WANDs in higher-dimensional gravity A new magic method?

Mark Durkee

DAMTP, University of Cambridge United Kingdom

Fifth Aegean Summer School Monday 21st September 2009

CMPP Formalism and WANDs

- This is a slightly non-standard approach to studying GR (with whatever exotic matter you happen to like).
- Idea is that for a few spacetimes (including several important ones), there is a choice of frame which simplifies things.
- Generalization of Petrov classification/Newman-Penrose formalism to higher dimensions.
- CMPP = Coley, Milson, Pravda, Pravdova (2004)

Possible Applications

Doing this in higher dimensions is a moderately new idea, some possible applications are:

- Finding new solutions to GR in higher dimensions.
- Classifying known solutions?
- Studying known solutions (e.g. asymptotics)
- Perturbations? Teukolsky equation in 4D comes from Newman-Penrose approach.
- Numerical relativity?

Standard coordinate GR

- In standard undergraduate GR, everything is done in a coordinate basis.
- All complicated information about the curvature etc. is contained in the metric, with line element

$$ds^2 = g_{\mu\nu}(x) \ dx^{\mu} \otimes dx^{\nu}.$$

- The D 1-forms dx^µ are a basis for the (dual) tangent bundle of the spacetime, obtained directly from the coordinates x^µ.
- Derivatives $d(dx^{\mu}) = 0$ trivial.

・ロト (周) (E) (E) (E) (E)

Arbitrary frames

Instead, can define another basis e^a(x) for the tangent bundle, so that

$$ds^2 = \eta_{ab} \ \mathbf{e}^a(x) \otimes \mathbf{e}^b(x),$$

where η is the Minkowski metric (used to raise/lower indices a,b,...).

- Here the complicated information is contained within $e^{a}(x)$.
- Derivatives $d\mathbf{e}^a = -\gamma^a_{\ b} \wedge \mathbf{e}^b$ define the spin connection.
- ► These frames often called *tetrads* in four dimensions.

・ロト (周) (E) (E) (E) (E)

Null frames

Usually in the frame formalism of the last page, take e⁰ to be timelike, others spacelike, with

$$\eta_{ab} = \mathbf{e}_a \cdot \mathbf{e}_b = \operatorname{diag}(-1, 1, 1, \ldots).$$

Null frames

 Usually in the frame formalism of the last page, take e⁰ to be timelike, others spacelike, with

$$\eta_{ab} = \mathbf{e}_a \cdot \mathbf{e}_b = \text{diag}(-1, 1, 1, ...).$$

▶ In this talk we will work in a *null frame*, with e^0 , e^1 null, and e^i spacelike (i = 2, ..., D - 1). Have

$$\eta_{ab} = \mathbf{e}_a \cdot \mathbf{e}_b = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

• Write $\mathbf{l} = \mathbf{e}_0 = \mathbf{e}^1$, $\mathbf{n} = \mathbf{e}_1 = \mathbf{e}^0$, $\mathbf{m}_i = \mathbf{e}_i = \mathbf{e}^i$.

= 200

Introduction to CMPP Formalism

[Coley, Milson, Pravda and Pravdova (2004)] started the development of a formalism for doing *D*-dimensional GR in null frames (generalizing Newman-Penrose formalism/Petrov classification in 4D).

Introduction to CMPP Formalism

[Coley, Milson, Pravda and Pravdova (2004)] started the development of a formalism for doing *D*-dimensional GR in null frames (generalizing Newman-Penrose formalism/Petrov classification in 4D).

Let μ , ν ,... be spacetime indices. We can expand any tensor *T* in a frame basis by defining

$$T_{ab...c} = e^{\mu}_a e^{\nu}_b ... e^{\rho}_c T_{\mu\nu...\rho}.$$

Spacetime scalars

Each object $T_{ab...c}$ is now a spacetime *scalar* (no spacetime indices), so for example,

$$\nabla_{\mu}T_{ab...c} = \partial_{\mu}T_{ab...c}.$$

However, it does transform under the Lorentz group SO(1, D-1). This corresponds to our freedom to choose different frame bases.

