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Motivation Background Construction Solution Summary

Motivation

Probe nature of spacetime and time dependence
in quantum gravity

Extract universal dynamics of wide class of gravitational
theories

Explore properties of strongly-coupled gauge theories (QCD)

Elucidate long-standing questions in fluid dynamics
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Motivation

Key question of quantum gravity:

What is the fundamental nature of spacetime?

Invaluable tool in recent years: AdS/CFT correspondence

string theory in AdS × S
↔ gauge theory (CFT) on boundary

Need to probe AdS/CFT dictionary further:

Which CFT configurations have a spacetime description?

What types of spacetime singularities are allowed?

Probe spacetime dynamics.
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Motivation

Universal implications:

The fluid/gravity framework has bearing on wide class of theories.

Einstein’s equations (with Λ < 0) constitute a consistent
truncation of all two-derivative gravitational theories
(interacting with other fields of spins < 2) having AdS as a
solution. argument

Hence ∃ a decoupled sector exhibiting universal dynamics for
the stress tensor of every CFT having SUGRA bulk dual
description.

In particular, stress tensor correlators are universal (at any
temperature, since uncharged planar black holes lie in this
universal sector).
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Motivation

Current interesting questions in QCD:

Explore universal properties of non-abelian plasmas

Understand quark gluon plasma (RHIC data)

Any strongly interacting field theory admits an effective description
in terms of fluid dynamics.

Important questions in fluid dynamics:

Physics away from thermodynamic equilibrium

Global regularity of Navier-Stokes equation

Turbulence

Causality issues (Israel-Stewart)

Veronika Hubeny Fluid Dynamics from Gravity



Motivation Background Construction Solution Summary

Motivation

Current interesting questions in QCD:

Explore universal properties of non-abelian plasmas

Understand quark gluon plasma (RHIC data)

Any strongly interacting field theory admits an effective description
in terms of fluid dynamics.

Important questions in fluid dynamics:

Physics away from thermodynamic equilibrium

Global regularity of Navier-Stokes equation

Turbulence

Causality issues (Israel-Stewart)

Veronika Hubeny Fluid Dynamics from Gravity



Motivation Background Construction Solution Summary

Outline

1 Motivation

2 Background
fluid dynamics
gravity
fluid/gravity map

3 Iterative construction of bulk gµν and boundary Tµν

0th order
1st order

4 Analysis of 2nd order solution
boundary stress tensor and transport coefficients
bulk geometry and event horizon

5 Summary & Remarks
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References:

These lectures are based on based on:

arXiv:0712.2456: Nonlinear fluid dynamics from gravity,
Bhattacharyya, Hubeny, Minwalla, Rangamani

arXiv:0803.2526: Local fluid dynamical entropy from gravity,
Bhattacharyya, Hubeny, Loganayagam, Mandal, Minwalla, Morita, Rangamani, Reall.

Previous important work:

arXiv:0704.0240: Son & Starinets, hep-th/0104066: Policastro, Son, Starinets

arXiv:0708.1770: Bhattacharyya, Lahiri, Loganayagam, Minwalla

hep-th/0512162: Janik & Peschanski

Reviews of further progress:

arXiv:0806.0006: Bhattacharyya, Loganayagam, Minwalla, Nampuri, Trivedi, Wadia

arXiv:0809.4272: Bhattacharyya, Loganayagam, Mandal, Minwalla, Sharma

arXiv:0905.4352: Rangamani

and many more...
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Fluid dynamics

Fluid dynamics is continuum effective description of any
microscopic QFT valid when scales of variation are long
compared to mean free path `mfp.

The fluid description assumes that the system achieves local
thermodynamic equilibrium.

Regime of validity: “long-wavelength approximation”

For local temperature of the fluid T
and scale of variation of the dynamical degrees of freedom L,
local equilibrium demands:

L T ≡ 1

ε
� 1
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Fluid dynamics

Dynamical degress of freedom:

Local temperature T

Fluid velocity uµ (normalized ηµν uµ uν = −1)

Particle and charge densities ρ and qi

Pressure P and chemical potentials
determined by equation of state

For conformal fluids P = 1
d−1 ρ

For convenience we will set all charges to zero
ρ can be expressed in terms of T

Veronika Hubeny Fluid Dynamics from Gravity
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Fluid dynamics

Dynamical degress of freedom:

Local temperature T

Fluid velocity uµ (normalized ηµν uµ uν = −1)

Particle and charge densities ρ and qi

Pressure P and chemical potentials
determined by equation of state

For conformal fluids P = 1
d−1 ρ

For convenience we will set all charges to zero
ρ can be expressed in terms of T

⇒ This leaves d functions, T (xµ) and uν(xµ),
which specify our fluid configuration.

