GRAVITY DUALS OF 20 SUSY GAUGE THEORIES

BASED ON:

- 0909.3106 with E. Conde and A.V. Ramallo (Santiago de Compostela) [See also 0810.1053 with C. Núñez, P. Merlatti and A.V. Ramallo]

Daniel Areán
Milos, September 2009

OUTLINE

> INTRODUCTION. AdS/CFT and its generalisations
> GRAVITY DUAL OF $2 \mathrm{~d} \mathrm{~N}=(1,1)$ from wrapped branes

- Brane setup
- 10d SUGRA ansatz
- Gauged SUGRA approach (7d)
- Solution \rightarrow Coulomb branch
$>$ ADDING FLAVOR
- Flavor D5s
- Backreaction \rightarrow smearing
- Flavored solution
> SUMMARY

AdS / CFT

Correspondence

(4d: Maldacena \& Núñez, Gauntlett et al, Bigazzi et al)
(3d: Chamseddine \& Volkov, Maldacena \& Nastase, Schvellinger \& Tran, Gomis \& Russo, Gauntlett et al)

DUAL TO $N=(1,1)$ SYM FROM WRAPPED D5s

\star BRANE SETUP

DUAL TO $N=(1,1)$ SYM FROM WRAPPED D5s

\star BRANE SETUP

$$
x \quad \mathbb{R}(\rho)
$$

- $G_{2} \rightarrow 1 / 8$ SUSY
- D5s (on a calibrated C_{4}) $\rightarrow 1 / 2$ SUSY
$\longrightarrow 2$ SUSYS

\star SUGRA ANSATZ

- (resolved) G_{2} cone: $d s_{7}^{2}=\frac{(d \sigma)^{2}}{1-\frac{a^{4}}{\sigma^{4}}}+\frac{\sigma^{2}}{2} d \Omega_{4}^{2}+\frac{\sigma^{2}}{4}\left(1-\frac{a^{4}}{\sigma^{4}}\right)\left[\left(E^{1}\right)^{2}+\left(E^{2}\right)^{2}\right] \begin{aligned} & \text { (Bryant, Salamon) } \\ & \text { (Gibbons, Page, Pope) }\end{aligned}$

$$
\begin{aligned}
& \bullet S^{4}: d \Omega_{4}^{2}=\frac{4}{\left(1+\xi^{2}\right)^{2}}\left[d \xi^{2}+\frac{\xi^{2}}{4}\left(\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}+\left(\omega^{3}\right)^{2}\right)\right] \\
& S^{4} \\
& \bullet \text { •fibered } S^{2}: \quad \begin{array}{l}
E^{1}=d \theta+\frac{\xi^{2}}{1+\xi^{2}}\left(\sin \phi \omega^{1}-\cos \phi \omega^{2}\right) \\
E^{2}=\sin \theta\left(d \phi-\frac{\xi^{2}}{1+\xi^{2}} \omega^{3}\right)+\frac{\xi^{2}}{1+\xi^{2}} \cos \theta\left(\cos \phi \omega^{1}+\sin \phi \omega^{2}\right)
\end{array}
\end{aligned}
$$

- 10d metric $d s^{2}=e^{\Phi}\left[d x_{1,1}^{2}+\frac{z}{m^{2}} d \Omega_{4}^{2}\right]+\frac{e^{-\Phi}}{m^{2} z^{\frac{4}{3}}}\left[d \sigma^{2}+\sigma^{2}\left(\left(E^{1}\right)^{2}+\left(E^{2}\right)^{2}\right)\right]+\frac{e^{-\Phi}}{m^{2}}(d \rho)^{2}$

3-form $\quad F_{3}=d C_{2}, \quad C_{2}=g_{1} E^{1} \wedge E^{2}+g_{2}\left(\mathcal{S}^{\xi} \wedge \mathcal{S}^{3}+\mathcal{S}^{1} \wedge \mathcal{S}^{2}\right)$

- 10d metric $d s^{2}=e^{\Phi}\left[d x_{1,1}^{2}+\frac{z}{m^{2}} d \Omega_{4}^{2}\right]+\frac{e^{-\Phi}}{m^{2} z^{\frac{4}{3}}}\left[d \sigma^{2}+\sigma^{2}\left(\left(E^{1}\right)^{2}+\left(E^{2}\right)^{2}\right)\right]+\frac{e^{-\Phi}}{m^{2}}(d \rho)^{2}$