Action of the Lorentz group

We divide up the action of the Lorentz group on the basis vectors as follows:

Spins SO(D-2) rotations of the spatial basis vectors $\mathbf{m_i}$. Null Rotations Rotations of one of the null basis vectors about the other, for example a null rotation about \mathbf{n} takes the form

$$\mathbf{l} \rightarrow \mathbf{l} - z_i \mathbf{n} - \frac{1}{2} z^2 \mathbf{l}, \qquad \mathbf{n} \rightarrow \mathbf{n}, \qquad \mathbf{m}_i \rightarrow \mathbf{m}_i + z_i \mathbf{n}$$

for some z_i .

Boosts Under a local Lorentz boost we get

$$\mathbf{l} \rightarrow \lambda \mathbf{l}, \qquad \mathbf{n} \rightarrow \lambda^{-1} \mathbf{n}, \qquad \mathbf{m_i} \rightarrow \mathbf{m_i},$$

and we say that I, n and m_i have boost weights NIVERSITY OF +1, -1 and 0 respectively.

Classification by boost weight

We can use this to make some definitions that turn out to be useful:

- The idea is that we classify components of tensors by their boost weights.
- Most useful to apply this to the Weyl tensor $C_{\mu\nu\rho\sigma}$.

(Recall: Weyl tensor is totally traceless part of Riemann curvature tensor).

Just need to count the number of 0s and 1s in the indices to find boost weight of a component, as follows...

Classification of the Weyl tensor

(recall Weyl symmetries $C_{abcd} = C_{cdab} = C_{[ab]cd} = C_{ab[cd]}$ and $C_{a[bcd]} = 0$) Boost Weight +2 C_{0i0j}

Classification of the Weyl tensor

(recall Weyl symmetries $C_{abcd} = C_{cdab} = C_{[ab]cd} = C_{ab[cd]}$ and $C_{a[bcd]} = 0$) Boost Weight +2 C_{0i0j} Boost Weight +1 C_{0ijk} , C_{010i}

Classification of the Weyl tensor

(recall Weyl symmetries $C_{abcd} = C_{cdab} = C_{[ab]cd} = C_{ab[cd]}$ and $C_{a[bcd]} = 0$) Boost Weight +2 C_{0i0j} Boost Weight +1 C_{0ijk} , C_{010i} Boost Weight 0 C_{ijkl} , C_{01ij} , C_{0i1j} , C_{0101} Boost Weight -1 C_{1ijk} , C_{101i} Boost Weight -2 C_{1i1i}

Recall Petrov classification in 4D

Those familiar with the Petrov classification will realise that all these components can be written in terms of complex scalars Ψ_A in 4 dimensions.

Boost Weight +2 $\Psi_0 \sim C_{0i0j}$ Boost Weight +1 $\Psi_1 \sim C_{0ijk}, C_{010i}$ Boost Weight 0 $\Psi_2 \sim C_{ijkl}, C_{01ij}, C_{0i1j}, C_{0101}$ Boost Weight -1 $\Psi_3 \sim C_{1ijk}, C_{101i}$ Boost Weight -2 $\Psi_4 \sim C_{1i1j}$. We can't do this in general dimension.

Definition of a WAND

- Say that I is a Weyl-aligned null direction (WAND) iff all boost weight +2 components vanish. (In 4D this is equivalent to being a PND)
- Say that I is a multiple WAND iff all boost weight +2 and +1 components vanish.

(In 4D this is equivalent to being a repeated PND)

 A spacetime admitting a (multiple) WAND is algebraically special.

Existence of WANDs

The natural first question is do WANDs always exist?

- In D = 4, yes. Any spacetime admits exactly 4 WANDs, some possibly degenerate.
- In D > 4, no. An arbitrary spacetime might admit no WANDs, a finite number of WANDs, or even a continuous family.
- Existence is a local property in general, but for analytic spacetimes can extend this globally (so in a smooth, non-analytic spacetime, everything I say is valid in some open neighbourhood of any point in a spacetime).