(xµ are coordinates on the boundary spacetime on which the fluid lives.)
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Conformal Fluid dynamics

The conformal fluid stress tensor Tµν

Encode all the fluid information by stress tensor Tµν , which is

Traceless: Tµ
µ = 0

Conserved: ∇µTµν = 0

The conservation equation encapsulates the dynamical content of
fluid dynamics.

Form of stress tensor is determined by symmetries,
order by order in derivative expansion;

fluid properties specified by finite # of undetermined coefficients.

In d dimensions:

Tµν = αT d (ηµν + d uµ uν) + πµνdissipative
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Gravity in the bulk

Consider any 2-derivative theory of 5-d gravity interacting
with other fields with AdS5 as a solution (e.g. IIB SUGRA on

AdS5 × S5). Solution space has a universal sub-sector: pure
gravity with negative cosmological constant

EMN ≡ RMN −
1

2
R gMN + Λ gMN = 0

(RAdS = 1 ⇒ Λ = −6)
We will focus on this sub-sector in long-wavelength limit.

Apart from the AdS5 solution, there is a 4-parameter family of
solutions representing asymptotically-AdS5 boosted planar
black holes.

We will use these solutions to construct general dynamical
spacetimes characterized by fluid-dynamical configurations.
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Collective coordinate method

Isometry group of AdS5 is SO(4, 2).

Distinguished subalgebra: Poincare + dilatations

SO(3) rotations and translations
leave planar black hole invariant

dilatation + boosts
generate a 4-parameter family of planar black hole solutions
(specified by temperature T and velocity uν of the horizon)

Our construction promotes these to ‘Goldstone fields’
(collective coordinate fields) T (xµ), uν(xµ)

We determine the effective dynamics for these fields
order by order in boundary derivative expansion.
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Validity of semi-classical gravity and DOF truncation

Gravity dual to field theory

The boundary stress tensor is related to the normalizable
modes of the gravitational field in AdS.

ds2 =
dz2 +

(
ηµν + α zd Tµν

)
dwµ dwν

z2

Conversely, to a given a boundary stress tensor Tµν there
corresponds an asymptotically AdS solution.

Degrees of freedom counting

A boundary conformally invariant stress tensor has d(d+1)
2 − 1

degrees of freedom.

?: Can any such stress tensor give a regular bulk geometry?
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Regularity and dof truncation

Claim: Regular solutions are given by stress tensors which are
fluid dynamical.

For pure gravity + cosmological constant, this is a reduction
of degress of freedom, since fluid stress tensors have d dof
(i.e. T and uµ), rather than d(d+1)

2 − 1.

Uniqueness: In fact, the gravity solutions thus constructed are
the most general regular long-wavelength solutions to
Einstein’s equations (gravity & -ve cc).

i.e. the solutions admit a regular event horizon which shields a
curvature singularity.

Veronika Hubeny Fluid Dynamics from Gravity
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Overview

Dynamical picture:

Start with generic high energy initial conditions

System quickly settles down to local thermodynamic
equilibrium ⇔ planar non-uniform black hole in AdS
(described by local velocity and temperature fields)

Subsequent evolution: hydrodynamics ⇔ Einstein’s equations

Late time behaviour: relaxation to
global equilibrium state ⇔ uniform planar black hole in AdS

Technical aspects:

Long-wavelength regime of fluid dynamics: use perturbative
expansion in boundary derivatives (exact in radial coordinate).

We construct the stress-energy tensor Tµν and corresponding
metric gµν to second order in boundary derivative expansion.

