

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES

BASED ON:

0909.3106 with E. Conde and A.V. Ramallo (Santiago de Compostela)
 [See also 0810.1053 with C. Núñez, P. Merlatti and A.V. Ramallo]

Daniel Areán Milos, September 2009

OUTLINE

- > INTRODUCTION. AdS/CFT and its generalisations
- > GRAVITY DUAL OF 2d N=(1,1) from wrapped branes
 - Brane setup
 - 10d SUGRA ansatz
 - Gauged SUGRA approach (7d)
 - Solution \rightarrow Coulomb branch

> ADDING FLAVOR

- Flavor D5s
- Backreaction \rightarrow smearing
- Flavored solution
- > SUMMARY

★ USE WRAPPED BRANES

(4d: Maldacena & Núñez, Gauntlett et al, Bigazzi et al) (3d: Chamseddine & Volkov, Maldacena & Nastase, Schvellinger & Tran, Gomis & Russo, Gauntlett et al)

DUAL TO N=(1,1) SYM FROM WRAPPED D5s

***** BRANE SETUP

DUAL TO N=(1,1) SYM FROM WRAPPED D5s

***** BRANE SETUP

★ SUGRA ANSATZ

• (resolved) G_2 cone: $ds_7^2 = \frac{(d\sigma)^2}{1 - \frac{a^4}{\sigma^4}} + \frac{\sigma^2}{2} d\Omega_4^2 + \frac{\sigma^2}{4} \left(1 - \frac{a^4}{\sigma^4}\right) \left[(E^1)^2 + (E^2)^2\right]$ (Bryant, Salamon) (Gibbons, Page, Pope)

• 10d metric $ds^2 = e^{\Phi} \left[dx_{1,1}^2 + \frac{2}{m^2} d\Omega_4^2 \right] + \frac{e^{-\Phi}}{m^2 z^{\frac{4}{3}}} \left[d\sigma^2 + \sigma^2 \left((E^1)^2 + (E^2)^2 \right) \right] + \frac{e^{-\Phi}}{m^2} (d\rho)^2$

• 3-form $F_3 = dC_2$, $C_2 = g_1 E^1 \wedge E^2 + g_2 \left(\mathcal{S}^{\xi} \wedge \mathcal{S}^3 + \mathcal{S}^1 \wedge \mathcal{S}^2 \right)$

• 10d metric
$$ds^2 = e^{\Phi} \left[dx_{1,1}^2 + \frac{2}{m^2} d\Omega_4^2 \right] + \frac{e^{-\Phi}}{m^2 z^{\frac{4}{3}}} \left[d\sigma^2 + \sigma^2 \left((E^1)^2 + (E^2)^2 \right) \right] + \frac{e^{-\Phi}}{m^2} (d\rho)^2$$

• 3-form $F_3 = dC_2$, $C_2 = g_1 E^1 \wedge E^2 + g_2 \left(\mathcal{S}^{\xi} \wedge \mathcal{S}^3 + \mathcal{S}^1 \wedge \mathcal{S}^2 \right)$

• BPSs are PDEs \otimes , 7d Gauged SUGRA \rightarrow SOLUTION \odot

★ GAUGED SUGRA APPROACH → LINEAR DISTRIBUTION OF D5S

◆ Take 7d SO(4) Gauged SUGRA → Domain wall problem

★ GAUGED SUGRA APPROACH → LINEAR DISTRIBUTION OF D5S

◆ Take 7d SO(4) Gauged SUGRA → Domain wall problem

• Singularity (good) at $z=z_0$

♦ IR (for c<-1):</p>

• Linear distribution (ψ)

• Changing vbles. $(z,\psi) \rightarrow (\rho,\sigma)$

Analytic (implicit) sol. for $z(\rho, \sigma)$

★ ADDING FLAVOR

• Add an open string sector \rightarrow FLAVOR BRANES

Flavor D5s

• Brane setup

• Non-compact $C_4 \subset G_2$ • At fixed $\rho = \rho_Q$ \longrightarrow $\star m_Q \sim \rho_Q$ \star Same SUSY

★ ADDING FLAVOR

• Add an open string sector \rightarrow FLAVOR BRANES

• Probe approximation $N_f \ll N_c$, $N_c
ightarrow \infty$ (Karch & Randall, Karch & Katz)

Quenched flavor in the large N_c limit.

★ ADDING FLAVOR

• Add an open string sector \rightarrow FLAVOR BRANES

• Computing the backreaction is difficult $S = S_{IIB} + S_{DBI}^{\text{flavor}} + S_{WZ}^{\text{flavor}}$

Smearing (Bigazzi et al, Casero et al)

$$S_{WZ}^{flavor} = T_5 \sum_{M_6}^{N_f} \int_{\mathcal{M}_6^{(i)}} \hat{C}_6 \implies -T_5 \int_{\mathcal{M}_{10}} \Omega \wedge C_6 \longrightarrow dF_3 = 2\kappa_{10}^2 T_5 \Omega \quad \text{Bianchi identity}$$
$$\Rightarrow \Omega + \text{metric} \rightarrow \text{Flavored BPSs}$$

- Computing the backreaction is difficult $S = S_{IIB} + S_{DBI}^{\text{flavor}} + S_{WZ}^{\text{flavor}}$
- Smearing
 (Bigazzi et al, Casero et al)

$$S_{WZ}^{flavor} = T_5 \sum_{M_6}^{N_f} \int_{\mathcal{M}_6^{(i)}} \hat{C}_6 \implies -T_5 \int_{\mathcal{M}_{10}} \Omega \wedge C_6 \longrightarrow dF_3 = 2\kappa_{10}^2 T_5 \Omega \quad \text{Bianchi identity}$$
$$\Rightarrow \Omega + \text{metric} \rightarrow \text{Flavored BPSs}$$

- D5 embeddings (κ -symmetry) $\rightarrow \Omega$, this is hard!!
 - D5-branes at ρ = ρ_Q
 Same SUSY (2) → generic Ω /
 No new deformations of g_{ab} → Generic Ω /
 Color ∩ Flavor = Ø

- + Particular charge distribution / homogeneous charge distribution along $\perp \mathbb{R}^3$
 - Numerical solution with $z, \, \phi, \, g_i$ continuous at $ho =
 ho_Q$
 - Coincides with the unflavored for $ho <
 ho_Q$

• Flavor contributes as expected [$1/g_{YM}^2 \sim z^2(\rho,\sigma=0)$]

★ SUMMARY / TO TRY

- Gravity duals of 2d N=(1,1) & (2,2) SUSY theories from wrapped D5s √
- Large number of flavors via backreacting flavor D5s √
- Explore the F.T. (a little) \rightarrow color probe brane \checkmark (E-r relation missing)
- Higgs branch \rightarrow Color & flavor branes recombining
- Alternative setup \rightarrow D3s on a 2-cycle of a CY3. Better UV.
- Non-singular background?
- Less SUSY \rightarrow D5s on a 4-cycle of a Spin(7)

★ SUGRA DUALS OF 2D THEORIES WITH N=(2,2) SUSY

■ Flavoring → D5s on a non-compact 4-cycle → Embeddings found

 $\Rightarrow \Omega$ constructed \rightarrow new BPSs \rightarrow (Numeric) Flavored background