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CMPP Formalism and WANDs

I This is a slightly non-standard approach to studying GR
(with whatever exotic matter you happen to like).

I Idea is that for a few spacetimes (including several
important ones), there is a choice of frame which simplifies
things.

I Generalization of Petrov classification/Newman-Penrose
formalism to higher dimensions.

I CMPP = Coley, Milson, Pravda, Pravdova (2004)
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Possible Applications

Doing this in higher dimensions is a moderately new idea,
some possible applications are:

I Finding new solutions to GR in higher dimensions.
I Classifying known solutions?
I Studying known solutions (e.g. asymptotics)
I Perturbations? - Teukolsky equation in 4D comes from

Newman-Penrose approach.
I Numerical relativity?
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Standard coordinate GR

I In standard undergraduate GR, everything is done in a
coordinate basis.

I All complicated information about the curvature etc. is
contained in the metric, with line element

ds2 = gµν(x) dxµ ⊗ dxν .

I The D 1-forms dxµ are a basis for the (dual) tangent bundle
of the spacetime, obtained directly from the coordinates xµ.

I Derivatives d(dxµ) = 0 trivial.
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Arbitrary frames

I Instead, can define another basis ea(x) for the tangent
bundle, so that

ds2 = ηab ea(x)⊗ eb(x),

where η is the Minkowski metric (used to raise/lower
indices a,b,...).

I Here the complicated information is contained within ea(x).
I Derivatives dea = −γa

b ∧ eb define the spin connection.
I These frames often called tetrads in four dimensions.
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Null frames

I Usually in the frame formalism of the last page, take e0 to
be timelike, others spacelike, with

ηab = ea.eb = diag(−1, 1, 1, ...).

I In this talk we will work in a null frame, with e0, e1 null, and
ei spacelike (i = 2, ..., D− 1). Have

ηab = ea.eb =


0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

I Write l = e0 = e1, n = e1 = e0, mi = ei = ei.
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Introduction to CMPP Formalism

[Coley, Milson, Pravda and Pravdova (2004)] started the
development of a formalism for doing D-dimensional GR in null
frames (generalizing Newman-Penrose formalism/Petrov
classification in 4D).

Let µ, ν,... be spacetime indices. We can expand any tensor T
in a frame basis by defining

Tab...c = eµ
a eν

b ...eρ
c Tµν...ρ.

Mark Durkee WANDs in higher-dimensional gravity



Frame bases in general relativity
CMPP Formalism

Introduction to CMPP Formalism

[Coley, Milson, Pravda and Pravdova (2004)] started the
development of a formalism for doing D-dimensional GR in null
frames (generalizing Newman-Penrose formalism/Petrov
classification in 4D).
Let µ, ν,... be spacetime indices. We can expand any tensor T
in a frame basis by defining

Tab...c = eµ
a eν

b ...eρ
c Tµν...ρ.

Mark Durkee WANDs in higher-dimensional gravity



Frame bases in general relativity
CMPP Formalism

Spacetime scalars

Each object Tab...c is now a spacetime scalar (no spacetime
indices), so for example,

∇µTab...c = ∂µTab...c.

However, it does transform under the Lorentz group
SO(1, D− 1). This corresponds to our freedom to choose
different frame bases.
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Action of the Lorentz group

We divide up the action of the Lorentz group on the basis
vectors as follows:

Spins SO(D− 2) rotations of the spatial basis vectors mi.
Null Rotations Rotations of one of the null basis vectors about

the other, for example a null rotation about n takes
the form

l → l− zin−
1
2

z2l, n → n, mi → mi + zin

for some zi.
Boosts Under a local Lorentz boost we get

l → λl, n → λ−1n, mi → mi,

and we say that l, n and mi have boost weights
+1, −1 and 0 respectively.
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Classification by boost weight

We can use this to make some definitions that turn out to be
useful:

I The idea is that we classify components of tensors by their
boost weights.

I Most useful to apply this to the Weyl tensor Cµνρσ.
(Recall: Weyl tensor is totally traceless part of Riemann curvature tensor).