This yields a map between fluid dynamics and gravity.
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1 Motivation

2 Background
fluid dynamics
gravity
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0th order
1st order

4 Analysis of 2nd order solution
boundary stress tensor and transport coefficients
bulk geometry and event horizon

5 Summary & Remarks
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0th order: boosted Schwarzschild-AdS black hole

Start with the well-known stationary solution: (derivation)

boosted Schwarzschild-AdS5 black hole (w/ planar symmetry)

ds2 = −2 uµ dxµdr + r2 (ηµν + [1− f (r/πT )] uµ uν) dxµdxν ,

with f (r) ≡ 1− 1
r4

It is parameterized by 4 parameters:
temperature T and boosts ui .

The bulk black hole is dual to a bdy perfect fluid with

Tµν = π4 T 4 (ηµν + 4 uµ uν)
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0th order: boosted Schwarzschild-AdS black hole

Causal structure of this solution is:

spacelike singularity

regular event horizon

timelike boundary
(asymptotically AdS)
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Deforming the 0th order solution

Now promote uµ and T to fields depending on the boundary
coordinates. Call such a metric g (0).

Note: g (0) does NOT satisfy the equations of motion:

EMN ≡ RMN −
1

2
gMNR − 6 gMN = 0

But starting from here we will construct an iterative solution.
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A perturbation scheme for gravity

Assume that the variation in local temperature and velocities are
slow

∂µ log T

T
∼ O (ε) ,

∂µu

T
∼ O (ε)

⇒ In local patches the solution is like a boosted planar black hole.

Basic idea

The perturbative scheme is aimed at constructing a regular bulk
solution, by patching together pieces of the uniform boosted black
hole.

Use ε as a book-keeping parameter (counting # of xµ derivatives),
and expand:

g =
∞∑

k=0

εk g (k) , T =
∞∑

k=0

εk T (k) , u =
∞∑

k=0

εk u(k)

Veronika Hubeny Fluid Dynamics from Gravity
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A perturbation scheme for gravity

At a given order in the ε-expansion we find equations for g (k).
These are ultra-local in the field theory directions and take the
schematic form:

H
[
g (0)(u(0)

µ ,T (0))
]
g (k)(xµ) = sk

H is a second order linear differential operator in r alone.

sk are regular source terms which are built out of g (n) with
n ≤ k − 1.
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A perturbation scheme for gravity

Importantly the equations of motion split up into two kinds:

Constraint equations: Erµ = 0, which implement stress-tensor
conservation (at one lower order).

Dynamical equations: Eµν = 0 and Err = 0 allow
determination of g (k).

We solve the dynamical equations

g (k) = particular(sk) + homogeneous(H)

subject to

regularity in the interior (coordinate choice for g)

asymptotically AdS boundary conditions

First order computation

Veronika Hubeny Fluid Dynamics from Gravity
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Explicit solution to first order

Bulk metric:

ds2 = −2 uµ dxµdr + r2 (ηµν + [1− f (r/πT )] uµ uν) dxµdxν

+ 2r

[
r

πT
F (r/πT )σµν +

1

3
uµuν ∂λu

λ − 1

2
uλ∂λ (uνuµ)

]
dxµdxν ,

with

F (r) =

Z ∞
r

dx
x2 + x + 1

x(x + 1) (x2 + 1)
=

1

4

»
ln

„
(1 + r)2(1 + r2)

r4

«
− 2 arctan(r) + π

–

Boundary stress tensor:

Tµν = π4 T 4 (4 uµuν + ηµν)− 2π3 T 3 σµν .

with σµν = transverse traceless symmetric part of ∂µuν
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Viscosity/entropy ratio

Boundary stress tensor:

Tµν = π4 T 4 (4 uµuν + ηµν)− 2π3 T 3 σµν .

Note: shear of the fluid is defined by

σµν = PµαPνβ ∂(αuβ) −
1

3
Pµν ∂αuα

where Pµν = ηµν + uµ uν is a co-moving spatial projector.