3-form $\quad F_{3}=d C_{2}, \quad C_{2}=g_{1} E^{1} \wedge E^{2}+g_{2}\left(\mathcal{S}^{\xi} \wedge \mathcal{S}^{3}+\mathcal{S}^{1} \wedge \mathcal{S}^{2}\right)$

- BPSs are PDEs \cdot, 7d Gauged SUGRA \rightarrow SOLUTION \odot
- Take 7d SO(4) Gauged SUGRA \longrightarrow Domain wall problem
- 1d problem \rightarrow BPSs easy $\xrightarrow{\text { Uplift }} 10 d$ solution in terms of c

$$
\begin{aligned}
\rho & \rightarrow \mathbb{R} \perp\left(\mathbb{R}^{1,1}, G_{2}\right) \\
\sigma & \rightarrow G_{2}
\end{aligned}
$$

- Take 7d SO(4) Gauged SUGRA \longrightarrow Domain wall problem
- 1d problem \rightarrow BPSs easy $\xrightarrow{\text { Uplift }} 10 d$ solution in terms of c

$$
\begin{align*}
& \rho \rightarrow \mathbb{R} \perp\left(\mathbb{R}^{1,1}, G_{2}\right) \\
& \sigma \rightarrow G_{2}
\end{align*}
$$

- UV $(\mathbf{z} \rightarrow \boldsymbol{\infty}): d s^{2} \rightarrow$ D5s along $\mathbb{R}^{1,1} \times S^{4}[\rightarrow$ Linear dilaton $]$
- Singularity (good) at $z=z_{0}$
- IR (for c<-1):
- Linear distribution (ψ)

- Changing vbles. $(z, \psi) \rightarrow(\rho, \sigma)$
\Leftrightarrow Analytic (implicit) sol. for $z(\rho, \sigma)$

	$\mathbb{R}^{1,1}$		S^{4}				N_{3}			\mathbb{R}
D5	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-		
$N_{3}:(\sigma, \theta, \phi) \mathbb{R}(\rho)$										

$$
\left(z=z_{0}, \psi\right) \rightarrow\left(|\rho|<\rho_{c}, \sigma=0\right)
$$

\star ADDING FLAVOR

- Add an open string sector \rightarrow FLAVOR BRANES

Flavor D5s

- Brane setup
- Non-compact $\mathcal{C}_{4} \subset G_{2}$
- At fixed $\rho=\rho_{Q}$

\longrightarrow| \star Global Sym: flavor
 $\star m_{Q} \sim \rho_{Q}$
 \star Same SUSY |
| :--- |

\star ADDING FLAVOR

Flavor

- Add an open string sector \rightarrow FLAVOR BRANES

Color

Flavor D5s

- At fixed $\rho=\rho_{Q}$
- Non-compact $\mathcal{C}_{4} \subset G_{2}$
\star Global Sym: flavor
- Brane setup

\longrightarrow| \star Global Sym: flavor
 $\star m_{Q} \sim \rho_{Q}$
 \star Same SUSY |
| :--- |

- Probe approximation $N_{f} \ll N_{c}, N_{c} \rightarrow \infty$ (Karch \& Randall, Karch \& Katz)

Quenched flavor in the large N_{c} limit.

\star ADDING FLAVOR

- Add an open string sector \rightarrow FLAVOR BRANES

Flavor D5s

- Brane setup
- Non-compact $\mathcal{C}_{4} \subset G_{2}$
- At fixed $\rho=\rho_{Q}$

\longrightarrow| \star Global Sym: flavor |
| :--- |
| $\star m_{Q} \sim \rho_{Q}$ |
| \star Same SUSY |

- Probe approximation $N_{f} \ll N_{c}, N_{c} \rightarrow \infty$ (Karch \& Randall, Karch \& Katz)

Quenched flavor in the large N_{c} limit.