I Just need to count the number of 0s and 1s in the indices
to find boost weight of a component, as follows...
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Classification of the Weyl tensor

(recall Weyl symmetries Cabcd = Ccdab = C[ab]cd = Cab[cd] and
Ca[bcd] = 0)

Boost Weight +2 C0i0j

Boost Weight +1 C0ijk, C010i

Boost Weight 0 Cijkl, C01ij, C0i1j, C0101

Boost Weight -1 C1ijk, C101i

Boost Weight -2 C1i1j
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Recall Petrov classification in 4D

Those familiar with the Petrov classification will realise that all
these components can be written in terms of complex scalars
ΨA in 4 dimensions.
Boost Weight +2 Ψ0 ∼ C0i0j

Boost Weight +1 Ψ1 ∼ C0ijk, C010i

Boost Weight 0 Ψ2 ∼ Cijkl, C01ij, C0i1j, C0101

Boost Weight -1 Ψ3 ∼ C1ijk, C101i

Boost Weight -2 Ψ4 ∼ C1i1j.
We can’t do this in general dimension.
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Definition of a WAND

I Say that l is a Weyl-aligned null direction (WAND) iff all
boost weight +2 components vanish.
(In 4D this is equivalent to being a PND)

I Say that l is a multiple WAND iff all boost weight +2 and +1
components vanish.
(In 4D this is equivalent to being a repeated PND)

I A spacetime admitting a (multiple) WAND is algebraically
special.
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Existence of WANDs

The natural first question is do WANDs always exist?
I In D = 4, yes. Any spacetime admits exactly 4 WANDs,

some possibly degenerate.
I In D > 4, no. An arbitrary spacetime might admit no

WANDs, a finite number of WANDs, or even a continuous
family.

I Existence is a local property in general, but for analytic
spacetimes can extend this globally (so in a smooth,
non-analytic spacetime, everything I say is valid in some
open neighbourhood of any point in a spacetime).
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Algebraic Types

Given a spacetime, we look to pick l so that as many high boost
weight components of l vanish as possible. Different algebraic
types are defined based on which components of Cabcd vanish
in this chosen frame:

Type b
G +2 +1 0 -1 -2 General
I +1 0 -1 -2 Not really special

II 0 -1 -2 Algebraically Special
III -1 -2 More special
N -2 Even more special
Ii +1 0 -1 n also WAND

D = IIii 0 n also mWAND
IIi 0 -1 n also WAND
O Conformally flat
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Algebraic Types of various spacetimes

Generically, spacetimes are not algebraically special, but many
important metrics are, for example:

I Schwarzchild: Type D
I Kerr/Myers-Perry-((A)dS): Type D
I C-metric (known in 4d only): Type D
I PP waves: Type N

But:
I Singly-Spinning Black Ring:

I Type D on the horizon
I Type Ii elsewhere.
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Constructing new solutions?

The Kerr metric was discovered by looking for an axisymmetric,
algebraically special solution of the vacuum Einstein equations.
Can we find any interesting new solutions in higher-dimensions
like this?

I Answer: Not yet...
I Lots more scope for trying.
I Think of this as a simplifying assumption...might or might

not make things tractable.
I Potentially useful for AdS-CFT as studying solutions with

AdS asymptotics often no more difficult than asymptotically
flat (c.f. inverse scattering techniques where this is
definitely not true).
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Geodesity of WANDs

Goldberg-Sachs Theorem says that in 4D Einstein
spacetimes, a null congruence is a multiple WAND iff it is
geodesic and shearfree. (An Einstein spacetime is a solution of the vacuum Einstein equations

with possible cosmological constant.)

This is very useful in D = 4, but fails for all D > 4.

However, we
have:

Theorem
An Einstein spacetime admits a multiple WAND if, and only if, it
admits a geodesic multiple WAND. [M.N.D. and Reall (2009)]
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The End

.
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Axisymmetric Solutions

Another example of recent work is the following:
I In D dimensions, a spacetime is axisymmetric if it admits

an SO(D− 3) isometry group.
I [Godazgar and Reall (2009)] constructed all algebraically

special, axisymmetric solutions of the vacuum Einstein
equations in arbitrary dimension.

I Nothing new found.
I No axisymmetric, alg. special C-metric in higher

dimensions.
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