

100

200

300

400

500

T

We plot the relation T (rh) for various potentials parameterized by a. a = 1
is the critical value below which there is only one branch of black-hole
solutions.

A Holographic Approach to QCD, Elias Kiritsis
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The free energy

• The free energy is calculated from the action as a boundary term for

both the black-holes and the thermal vacuum solution. They are all UV

divergent but their differences are finite.

F
M3

p V3
= 12G(T )− T S(T )

• G is the temperature-depended gluon condensate 〈Tr[F2]〉T −〈Tr[F2]〉T=0

defined as

lim
r→0

λT (r)− λT=0(r) = G(T ) r4 + · · ·
• It is G the breaks conformal invariance essentially and leads to a non-

trivial deconfining transition (as S > 0 always)

A Holographic Approach to QCD, Elias Kiritsis
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The pressure from the lattice at different N

Marco Panero arXiv: 0907.3719

A Holographic Approach to QCD, Elias Kiritsis
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The entropy from the lattice at different N

Marco Panero arXiv: 0907.3719

A Holographic Approach to QCD, Elias Kiritsis
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The trace from the lattice at different N

Marco Panero arXiv: 0907.3719

A Holographic Approach to QCD, Elias Kiritsis
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The speed of sound
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A Holographic Approach to QCD, Elias Kiritsis
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Viscosity

• Viscosity (shear and bulk) is related to dissipation and entropy production

∂s

∂t
=

η

T

[
∂ivj + ∂jvi −

2

3
δij∂ · v

]2
+

ζ

T
(∂ · v)2

Tµν = (E + p)uµuν + pgµν+ZµαZνβ
[
η

(
∇αuβ +∇βuα)− 2

3
gαβ∇γuγ

)
+ ζgαβ∇γuγ

]

Zµν = gµν + uµuν

• Hydrodynamics is valid as an effective description when relevant length

scales À mean-free-path:

• Conformal invariance imposes that ζ = 0.

35



• Viscosity can be calculated from a Kubo-like formula (fluctuation-dissipation)

as the linear terms at low frequencies

η

(
δikδjl + δilδjk −

2

3
δijδkl

)
+ ζδijδkl = − lim

ω→0

Im GR
ij;kl(ω)

ω

GR
ij;kl(ω) = −i

∫
d3x

∫
dt eiωtθ(t) 〈0|[Tij(~x, t), Tkl(~0,0)]|0〉

• In all theories with gravity duals (λ →∞) at two-derivative level

η

s
=

1

4π

Policastro+Starinets+Son 2001, Kovtun+Son+Starinets 2003, Buchel+Liu 2003

• In Einstein-dilaton gravity shear viscosity is equal to the universal value.

A Holographic Approach to QCD, Elias Kiritsis
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The sum rule method

• Define the (subtracted) spectral density and relate its moment to the
Euclidean density

ρ(ω) = −1

π
Im GR(ω) , G ≡ lim

ω→0
GE(ω) = 2

∫ ∞
0

ρ(u)

u
du

Karsch+Kharzeev+Tuchin, 2008, Romatschke+Son 2009

• Using Ward identities we obtain the sum rule

G =
(
T

∂

∂T
− 4

)
(E − 3P + 〈Θ〉0) +

(
T

∂

∂T
− 2

)
(m〈q̄q〉T + 〈ΘF 〉0)

with

〈ΘF 〉0 = m〈q̄q〉0 ' −m2
π f2

π −m2
K f2

K

• Assume a density

ρ(ω)

ω
=

9ζ(T )

π

ω0(T )2

ω2 + ω0(T )2

A Holographic Approach to QCD, Elias Kiritsis
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Karsch+Kharzeev+Tuchin, 2008

• A seeming rise near the phase transition but the (temperature-dependent)

scale cannot be fixed.

A Holographic Approach to QCD, Elias Kiritsis
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The bulk viscosity in lattice SU(3) YM
H. Meyer 2007
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Pure YM only. Error bar are statistical only.
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• If the lattice result is taken at phase value,

ζ(Tc)

s(Tc)
∼ 10

η(Tc)

s(Tc)
= 10

1

4π

• Such a large value renders hydrodynamic codes unstable.
Heinz+Song (unpublished)

• At large values of viscosity, cavitation (p < 0) happens, signaling a break-

down of hydrodynamics.

• This was studied carefully and confirmed very recently
Rajagopal+Tripuraneni 2009

• Both estimates were challenged recently
Moore+Saremi, 2008

A Holographic Approach to QCD, Elias Kiritsis
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The bulk viscosity in HQCD: theory

• This is harder to calculate compared to the shear viscosity.

• Using a parametrization ds2 = e2A(fdt2 + d~x2 + dr2

f ) in a special gauge
φ = r the relevant metric perturbation decouples

Gubser+Nellore+Pufu+Rocha 2008, Gubser+Pufu+Rocha,2008

h′′11 = −
(
− 1

3A′
−A′ − f ′

f

)
h′11 +

(
−ω2

f2
+

f ′

6fA′
− f ′

f
A′

)
h11

with

h11(0) = 1 , h11(rh) ' C eiωt
∣∣∣∣ log

λ

λh

∣∣∣∣
− iω

4πT

The correlator is given by the conserved number of h-quanta

Im GR(ω) = −4M3G(ω) , G(ω) =
e3Af

4A′2
|Im[h∗11h′11]|

ζ

s
=

C2

4π

(
V ′(λh)

V (λh)

)2
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The bulk viscosity in IHQCD
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• Pure glue only.

• Calculations with other potentials show robustness
Gubser+Pufu+Rocha 2008, Cherman+Nellore 2009
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The bulk viscosity in the small black hole
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• At the turning point the behavior, CV →∞ and ζ behaves similar to that
observed in the N=2∗ theory

Buchel+Pagnutti, 2008

• The small black-hole bulk viscosity ratio asymptotes to a constant as
T →∞.

lim
T→∞

ζ(T )

s(T )

∣∣∣∣
small

=
1

6π
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The adiabatic approximation

• Adiabatic approximation: V ′(φ)
V (φ) is a slowly varying function.