- Backreaction $N_{f} \sim N_{c} \begin{aligned} & N_{f}, N_{c} \rightarrow \infty \\ & N_{f} / N_{c} \text { fixed }\end{aligned} \rightarrow \begin{aligned} & \text { Veneziano limit } \\ & \text { Quarks loops included }\end{aligned}$
- Computing the backreaction is difficult $S=S_{I I B}+S_{D B I}^{\text {flavor }}+S_{W Z}^{\text {favor }}$

$$
\begin{aligned}
& \Rightarrow \text { Smearing } \\
& \text { (Bigazzi et al, Casero et al) } \\
& \begin{aligned}
S_{W Z}^{\text {flavor }}=T_{5} & \sum_{\mathcal{M}_{6}^{(i)}}^{N_{f}} \hat{C}_{6} \Longrightarrow-T_{5} \int_{\mathcal{M}_{10}} \Omega \wedge C_{6} \longrightarrow \\
& d F_{3}=2 \kappa_{10}^{2} T_{5} \Omega \\
& \Leftrightarrow \Omega+\text { metric } \rightarrow \text { Flavored BPSs }
\end{aligned}
\end{aligned}
$$

- Computing the backreaction is difficult $S=S_{I I B}+S_{D B I}^{\text {flavor }}+S_{W Z}^{\text {favor }}$

Smearing
(Bigazzi et al, Casero et al)

$\begin{aligned} S_{W Z}^{\text {flaor }}=T_{5} & \sum_{\mathcal{M}_{6}^{(i)}}^{N_{f}} \hat{C}_{6} \Longrightarrow-T_{5} \int_{\mathcal{M}_{10}} \Omega \wedge C_{6} \longrightarrow \\ & d F_{3}=2 \kappa_{10}^{2} T_{5} \Omega \text { Bianchi identity } \\ & \Rightarrow \Omega+\text { metric } \rightarrow \text { Flavored BPSs }\end{aligned}$

- D5 embeddings (k-symmetry) $\rightarrow \Omega$, this is hard!!
- D5-branes at $\rho=\rho_{Q}$
- Same SUSY (2)
\rightarrow generic $\Omega / \begin{aligned} & \bullet \text { Consistent BPSs }(\rightarrow \text { EoM }) \\ & \bullet \text { Color } \cap \text { Flavor }=\varnothing\end{aligned}$
- Particular charge distribution / homogeneous charge distribution along $\perp \mathbb{R}^{3}$
- Numerical solution with z, ϕ, g_{i} continuous at $\rho=\rho_{Q}$
- Coincides with the unflavored for $\rho<\rho_{Q}$

- Flavor contributes as expected [$1 / g_{Y M}^{2} \sim z^{2}(\rho, \sigma=0)$]

* SUMMARY / TO TRY

- Gravity duals of 2d $N=(1,1)$ \& $(2,2)$ SUSY theories from wrapped D5s \checkmark
- Large number of flavors via backreacting flavor D5s \checkmark
- Explore the F.T. (a little) \rightarrow color probe brane \checkmark (E-r relation missing)
- Higgs branch \rightarrow Color \& flavor branes recombining
- Alternative setup \rightarrow D3s on a 2-cycle of a CY3. Better UV.
- Non-singular background?
- Less SUSY \rightarrow D5s on a 4-cycle of a Spin(7)
\star SUGRA DUALS OF 2D THEORIES WITH $N=(2,2)$ SUSY
- D5s on a 4-cycle of a CY3 ~ $2 \mathrm{~d} N=(2,2)$

$$
\begin{aligned}
& \text { - CY3 } \rightarrow 1 / 4 \text { SUSY } \\
& \text { - D5s } \rightarrow 1 / 2 \text { SUSY }
\end{aligned} \longrightarrow 2 \text { SUSYS }
$$

- 10d Ansatz $\begin{aligned} & -\begin{array}{l}- \text { Metric } \rightarrow z(\rho, \sigma) \& \phi(\rho, \sigma) \\ -3 \text {-form } \rightarrow g(\rho, \sigma)\end{array} \\ & \text { [7d Gauged SUGRA] }\end{aligned}$
- Flavoring \rightarrow D5s on a non-compact 4-cycle \rightarrow Embeddings found
$\Leftrightarrow \Omega$ constructed \rightarrow new BPSs \rightarrow (Numeric) Flavored background