The coeff of σµν gives the viscosity; here

η

s
=

1

4π

in agreement with well-known results.
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The 4-dimensional conformal fluid from AdS5

The stress tensor to second order

Tµν = (πT )4 (ηµν + 4 uµuν)− 2 (πT )3 σµν+

+(πT )2

(
(ln 2) Tµν

2a + 2 Tµν
2b + (2− ln 2)

[
1

3
Tµν

2c + Tµν
2d + Tµν

2e

])

Tµν
2a = εαβγ(µ σ

ν)
γ uα `β , Tµν

2b = σµασν
α −

1

3
Pµν σαβσαβ

Tµν
2c = ∂αuα σµν , Tµν

2d = Duµ Duν −
1

3
Pµν Duα Duα

Tµν
2e = Pµα Pνβ D

`
∂(αuβ)

´
−

1

3
Pµν Pαβ D

`
∂αuβ

´
with D = uµ ∂µ and `µ = εαβγµ uα∂βuγ .

more compact definitions
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The 4-dimensional conformal fluid from AdS5

Fluid description of N = 4 Super-Yang Mills: It is useful to write
the second order stress tensor in a different basis of operators T

µν
k :

Tµν
(2) = τπ η T

µν
1 + κT

µν
2 + λ1 T

µν
3 + λ2 T

µν
4 + λ3 T

µν
5

which manifest the conformal properties.
Baier, Romatschke, Son, Starinets, Stephanov; Loganayagam

The fluid parameters (shear viscosity, relaxation timescales, ...) are

η =
N2

8π
(πT )3

τπ =
2− ln 2

πT
, λ1 =

2 η

πT
, λ2 =

2 η ln 2

πT
, λ3 = 0.

which agrees with the results of Baier, Romatschke, Son, Starinets, Stephanov.
They also derive the curvature coupling term: κ = η

πT
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The spacetime geometry dual to fluids

The bulk solution thus constructed is tubewise approximated by a
planar black hole!

Bulk causal structure;
in each “tube”
metric approximates
uniformly boosted
Schwarzschild-AdS
planar black hole.

Veronika Hubeny Fluid Dynamics from Gravity



Motivation Background Construction Solution Summary Tµν gµν

The event horizon

The background has a regular event horizon.

One can determine the event horizon locally using the fact
that the solution settles down at late times to an uniformly
boosted planar black hole.

The horizon location can be determined within the
perturbation scheme

r = rH(x) = πT (x) +
∞∑

k=1

εk r(k)(x)

In fact, r(k)(x) is determined algebraically by demanding that
the surface given by r = rH(x) be null.

simpler analogy
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Cartoon of the event horizon

Note:

Horizon is null everywhere

Late time approach to
uniform planar black hole

Horizon area increases
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The Entropy current

Given a bulk geometry with a horizon we can determine the
Bekenstein-Hawking entropy.

Bulk construction of entropy: using area-form A of spatial
slices of the event horizon in Planck units.

Fluid entropy current

The area-form A on event horizon can be pulled back to the
boundary to define a fluid entropy current JµS

JS = ∗ηA

with non-negative divergence

∂µJ
µ
S ≥ 0

Entropy details Loganayagam
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Properties of Entropy current

The bulk-boundary pull-back is facilitated by our coordinates:
pull-back along radial ingoing geodesics (const r)

xµ(H) → xµ(bdy)

Fluid entropy current consistent with second law and
equations of motion naively∗ has a 5 parameter ambiguity.

details

Bulk construction of entropy current is ambiguous, but less so:
(i) ability to add total derivative terms without changing area
(ii) pull-back is ambiguous to boundary diffeomorphisms.
At second order this results in a two parameter ambiguity for
Weyl covariant current with positive divergence.
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Summary

∃ a map between conformal fluid configurations on Rd−1,1

& regular asymp. AdSd+1 planar non-uniform black holes
⇒ gain insight into generic behaviour of gravity

Bulk spacetime solutions

naturally uphold Cosmic Censorship
imply a new variant of Uniqueness Theorem

Long-wavelength regime of fluid dynamics allows this
construction to any order in a boundary derivative expansion.

This yields local determination of the event horizon.

The solutions satisfy the Area increase theorem
& corresponding entropy current satisfies the 2nd law.