Extremes: UV→ V is constant, IR : V ∼ eaφ.

log s = −8

3

∫ Φh
dΦ

V

V ′
+ · · · , logT =

∫ Φh
dΦ

(
1

2

V ′

V
− 8

9

V

V ′

)
· · · ,

• In this approximation there is no “scattering”: cb ' 1.

• Therefore,

ζ

s
' 3

32π

(
V ′(φh)

V (φh)

)2

• In the UV (large BH), ζ/s → 0

• In the Small BH branch,

ζ

s
' 3Q2

32π
, V ∼ eQφ

• This gives upper bounds on bulk viscosity
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Validity of the adiabatic approximation. Solid(blue) curve is the differ-

ence between the true numerical result and the adiabatic approximation

(normalized by the true value) (ζ/s(true)− ζ/s(adb)) /(ζ/s)(true), and the

dashed(red) curve is the criterion |(V ′/V )′(Φ)| for the validity of approxi-

mation.
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The Buchel parametrization (conjectured bound)

ζ

η
≥ 2

(
1

3
− c2

s

)

Buchel 2007

• For Dp branes, equality is a consequence of conformal invariance and dimensional re-

duction.
Skenderis+Kanitscheider 2009

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
T�Tc

0.5

1.0

1.5

2.0

2.5

3.0

Ζ �Η

2 I1 �3 - cs
2M

A Holographic Approach to QCD, Elias Kiritsis

43

http://arxiv.org/abs/0708.3459�
http://arxiv.org/abs/0901.1487�


Elliptic Flow vs bulk viscosity

U Heinz+H.Song 2008
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Open problems

THEORETICAL:

• Investigate further the structure of the string dual of QCD. Try to control the UV physics
(to which RR flux plays little role).

MORE PRACTICAL:

• Second order transport coefficients (matter of principle)

• Holographic calculation of two-point correlators of the stress tensor in the non-conformal
(IhQCD) case. Application to lattice extraction techniques via sum rules (that may include
fermions)

• Evaluation of the Langevin correlator in IhQCD and use as input for langevin MonteCarlo
(both CFT and non-conformal)

• Implementation of a more realistic structure for the quarks in QGP: this will involve a
more realistic holographic theory of flavor using D4D̄4 branes

• Study of early thermalization procedure, as well as entropy production

• The search for other heavy-ion observables that may be calculable using holographic
techniques.

A Holographic Approach to QCD, Elias Kiritsis
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Parameters

• We have 3 initial conditions in the system of graviton-dilaton equations:

♠ One is fixed by picking the branch that corresponds asymptotically to

λ ∼ 1
log(rΛ)

♠ The other fixes Λ → ΛQCD.

♠ The third is a gauge artifact as it corresponds to a choice of the origin

of the radial coordinate.

• We parameterize the potential as

V (λ) =
12

`2

{
1 + V0λ + V1λ4/3

[
log

(
1 + V2λ4/3 + V3λ2

)]1/2
}

,

• We fix the one and two loop β-function coefficients:

V0 =
8

9
b0 , V2 = b40

(
23 + 36b1/b20

81V 2
1

)2

,
b1

b20
=

51

121
.

and remain with two leftover arbitrary (phenomenological) coefficients.
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• We also have the Planck scale Mp

Asking for correct T →∞ thermodynamics (free gas) fixes

(Mp`)
3 =

1

45π2
, Mphysical = MpN

2
3
c =

(
8

45π2`3

)1
3 ' 4.6 GeV

• The fundamental string scale. It can be fixed by comparing with lattice

string tension

σ =
b2(r∗)λ4/3(r∗)

2π`2s
,

`/`s ∼ O(1).

• ` is not a parameter due to a special ”scaling” pseudosymmetry:

eφ → κ eφ , gµν → κ
4
3 gµν , ` → κ

2
3 ` , `s → κ

2
3 `s , V (eφ) → V (κ eφ)

But... `
`S

is “observable” (and of order one).

A Holographic Approach to QCD, Elias Kiritsis
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Fit and comparison

HQCD lattice Nc = 3 lattice Nc →∞ Parameter

[p/(N2
c T 4)]T=2Tc 1.2 1.2 - V 1 = 14

Lh/(N2
c T 4

c ) 0.31 0.28 (Karsch) 0.31 (Teper+Lucini) V 3 = 170

[p/(N2
c T 4)]T→+∞ π2/45 π2/45 π2/45 Mp` = [45π2]−1/3

m0++/
√

σ 3.37 3.56 (Chen ) 3.37 (Teper+Lucini) `s/` = 0.92

m0−+/m0++ 1.49 1.49 (Chen ) - ca = 0.26

χ (191MeV )4 (191MeV )4 (DelDebbio) - Z0 = 133

Tc/m0++ 0.167 - 0.177(7)

m0∗++/m0++ 1.61 1.56(11) 1.90(17)

m2++/m0++ 1.36 1.40(4) 1.46(11)

m0∗−+/m0++ 2.10 2.12(10) -
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Heavy quarks and the drag force

• The dynamics is determined by the Nambu-Goto action.

SNG = − 1

2π`2s

∫
dσdτ

√
det

(
−gMN∂αXM∂βXN

)
,

• We must find a solution to the string equations with

x1 = vt + ξ(r) , x2,3 = 0 , σ1 = t , σ2 = r
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The spacetime metric is a black-hole metric (in string frame)

ds2 = b(r)2
[

dr2

f(r)
− f(r)dt2 + d~x · d~x

]

• The “momentum” conjugate to ξ is conserved

πξ = − 1

2π`2s

g00g11ξ′√
−g00grr − g00g11ξ′2 − g11grrv2

.

We solve for ξ′ to obtain

ξ′ =

√
−g00grr − g11grrv2

√
g00g11

(
1 + g00g11/(2π`2sπξ)

2
) .