Algebraic Types

Given a spacetime, we look to pick I so that as many high boost weight components of I vanish as possible. Different algebraic types are defined based on which components of C_{abcd} vanish in this chosen frame:

Туре			b			
G	+2	+1	0	-1	-2	General
I		+1	0	-1	-2	Not really special

Algebraic Types

Given a spacetime, we look to pick I so that as many high boost weight components of I vanish as possible. Different algebraic types are defined based on which components of C_{abcd} vanish in this chosen frame:

Туре			b			
G	+2	+1	0	-1	-2	General
I		+1	0	-1	-2	Not really special
II			0	-1	-2	Algebraically Special
III				-1	-2	More special
N					-2	Even more special

Algebraic Types

Given a spacetime, we look to pick I so that as many high boost weight components of I vanish as possible. Different algebraic types are defined based on which components of C_{abcd} vanish in this chosen frame:

Туре			b				
G	+2	+1	0	-1	-2	General	
I		+1	0	-1	-2	Not really special	
II			0	-1	-2	Algebraically Special	
III				-1	-2	More special	
N					-2	Even more special	
$ _i$		+1	0	-1		n also WAND	
$D = II_i i$			0			n also mWAND	
$ _i$			0	-1		n also WAND	
0						Conformally flat	OI GE

・ロト (周) (E) (E) (E) (E)

Algebraic Types of various spacetimes

Generically, spacetimes are not algebraically special, but many important metrics are, for example:

- Schwarzchild: Type D
- Kerr/Myers-Perry-((A)dS): Type D
- C-metric (known in 4d only): Type D
- PP waves: Type N

Algebraic Types of various spacetimes

Generically, spacetimes are not algebraically special, but many important metrics are, for example:

- Schwarzchild: Type D
- Kerr/Myers-Perry-((A)dS): Type D
- C-metric (known in 4d only): Type D
- PP waves: Type N

But:

- Singly-Spinning Black Ring:
 - Type D on the horizon
 - Type I_i elsewhere.

Constructing new solutions?

The Kerr metric was discovered by looking for an axisymmetric, algebraically special solution of the vacuum Einstein equations. Can we find any interesting new solutions in higher-dimensions like this?

Constructing new solutions?

The Kerr metric was discovered by looking for an axisymmetric, algebraically special solution of the vacuum Einstein equations. Can we find any interesting new solutions in higher-dimensions like this?

Answer: Not yet...

Constructing new solutions?

The Kerr metric was discovered by looking for an axisymmetric, algebraically special solution of the vacuum Einstein equations. Can we find any interesting new solutions in higher-dimensions like this?

- Answer: Not yet...
- Lots more scope for trying.
- Think of this as a simplifying assumption...might or might not make things tractable.
- Potentially useful for AdS-CFT as studying solutions with AdS asymptotics often no more difficult than asymptotically flat (c.f. inverse scattering techniques where this is definitely not true).

Geodesity of WANDs

Goldberg-Sachs Theorem says that in 4D Einstein spacetimes, a null congruence is a multiple WAND iff it is geodesic and shearfree. (An Einstein spacetime is a solution of the vacuum Einstein equations

with possible cosmological constant.)

This is very useful in D = 4, but fails for all D > 4.

Geodesity of WANDs

Goldberg-Sachs Theorem says that in 4D Einstein spacetimes, a null congruence is a multiple WAND iff it is geodesic and shearfree. (An Einstein spacetime is a solution of the vacuum Einstein equations

with possible cosmological constant.)

This is very useful in D = 4, but fails for all D > 4. However, we have:

Theorem

An Einstein spacetime admits a multiple WAND if, and only if, it admits a geodesic multiple WAND. [M.N.D. and Reall (2009)]

The End

.

Mark Durkee WANDs in higher-dimensional gravity

Another example of recent work is the following:

- ► In D dimensions, a spacetime is axisymmetric if it admits an SO(D - 3) isometry group.
- [Godazgar and Reall (2009)] constructed all algebraically special, axisymmetric solutions of the vacuum Einstein equations in arbitrary dimension.
- Nothing new found.
- No axisymmetric, alg. special C-metric in higher dimensions.

Coley, A., Milson, R., Pravda, V. and Pravdova, A. (2004).
 Classification of the Weyl tensor in higher-dimensions. *Class. Quant. Grav.* 21, L35–L42.

- Durkee, M and Reall, H. S. (2009).
 A higher-dimensional generalization of the geodesic part of the Goldberg-Sachs theorem .
- Godazgar, M. and Reall, H. S. (2009). Algebraically special axisymmetric solutions of the higher-dimensional vacuum Einstein equation.

Class. Quant. Grav. 26, 165009.

Goldberg, J. and Sachs, R. (1962). Acta Phys. Pol. 22.