Recovered the well-known value of viscosity: η
s = 1

4π

Predicted second order fluid parameters (τπ, λ1, λ2, λ3)
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Generalizations

other dimensions
(cf. Van Raamsdonk; Haack, Yarom; Bhattacharyya, Loganayagam, Mandal, Minwalla, Sharma)

fluids on curved manifolds
(Cf. Bhattacharyya, Loganayagam, Minwalla, Nampuri, Trivedi, Wadia)

include matter
(richer dynamics, but at expense of losing universality)

dilaton (→ induces forcing)
(cf. Bhattacharyya, Loganayagam, Minwalla, Nampuri, Trivedi, Wadia)

Maxwell U(1) field (→ extra conserved charge)
(cf. Erdmenger, Haack, Kaminski, Yarom; Banerjee, Bhattacharya, Bhattacharyya, Dutta,

Loganayagam, Surowka; Hur, Kim, Sin)

3 Maxwell fields + 3 scalars (cf. Torabian, Yee)

magnetic and dyonic charges (cf. Hansen, Kraus; Caldarelli, Dias, Klemm)

non-conformal fluids
(cf. Kanitscheider, Skenderis; David, Mahato, Wadia)

non-ralativistic fluids
(cf. Rangamani, Ross, Son, Thompson; Bhattacharyya, Minwalla, Wadia)
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Puzzles & future directions

Role of non-long-wavelength bulk semiclassical solutions

More detailed bulk analysis: horizon topology, nature of
curvature singularity, Cosmic Censorship

∃ striking difference between turbulence in 3+1 and 2+1
nonrelativistic fluids (eg. inverse cascade)

?
=⇒ qualitative difference in gravitational dynamics
(eg. equilibration time of AdS4 vs. AdS5 BHs) Van Raamsdonk

Relation to the black hole Membrane Paradigm comments

Generalizations: extremal fluids (superfluids), confining
theories (domain walls), ...

Finite N effects

Gravity dual of turbulence
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Beyond the horizon...

Consequence of ultra-locality:

The fluid configuration on the boundary determines the full
radial form of the metric in the bulk.

⇒ The fluid encodes the geometry past the horizon and

it “knows” about the black hole singularity.

(However, geometrically the near-singularity structure mimics
that of the uniform planar black hole.)
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Argument for universality

Consider a 2-derivative gravitational theory, interacting with fields
φi of spin < 2, and assume the theory admits AdSd+1 solution.
Then:

By SO(d-1,2) invariance of this solution, all higher spin fields
must vanish identically, and scalars must be constant.

⇒ Most general form of action, expanded to 1st order in φi

about AdSd+1 solution:

S =

∫ √
g (V1(φi ) R + V2(φi ))

By conformal redef. of metric to Einstein frame, set V1 = 1.

Then V2 = 0 to satisfy AdS being a solution.

back

Veronika Hubeny Fluid Dynamics from Gravity



Boosted Schwarzschild-AdS black hole

Static Schwarzschild-AdS black hole in planar limit:

ds2 = r2

(
−f (r) dt2 +

∑
i

(dx i )2

)
+

dr2

r2 f (r)

with f (r) = 1− r4
+

r4 . ( temperature T = r+/π.)

To avoid coordinate singularity at the horizon r = r+,
use ingoing coordinates: v = t + r∗ where dr∗ = dr

r2 f (r)
:

ds2 = −r2 f (r) dv2 + 2 dv dr + r2
∑

i

(dx i )2

Now ‘covariantize’ by boosting: v → uµ xµ, xi → Piµ xµ.

back

Veronika Hubeny Fluid Dynamics from Gravity



Choice of coordinates

For dealing with regularity issues etc., it is simplest to work in an
analog of ingoing Eddington-Finkelstein coordinates.

ds2 = −2 uµ(x) S(r , x) dr dxµ + χµν(r , x) dxµ dxν

The choice of coordinates is such that xµ = constant are
ingoing null geodesics.

It is well adapted to discuss features of horizon, such as
entropy in the fluid language.

back
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Computation at first order

Details of first order computation:

To solve the equations to first order we need to ensure
conservation of the perfect fluid stress tensor

∂µT
µν
(0) = 0

which needs to be solved only locally (at say xµ = 0).

This can be used to eliminate derivatives of T (0) in terms of
those of u

(0)
i .

∂v (πT (0))−1 =
1

3
∂i u

(0)
i , ∂i (πT (0))−1 = ∂vu

(0)
i

Then we solve Hg (1) = s1 where the operators and sources
are given as follows:
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Computation at first order

The operator H: Useful to decompose metric perturbations into
SO(3) representations: scalars 1, vectors 3 and symmetric
traceless tensors 5. For instance, we find:

H3# =
d

dr

(
1

r3

d

dr
#

)

H5# =
d

dr

(
r5 f (r)

d

dr
#

)
The source terms: These differ at various orders in perturbation
theory. At first order:

s3
1 = − 3

r2
∂v u

(0)
i

s5
1 = −6 r2 σ

(0)
ij

solution
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Useful fluid velocity gradient quantities

Velocity field uµ naturally decomposes spacetime → space + time,
w/ induced metric on spatial slices Pµν ≡ gµν + uµ uν .