• The solution profile is

ξ′(r) =
C

f(r)

√√√√ f(r)− v2

b4(r)f(r)− C2
, C = −(2π`2s) πξ = vb(rs)

2 , f(rs) = v2

with rs the turning point.
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• The induced metric on the world-sheet is a 2d black-hole with horizon at

the turning point r = rs (t = τ + ζ(r)).

ds2 = b2(r)


−(f(r)− v2)dτ2 +

1

(f(r)− b4(rs)
b4(r)

v2)
dr2




• We can calculate the drag force:

Fdrag = πξ = −b2(rs)
√

f(rs)

2π`2s

• In N = 4 sYM it is given by

Fdrag = −π

2

√
λ T2 v√

1− v2
= −1

τ

p

M
, τ =

2M

π
√

λ T2

with τ the diffusion time.

• For non-conformal theories it is a more complicated function of momen-

tum and temperature.

A Holographic Approach to QCD, Elias Kiritsis
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The drag force in IhQCD

Systematic errors:

(a) Flavor description (heavy quark)

(b) Ignore light fermionic degrees of freedom in plasma
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• Fconf calculated with λ = 5.5
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The diffusion time
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dp

dt
= − p

τ(p)
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The “soft wall”

♠ The asymptotic spectrum can be fixed by introducing a non-dynamical

dilaton profile Φ ∼ r2 (soft wall)
Karch+Katz+Son+Stephanov

• It is not a solution of equations of motion: the metric is still AdS: Neither
gµν nor Φ solves the equations of motion.

A Holographic Approach to QCD, Elias Kiritsis
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The relevant “defects”

• Bµν → Fundamental string (F1). This is the YM (glue) string: funda-

mental tension `2s ∼ O(1)

• Its dual B̃µ → NS0: Tension is O(N2
c ). It is an effective magnetic baryon

vertex binding Nc magnetic quarks.

• C5 → D4: Space filling flavor branes. They must be introduced in pairs:

D4 + D̄4 for charge neutrality/tadpole cancelation → gauge anomaly

cancelation in QCD.

• C4 → D3 branes generating the gauge symmetry.
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.

• C3 → D2 branes : domain walls separating different oblique confinement

vacua (where θk+1 = θk + 2π). Its tension is O(Nc)

• C2 → D1 branes: These are the magnetic strings:

(strings attached to magnetic quarks) with tension O(Nc)

• C1 → D0 branes. These are the baryon vertices: they bind Nc quarks,

and their tension is O(Nc).

Its instantonic source when we add flavor is the (solitonic) baryon in the

string theory.

• C0 → D−1 branes: These are the Yang-Mills instantons.

A Holographic Approach to QCD, Elias Kiritsis
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The string effective action

• as Nc →∞, only string tree-level is dominant.

• Relevant field for the vacuum solution: gµν, a, φ, F5.

• The vev of F5 ∼ Nc ε5. It appears always in the combination e2φF2
5 ∼ λ2,

with λ ∼ Nc eφ All higher derivative corrections (e2φF2
5 )n are O(1).

A non-trivial potential for the dilaton will be generated already at string

tree-level.

• This is not the case for all other RR fields: in particular for the axion as

a ∼ O(1)

(∂a)2 ∼ O(1) , e2φ(∂a)4 =
λ2

N2
c
(∂a)4 ∼ O

(
N−2

c

)

Therefore to leading order O(N2
c ) we can neglect the axion.

A Holographic Approach to QCD, Elias Kiritsis
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The UV regime

• In the far UV, the space should asymptote to AdS5.

• The ’t Hooft coupling should behave as (r → 0)

λ ∼ 1

log(rΛ)
+ · · · → 0 , r ∼ 1

E

• The effective action to leading order in Nc is

Seff ∼
∫

d5x
√

g e−2φ
(
F (R , ξ ) + 4(∂φ)2

)
, ξ ≡ −e2φF2

5

5!
• For weak background fields

F =
2

3

δc

`2s
+ R +

1

2
ξ +O(R2, Rξ, ξ2) , δc = 10− 5 = 5

The equation for the four form is

∇µ
(
Fξ Fµνρστ

)
= 0 , Fξ Fµνρστ =

Nc

`AdS

εµνρστ√
g

→ ξ Fξ(ξ, R)2 =
λ2

`2AdS
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We may use the alternative action where the 4-form is “integrated-out”

Stree = M3N2
c

∫
d5x

√
g

1

λ2

[
4

∂λ2

λ2
+ F (R, ξ)− 2ξFξ(R, ξ)

]
, ξ F2

ξ =
λ2

`2AdS

To continue further we must solve ξ F2
ξ = λ2

`2AdS

. There are several possibil-

ities:

(a) ξ → 0 as λ → 0 (turns out to be inconsistent with equations of motion).

(b) ξ → ξ∗(R) as λ → 0.

F ' c0(R) +
c1(R)

2
(ξ − ξ∗(R))2 +O

[
(ξ − ξ∗(R))3

]

ξ ≡ ξ∗(R) + δξ ' ξ∗(R)− λ

c1(R) `AdS

√
ξ∗(R)

+O(λ2)

57-



The gravitational equation implies that for AdS to be the leading solution

(at λ = 0) we must have

c0(R∗) = 0 ,
∂c0(R)

∂R

∣∣∣∣
R=R∗

= 0

F is therefore zero to next order and the first non-trivial contribution is at

quadratic order

F (R, ξ) =
λ2

2c1(R∗) `2AdS ξ∗(R∗)
+

1

2

∂2c0(R)

∂R2

∣∣∣∣
R=R∗

(R−R∗)2 + · · ·

Solving the equations we find the one-loop β-function coefficients as

b0 =
`AdS

√
ξ∗(R∗)

16
and the correction subleading correction to the AdS5 metric

eA =
`

r

[
1 +

w

log(Λr)
+ · · ·

]
, δR =

40w

`2 log(Λr)
+ · · ·

w =
−5 +

δξ∗
δR (R∗)
ξ∗(R∗) R∗

c′′0(R∗)
ξ∗(R∗)
80R∗
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• This turns out to be a regular expansion of the solution in powers of

Pn(log log(rΛ))

(log(rΛ))n

• Effectively this can be rearranged as a “perturbative” expansion in λ(r).

In the case of running coupling, the radial coordinate can be substituted by

λ(r).

• Using λ as a radial coordinate the solution for the metric can be written

E ≡ eA =
`

r(λ)

[
1 + c1λ + c2λ2 + · · ·

]
= ` (e−

b0
λ )

[
1 + c′1λ + c′2λ2 + · · ·

]
, λ → 0

A Holographic Approach to QCD, Elias Kiritsis
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The axion

Similar arguments lead to an action of the form

S = N2
c Sg,φ + Saxion + · · ·

Saxion ∼
∫

d5x
√

g G(R, λ) (∂a)2

• Higher powers of (∂a)2 are subleading in Nc.

• We may therefore find the solution using the solution of the metric-dilaton

system.

A Holographic Approach to QCD, Elias Kiritsis
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UV conclusions

.

Conclusion 1: The asymptotic AdS5 is stringy, but the rest of the ge-

ometry is ”perturbative around the asymptotics”. We cannot however do

computations even if we know the structure.

Conclusion 2: It has been a mystery how can one get free field theory at the

boundary. This is automatic here since all non-trivial connected correlators

are proportional to positive powers of λ that vanishes in the UV.

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime: general ex[ectations

• Here the situation is more obscure. The constraints/input will be: confinement, dis-
creteness of the spectrum and mass gap.

• We do expect that λ →∞ (or becomes large) at the IR bottom.

• Intuition from N=4 and other 10d strongly coupled theories suggests that in this regime
there should be an (approximate) two-derivative description of the physics.

• The simplest solution with this property is the linear dilaton solution with

λ ∼ eQr , V (λ) ∼ δc = 10−D → constant , R = 0

• Self-consistency of this assumption implies that the string frame curvature should vanish
in the IR.

• This property persists with potentials V (λ) ∼ (logλ)P . Moreover all such cases have
confinement, a mass gap and a discrete spectrum (except the P=0 case).

• At the IR bottom (in the string frame) the scale factor vanishes, and 5D space becomes
(asymptotically) flat.

A Holographic Approach to QCD, Elias Kiritsis
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The axion background

• The axion solution can be interpreted as a ”running” θ-angle

• This is in accordance with the absence of UV divergences (all correlators

〈Tr[F ∧ F ]n〉 are UV finite), and Seiberg-Witten type solutions.

• The axion action is down by 1/N2
c

Saxion = −M3
p

2

∫
d5x

√
g Z(λ) (∂a)2

lim
λ→0

Z(λ) = Z0

[
1 + c1λ + c2λ2 + · · ·

]
, lim

λ→∞
Z(λ) = caλd+ · · · , d = 4

• The equation of motion is

ä +

(
3Ȧ +

Ż(λ)

Z(λ)

)
ȧ = 0 → ȧ =

C e−3A

Z(λ)

• The full solution is

a(r) = θUV + 2πk + C
∫ r

0
dr

e−3A

Z(λ)
, C = 〈Tr[F ∧ F ]〉
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• a(r) is a running effective θ-angle. Its running is non-perturbative,

a(r) ∼ r4 ∼ e
− 4

b0λ

• The vacuum energy is

E(θUV ) = −M3

2

∫
d5x

√
g Z(λ) (∂a)2 = −M3

2
Ca(r)

∣∣∣∣
r=r0

r=0

• Consistency requires to impose that a(r0) = 0. This determines C and

E(θUV ) =
M3

2
Mink

(θUV + 2πk)2
∫ r0
0

dr
e3AZ(λ)

a(r)

θUV + 2πk
=

∫ r0
r

dr
e3AZ(λ)∫ r0

0
dr

e3AZ(λ)

• The topological susceptibility is given by

E(θ) =
1

2
χ θ2 +O(θ4) , χ =

M3

∫ r0
0

dr
e3AZ(λ)

A Holographic Approach to QCD, Elias Kiritsis
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• The effective θ-angle “runs” also in the D4 model for QCD, and also

vanishes in the IR

θ(U) = θ(1− U3
0/U3)

• In Improved Holographic QCD:

0 100 200 300 400 500 600
E HMeVL0.0

0.2

0.4

0.6

0.8

1.0

Θ

ΘUV

We have taken: Z(λ) = Z0(1 + caλ4) ' 133(1 + 0.26λ4)

RETURN
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Linearity of the glueball spectrum
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(a) (b)

(a) Linear pattern in the spectrum for the first 40 0++ glueball states. M2

is shown units of 0.015`−2.

(b) The first 8 0++ (squares) and the 2++ (triangles) glueballs. These

spectra are obtained in the background I with b0 = 4.2, λ0 = 0.05.
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Comparison with lattice data (Meyer)

n
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Comparison of glueball spectra from our model with b0 = 4.2, λ0 = 0.05

(boxes), with the lattice QCD data from Ref. I (crosses) and the AdS/QCD

computation (diamonds), for (a) 0++ glueballs; (b) 2++ glueballs. The

masses are in MeV, and the scale is normalized to match the lowest 0++

state from Ref. I.
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The fit to glueball lattice data

JPC Ref I (MeV) Our model (MeV) Mismatch Nc →∞ Mismatch

0++ 1475 (4%) 1475 0 1475 0

2++ 2150 (5%) 2055 4% 2153 (10%) 5%

0−+ 2250 (4%) 2243 0

0++∗ 2755 (4%) 2753 0 2814 (12%) 2%

2++∗ 2880 (5%) 2991 4%

0−+∗ 3370 (4%) 3288 2%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

Comparison between the glueball spectra in Ref. I and in our model. The

states we use as input in our fit are marked in red. The parenthesis in the

lattice data indicate the percent accuracy.