We can decompose 4-velocity gradient ∇νuµ as follows:

∇νuµ = −aµ uν + σµν + ωµν +
1

3
θ Pµν ,

where expansion, acceleration, shear, and vorticity, are defined as:

θ = ∇µuµ = Pµν ∇µuν
aµ = uν ∇νuµ ≡ Duµ

σµν = ∇(µuν) + u(µ aν) − 1

3
θ Pµν = Pµα Pνβ ∇(αuβ) −

1

3
θ Pµν

ωνµ = ∇[µuν] + u[µ aν] = Pµα Pνβ ∇[αuβ]
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In terms of these, and adopting the notation (used in Baier et.al.)
A〈µν〉 to denote the symmetric, transverse, traceless part of Aµν ,

Tµν
2a = −2ωρ〈µ σ ν〉

ρ

Tµν
2b = σρ〈µσ ν〉

ρ

Tµν
2c = θ σµν

Tµν
2d = a〈µ aν〉

and
1

3
Tµν

2c + Tµν
2d + Tµν

2e = 〈Dσµν〉 +
1

3
θ σµν

back
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Event horizon in Vaidya-AdS

Vaidya = spher. sym. black hole with ingoing null matter:

ds2 = −
(

1− 2 m(v)

r

)
dv2 + 2 dv dr + r2 dΩ2

suppose horizon is at r = rH(v)

normal n = dr − ṙ dv is null when

rH(v) = 2 m(v) + 2 rH(v) ṙH(v)

Exact solution gives horizon non-locally in terms of m(v).

But for m(v) slowly varying, ṁ(v) = O(ε) ,m m̈ = O(ε2), use
ansatz

rH = 2 m + a m ṁ + b m ṁ2 + c m2 m̈ + . . .

Iterative solution gives a = 8, b = 64, c = 32, ...
back
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Expression for entropy current

The gravitational entropy current:

(4π η)−1 JµS =
[
1 + b2

(
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3 R

)]
uµ

+ b2
[
B1 Dλσ

µλ + B2 Dλω
µλ
]

+ C1 b `µ + C2 b2uλ Dλ`
µ + . . .

with

A1 =
1

4
+

π

16
+

ln 2

4
; A2 = −1

8
; A3 =

1

8

B1 =
1

4
; B2 =

1

2
C1 = C2 = 0

Entropy current
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Divergence of entropy current

Entropy current:

(4π η)−1 Jµ
S =

h
1 + b2

“
A1 σαβ σ

αβ + A2 ωαβ ω
αβ + A3 R

”i
uµ

+ b2
h
B1 Dλσ

µλ + B2 Dλω
µλ
i

+ C1 b `µ + C2 b2uλ Dλ`
µ + . . .

Divergence of entropy current:

4 G
(5)
N b3 DµJµ

S =
b

2

»
σµν + b

„
2 A1 + 4 A3 −

1

2
+

1

4
ln 2

«
uλDλσ

µν

+4 b (A2 + A3)ωµαωα
ν + b (4 A3 −

1

2
)(σµα σα

ν) + b C2 Dµ`ν
–2

+ (B1 − 2A3) b2 DµDλσ
µλ + (C1 + C2) b2 `µDλσ

µλ + . . .

Non-negativity of divergence: Dµ JµS ≥ 0 (when σµν = 0) demands

B1 = 2 A3 , C1 + C2 = 0

back
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Horizon physics described by fluid dynamics...

Where does the fluid live?

On the event horizon?
(null hypersurface, defined globally...)

On the dynamical horizon? Gourgoulhon & Jaramillo

(spacelike hypersurface)

On the stretched horizon? (a la Membrane Paradigm)

Membrane Paradigm Thorne, Macdonald, Price

Horizon interpreted as a fluid membrane with certain dissipative
properties: (e.g. electrical conductivity, shear & bulk viscosity, etc.)

On the spacetime boundary. (AdS/CFT)
Fluid dynamics describes the full spacetime, not just horizon.

back
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