A Holographic Approach to QCD, Elias Kiritsis
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The glueball wavefunctions

r@m0D 20 r@LD 40 60

r
�����
l

Ψ@rD

Normalized wave-function profiles for the ground states of the 0++ (solid

line) ,0−+ (dashed line), and 2++ (dotted line) towers, as a function of

the radial conformal coordinate. The vertical lines represent the position

corresponding to E = m0++ and E = Λp.
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Comparison of scalar and tensor potential

5 10 15 20
r

0.5

1

1.5

2

V@rD

Effective Schrödinger potentials for scalar (solid line) and tensor (dashed

line) glueballs. The units are chosen such that ` = 0.5.
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The tachyon DBI action

• The flavor action is the D4 − D̄4 action: S[T, AL, AR] = SDBI + SWZ

SDBI =
∫

drd4x
Nc

λ
Str

[
V (T )

(√
−det

(
gµν + D{µT †Dν}T + FL

µν

)
+

+

√
−det

(
gµν + D{µT †Dν}T + FR

µν

))]

DµT ≡ ∂µT − iTAL
µ + iAR

µ T , DµT † ≡ ∂µT † − iAL
µT † + iT †AR

µ

transforming covariantly under flavor gauge transformations

T → VRTV
†
L , AL → VL(AL − iV

†
LdVL)V †L , AR → VR(AR − iV

†
RdVR)V †R

• For the vacuum structure and spectrum Str = Tr.

A Holographic Approach to QCD, Elias Kiritsis
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The tachyon WZ action

• The WZ action is given by
Kennedy+Wilkins, Kraus+Larsen, Takayanagi+Terashima+Uesugi

SWZ = T4

∫

M5

C ∧ Str exp
[
i2πα′F

]

• M5 is the world-volume of the D4 -D4 branes that coincides with the full

space-time.

• C is a formal sum of the RR potentials C =
∑

n(−i)
5−n
2 Cn,

• F is the curvature of a superconnection A:

iA =


 iAL T †

T iAR


 , iF =


 iFL − T †T DT †

DT iFR − TT †




F = dA− iA ∧A , dF − iA ∧ F + iF ∧A = 0
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• Under (flavor) gauge transformation it transforms homogeneously

F →

 VL 0

0 VR


 F


 V

†
L 0

0 V
†
R




• Expanding:

SWZ = T4

∫
C5 ∧ Z0 + C3 ∧ Z2 + C1 ∧ Z4 + C−1 ∧ Z6

where Z2n are appropriate forms coming from the expansion of the expo-
nential of the superconnection.

• Z0 = 0, signaling the global cancelation of 4-brane charge, which is
equivalent to the cancelation of the gauge anomaly in QCD.

Z2 = dΩ1 , Ω1 = iSTr(V (T †T ))Tr(AL −AR)− log det(T )d(StrV (T †T ))

Casero+Kiritsis+Paredes

• This term provides the Stuckelberg mixing between Tr[AL
µ −AR

µ ] and the
QCD axion that is dual to C3. Dualizing the full action we obtain

SCP−odd =
M3

2N2
c

∫
d5x

√
gZ(λ) (∂a + iΩ1)

2
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=
M3

2

∫
d5x

√
gZ(λ)


∂µa + ζ∂µV (τ)−

√
Nf

2
V (τ)AA

µ




2

ζ = = log detT , AL −AR ≡
1

2Nf
AAII + (Aa

L −Aa
R)λa

• This term is invariant under the U(1)A transformations, reflecting the
QCD U(1)A anomaly.

ζ → ζ + ε , AA
µ → AA

µ −
√√√√ 2

Nf
∂µε , a → a−NfεV (τ)

• This is responsible for the mixing between the QCD axion and the η′ → we have two

scalars a, ζ and an (axial) vector, AA
µ . Then an appropriate linear combination of the two

scalars will become the 0−+ glueball field while the other will be the η′. The transverse

(5d) vector will provide the tower of U(1)A vector mesons.

• The term C1 × Z4 ∼ V C1 [FL ∧ FL + FR ∧ FR] + · · · couples the flavor
instanton density to the baryon vertex.

• Using Z6 = dΩ5 we may rewrite the last term as
∫

F0 ∧Ω5 , F0 = dC−1
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F0 ∼ Nc is nothing else but the dual of the five-form field strength. This

term then provides the correct Chern-Simons form that reproduces the

flavor anomalies of QCD. It contains the tachyon non-trivially
Casero+Kiritsis+Paredes

• To proceed further and analyze the vacuum solution we set T = τ 1 and

set the vectors to zero. Then the DBI action collapses to

S[τ, AM ] = NcNf

∫
drd4x e−ΦV (τ)

√
−det (gµν + ∂µτ∂ντ)

We assume the following tachyon potential, motivated/calculated in stud-

ies of tachyon condensation:

V (τ) = V0e−
µ2

2 τ2

where µ has dimension of mass. It is fixed by the requirement that τ

has the correct bulk mass to couple to the quark bilinear operator on the

boundary.

A Holographic Approach to QCD, Elias Kiritsis
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Tachyon dynamics

• In the vacuum the gauge fields vanish and T ∼ 1. Only DBI survives

S[τ ] = TD4

∫
drd4x

e4As(r)

λ
V (τ)

√
e2As(r) + τ̇(r)2 , V (τ) = e−

µ2

2 τ2

• We obtain the nonlinear field equation:

τ̈ +

(
3ȦS −

λ̇

λ

)
τ̇ + e2ASµ2τ + e−2AS

[
4ȦS −

λ̇

λ

]
τ̇3 + µ2τ τ̇2 = 0.

• In the UV we expect

τ = mq r + σ r3 + · · · , µ2`2 = 3

• We expect that the tachyon must diverge before or at r = r0. We

find that indeed it does at the (dilaton) singularity. For the r0 = ∞
70



backgrounds

τ ∼ exp
[
2

a

R

`2
r

]
as r →∞

• Generically the solutions have spurious singularities: τ(r∗) stays finite but

its derivatives diverges because:

τ ∼ τ∗ + γ
√

r∗ − r.

The condition that they are absent determines σ as a function of mq.

• The easiest spectrum to analyze is that of vector mesons. We find

(r0 = ∞)

Λglueballs =
1

R
, Λmesons =

3

`

(
α`2

2R2

)(α−1)/2

∝ 1

R

(
`

R

)α−2
.

This suggests that α = 2 preferred also from the glue sector (linear tra-

jectories).

A Holographic Approach to QCD, Elias Kiritsis
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Organizing the vacuum solutions

• The β-function can be mapped uniquely to the dilaton potential V (λ).

• A useful variable is the phase variable

X ≡ λ′

3λA′
=

β(λ)

3λ

• We can introduce a (pseudo)superpotential

V (λ) =
(
4

3

)3
[
W2 −

(
3

4

)2 (
∂W

∂Φ

)2
]

and write the equations in a first order form:

A′ = −4

9
W , Φ′ = dW

dΦ

β(λ) = −9

4
λ

d logW

d logλ

♠ The equations have three integration constants: (two for Φ and one for
A) One is fixed by λ → 0 in the UV. The other is Λ. The one in A is the
choice of energy scale.

A Holographic Approach to QCD, Elias Kiritsis
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The IR regime

For any asymptotically AdS5 solution (eA ∼ `
r):

• The scale factor eA(r) is monotonically decreasing
Girardelo+Petrini+Porrati+Zaffaroni

Freedman+Gubser+Pilch+Warner

• Moreover, there are only three possible, mutually exclusive IR asymp-

totics:

♠ there is another asymptotic AdS5 region, at r →∞, where expA(r) ∼ `′/r,

and `′ ≤ ` (equality holds if and only if the space is exactly AdS5 everywhere);

♠ there is a curvature singularity at some finite value of the radial coordi-

nate, r = r0;

♠ there is a curvature singularity at r →∞, where the scale factor vanishes

and the space-time shrinks to zero size.

A Holographic Approach to QCD, Elias Kiritsis
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Wilson-Loops and confinement

• Calculation of the static quark potential using the vev of the Wilson loop
calculated via an F-string worldsheet.

Rey+Yee, Maldacena

T E(L) = Sminimal(X)

We calculate

L = 2
∫ r0

0
dr

1√
e4AS(r)−4AS(r0) − 1

.

It diverges when eAs has a minimum (at r = r∗). Then

E(L) ∼ Tf e2AS(r∗) L

• Confinement → As(r∗) is finite. This is a more general condition that
considered before as AS is not monotonic in general.

• Effective string tension

Tstring = Tf e2AS(r∗)

A Holographic Approach to QCD, Elias Kiritsis
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Comments on confining backgrounds

• For all confining backgrounds with Q = 4/3, 0 < P < 1 although the

space-time is singular in the Einstein frame, the string frame geometry is

asymptotically flat for large r. Therefore only λ grows indefinitely.

• String world-sheets do not probe the strong coupling region, at least

classically. The string stays away from the strong coupling region.

• Therefore: singular confining backgrounds have generically the property

that the singularity is repulsive, i.e. only highly excited states can probe it. This

will also be reflected in the analysis of the particle spectrum (to be presented later)

• The confining backgrounds must also screen magnetic color charges.

This can be checked by calculating ’t Hooft loops using D1 probes:

♠ All confining backgrounds with r0 = ∞ and most at finite r0 screen properly

♠ In particular “hard-wall” AdS/QCD confines also the magnetic quarks.

A Holographic Approach to QCD, Elias Kiritsis

74



Particle Spectra: generalities

• Linearized equation:

ξ̈ + 2Ḃξ̇ + ¤4ξ = 0 , ξ(r, x) = ξ(r)ξ(4)(x), ¤ξ(4)(x) = m2ξ(4)(x)

• Can be mapped to Schrodinger problem

− d2

dr2
ψ + V (r)ψ = m2ψ , V (r) =

d2B

dr2
+

(
dB

dr

)2
, ξ(r) = e−B(r)ψ(r)

• Mass gap and discrete spectrum visible from the asymptotics of the

potential.

• Large n asymptotics of masses obtained from WKB

nπ =
∫ r2

r1

√
m2 − V (r) dr

• Spectrum depends only on initial condition for λ (∼ ΛQCD) and an overall

energy scale (eA) that must be fixed.

A Holographic Approach to QCD, Elias Kiritsis
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• scalar glueballs

B(r) =
3

2
A(r) +

1

2
log

β(λ)2

9λ2

• tensor glueballs

B(r) =
3

2
A(r)

• pseudo-scalar glueballs

B(r) =
3

2
A(r) +

1

2
logZ(λ)

• Universality of asymptotics

m2
n→∞(0++)

m2
n→∞(2++)

→ 1 ,
m2

n→∞(0+−)

m2
n→∞(0++)

=
1

4
(d− 2)2

predicts d = 4 via

m2

2πσa
= 2n + J + c,

A Holographic Approach to QCD, Elias Kiritsis

76



General criterion for confinement

• the geometric version:
A geometry that shrinks to zero size in the IR is dual to a confining 4D
theory if and only if the Einstein metric in conformal coordinates vanishes
as (or faster than) e−Cr as r →∞, for some C > 0.

• It is understood here that a metric vanishing at finite r = r0 also satisfies
the above condition.

♠ the superpotential

A 5D background is dual to a confining theory if the superpotential grows
as (or faster than)

W ∼ (logλ)P/2λ2/3 as λ →∞ , P ≥ 0

♠ the β-function A 5D background is dual to a confining theory if and only
if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system) Linear trajectories correspond to K = − 3
16

A Holographic Approach to QCD, Elias Kiritsis
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Classification of confining superpotentials

Classification of confining superpotentials W (λ) as λ →∞ in IR:

W (λ) ∼ (logλ)
P
2 λQ , λ ∼ E−

9
4Q

(
log

1

E

) P
2Q

, E → 0.

• Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite r = r0.

eA(r) ∼
{

(r0 − r)
4

9Q2−4 Q > 2
3

exp
[
− C

(r0−r)1/(P−1)

]
Q = 2

3

• Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The scale factor
eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )].

• Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or infinite
value of r depending on subleading asymptotics of the superpotential.

♠ If Q < 2
√

2/3, no ad hoc boundary conditions are needed to determine the glueball spec-
trum → One-to-one correspondence with the β-function This is unlike standard AdS/QCD
and other approaches.

• when Q > 2
√

2/3, the spectrum is not well defined without extra boundary conditions in
the IR because both solutions to the mass eigenvalue equation are IR normalizable.

A Holographic Approach to QCD, Elias Kiritsis
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Confining β-functions

A 5D background is dual to a confining theory if and only if

lim
λ→∞

(
β(λ)

3λ
+

1

2

)
logλ = K, −∞ ≤ K ≤ 0

(No explicit reference to any coordinate system). Linear trajectories correspond to K =

− 3
16

• We can determine the geometry if we specify K:

• K = −∞: the scale factor goes to zero at some finite r0, not faster than a power-law.

• −∞ < K < −3/8: the scale factor goes to zero at some finite r0 faster than any power-
law.

• −3/8 < K < 0: the scale factor goes to zero as r →∞ faster than e−Cr1+ε

for some ε > 0.

• K = 0: the scale factor goes to zero as r →∞ as e−Cr (or faster), but slower than e−Cr1+ε

for any ε > 0.

The borderline case, K = −3/8, is certainly confining (by continuity), but whether or not

the singularity is at finite r depends on the subleading terms.

A Holographic Approach to QCD, Elias Kiritsis
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The lattice glueball data

Available lattice data for the scalar and the tensor glueballs. Ref. I =H. B. Meyer, [arXiv:hep-lat/0508002].

and Ref. II = C. J. Morningstar and M. J. Peardon, [arXiv:hep-lat/9901004] + Y. Chen et al., [arXiv:hep-

lat/0510074]. The first error corresponds to the statistical error from the the continuum extrapolation. The

second error in Ref.I is due to the uncertainty in the string tension
√

σ. (Note that this does not affect

the mass ratios). The second error in the Ref. II is the estimated uncertainty from the anisotropy. In the

last column we present the available large Nc estimates according to B. Lucini and M. Teper, [arXiv:hep-

lat/0103027]. The parenthesis in this column shows the total possible error followed by the estimations in

the same reference.
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α-dependence of scalar spectrum
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The 0++ spectra for varying values of α that are shown at the right end

of the plot. The symbol * denotes the AdS/QCD result.
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B2 − C2 mixing

• B2 and C2 are typically massless.

• In the presence of C4 flux, this is not the case:

S = −M3

∫
d5x

√
g

[
e−2φ

2 · 3!
H2

3 +
1

2 · 3!
F 2

3 +
1

2 · 5!
F 2

5

]
, F3 = dC2 , H3 = dB2 , F5 = dC4−C2∧H3

The equations of motion that stem from this action are∗

∇µ(e−2φH3,µνρ) +
1

4
F5,νραβγF3

αβγ = 0 , ∇µF3,µνρ +
1

4
F5,νραβγH3

αβγ = 0

∇µF5,µνρστ = 0 → F5,µνρστ =
εµνρστ√

g

2Nc

3`s

Substituting

∇µ(e−2φH3,µνρ) +
Nc

6`s

ενραβγ√
g

F3
αβγ = 0 , ∇µF3,µνρ +

Nc

6`s

ενραβγ√
g

H3
αβγ = 0

We finally decouple the equations:

∇µ
[∇ν(e−2φH3,µρσ + cyclic

]
+

N2
c

12 · 5!`2s
H3,νρσ = 0

and a similar one for F3. This equation has uniform Nc scaling for eφ ∼ λ
Nc

• Both B2 and C2 combine to a massive two-tensor, that is dual to the C − odd non-
conserved operator Tr[F[µaF

abFbν] +
1
4
FabF

abFµν] with UV dimension 6.
RETURN
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D0 − F1 charges

We may dualize C2 → C1

(F3)µνρ =
εµνρστ

2
√

g

(
F στ +

Nc

`s
Bστ

)
, F = dC1

The equations become

∇µ
(
e−2φHµνρ

)
+

(
Nc

2`s

)2

Bνρ +
Nc

4`s
Fνρ = 0 , ∇σ

(
Fστ +

Nc

`s
Bστ

)
= 0

and stem from a Stuckelberg-type action

S = −M3

∫
d5x

√
g

[
e−2φ

2 · 3!
H2

3 +
1

4

(
Fµν +

Nc

`s
Bµν

)2

+
2N2

c

9`2s

]

Under B2 gauge transformations C1 transforms

δB2 = dΛ1 , δC1 = −Nc

`s
Λ1

• This implies that Nc units of fundamental string charge can cancel one unit of C1 charge.

RETURN
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D1 −NS0 charges

We now dualize B2 → B̃1

e−2φ(H3)µνρ =
εµνρστ

2
√

g

(
F̃ στ +

Nc

`s
Cστ

)
, F̃ = dB̃1

The equations become

∇µ ((F3)µνρ) + e2φ

(
Nc

2`s

)2

Cνρ + e2φ Nc

4`s
F̃νρ = 0 , ∇σ

[
e2φ

(
Fστ +

Nc

`s
Bστ

)]
= 0

and stem from a Stuckelberg-type action

S = −M3

∫
d5x

√
g

[
1

2 · 3!
F 2

3 +
e2φ

4

(
F̃µν +

Nc

`s
Cµν

)2

+
2N2

c

9`2s

]

Under C2 gauge transformations C1 transforms

δC2 = dΛ1 , δB̃1 = −Nc

`s
Λ1

• This implies that Nc units of fundamental D-string charge can cancel one unit of B̃1

charge.

RETURN
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Bosonic string or superstring? II

• Consider the axion a dual to Tr[F ∧ F ]. We can show that it must come

from a RR sector.

In large-Nc YM, the proper scaling of couplings is obtained from

LY M = Nc Tr

[
1

λ
F2 +

θ

Nc
F ∧ F

]
, ζ ≡ θ

Nc
∼ O(1)

It can be shown
Witten

EY M(θ) = N2
c EY M(ζ) = N2

c EY M(−ζ) ' C0 N2
c + C1θ2 + C2

θ4

N2
c

+ · · ·

In the string theory action

S ∼
∫

e−2φ [R + · · · ] + (∂a)2 + e2φ(∂a)4 + · · · , eφ ∼ g2
Y M , λ ∼ Nce

φ

∼
∫

N2
c

λ2 [R + · · · ] + (∂a)2 +
λ2

N2
c
(∂a)4 + · · · , a = θ[1 + · · · ]

RETURN
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Free energy versus horizon position

Α>1

Α£1
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We plot the relation F(rh) for various potentials parameterized by a. a = 1

is the critical value below which there is no first order phase transition .
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The transition in the free energy

1 1.1 1.2

T

Tc
0

-0.01

0.01

-0.02

-0.03

F

Nc
2 Tc

4 V3

A Holographic Approach to QCD, Elias Kiritsis

87



Finite-T Confining Theories

• There is a minimal temperature Tmin for the existence of Black-hole

solutions

• When T < Tmin only the “thermal vacuum solution” exists: it describes

the confined phase at small temperatures.

• For T > Tmin there are two black-hole solutions with the same temper-

ature but different horizon positions. One is a “large” BH the other is

“small”.

• When T > Tmin three competing solutions exist. The large BH has the

lowest free energy for T > Tc > Tmin. It describes the deconfined “Gluon-

Glass” phase.
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The conformal anomaly in flat space

• In YM we have the following anomaly equation in flat space:

Tµ
µ =

β(λt)

4λ2
t

Tr[F2],

• Defining the pressure p and energy density ρ,

p = −F
V3

, ρ =
F + TS

V3
,

the trace is

〈Tµ
µ 〉R = ρ− 3p = 60M3

p N2
c G(T ) =

β(λt)

4λ2
t

(〈Tr[F2]〉T − 〈Tr[F2]〉o),

• The left hand side is the trace of the renormalized thermal stress tensor,

〈Tµ
µ 〉R = 〈Tµ

µ 〉 − 〈Tµ
µ 〉o, and it is proportional to G ∼ 〈Tr[F2]〉,
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Thermodynamic variables
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Equation of state
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The specific heat
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Comparing to Gubser+Nelore’s formula

• Gubser+Nelore proposed the following approximate formula for the speed
of sound

c2s '
1

3
− 1

2

V ′2

V 2

∣∣∣∣
φ=φh

1 2 3 4 5 6

0.15

0.2

0.25

0.3

0.35

Gursoy (unpublished) 2009

• Red curve=numerical calculation, Blue curve=Gubser’s adiabatic/approximate
formula.
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Spatial string tension

G. Boyd et al. 1996

• The blue line is the spatial string tension as calculated in Improved hQCD,
with no additional fits.

Nitti (unpublished) 2009

• The red line is a semi-phenomenological fit using

T√
σs

= 0.51
[
log

πT

Tc
+

51

121
log

(
2 log

πT

Tc

)]2
3

Alanen+Kajantie+Suur-Uski, 2009
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Shear Viscosity bounds from lattice

H. Meyer 2007

4π
η

s
=





1.68(42), T = 1.65 Tc,

1.28(70), T = 1.24 Tc.
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shear viscosity data

• V2 is the elliptic flow coefficient

Luzum+Romatchke 2008
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The Bjorken Relation

• Consider that after the collision of the nuclear pancakes a lot of particles are produced
at t = τ . These are confined in a slice of longitudinal width dz and transverse area A.

• The longitudinal velocities have a spread dvL = dz
τ
.

• Near the middle region vL → 0

dy

dvL
=

d

dvL

[
1

2
log

1 + vL

1− vL

]
=

1

1− v2
L

' 1

• We may now write

dN = dvL
dN

dvL
' dz

τ

dN

dy
→ dN

dz
' 1

τ

dN

dy

• If 〈ET 〉 ' 〈mT 〉 is the average energy per particle then the energy density in this area at
t = τ is given by the Bjorken formula:

〈ε(τ)〉 ' dN〈mT 〉
dz A

=
1

τ

dN

dy

〈mT 〉
A

=
1

τ A

dEtotal
T

dy

• It is valid if (1) τ can be defined meaningfully (2) The crossing time ¿ τ .

RETURN
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Elliptic flow in ultracold gases

RETURN
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The thermal mass

b

c
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M  HTL

M0

• The mass is defined via a straight string hanging in the bulk

• It is qualitatively in agreement with lattice calculation of the position of the quarkonium
resonance shift at finite temperature.

Datta+Karsch+Petreczky+Wetzorke 2004
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The string frame scale-factor

10 20 30 40 50 60 70
r

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

exp@2 AsD

E(L) ∼ e2AS(r∗)

4π`2s
L , σstring =

e2AS(r∗)

4π`2s

• Note that the singularity is at r = ∞.

RETURN
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Diffusion times in different schemes

TQGP , MeV τcharm (fm/c) τcharm (fm/c) τcharm (fm/c )

(direct) (energy) (entropy)

220 - 3.96 3.64

250 5.67 3.14 2.96

280 4.27 2.56 2.47

310 3.45 2.12 2.08

340 2.88 1.80 1.78

370 2.45 1.54 1.53

400 2.11 1.33 1.34

The diffusion times for the charm quark are shown for different temperatures, in the

three different schemes. Diffusion times have been evaluated with a quark initial

momentum fixed at p ≈ 10 GeV .
Gursoy+Kiritsis+Michalogiorgakis+Nitti, 2009
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bosonic string or superstring?

• The string theory must have no on-shell fermionic states at all because
there are no gauge invariant fermionic operators in pure YM. (even in the
presence of quarks and modulo baryons that are expected to be solitonic ).

♠ We do expect a superstring however since there should be RR fields.

♠ A RR field we expect to have is the RR 4-form, as it is necessary to
“seed” the D3 branes responsible for the gauge group.

• It is non-propagating in 5D

• We will see later however that it is responsible for the non-trivial IR
structure of the gauge theory vacuum.

• The most solid indication: There is a direct argument that the axion,
dual to the instanton density F ∧ F must be a RR field (as in N = 4).

• Therefore the string theory must be a 5d-superstring theory resembling
the II-0 class.
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The good the bad and the ugly

• The “Bad” type. This is a one parameter family of solutions with

W (λ) ∼ λ
4
3

It has a bad IR singularity.

♠ The “Ugly” type. This is a one parameter family of solutions. In such
solutions there are two branches but they never reach the IR λ →∞. Instead
λ goes back to zero

0 10 20 30 40
Λ

10

20

30

40

WHΛL
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