Coupled Quintessence with Exponential Potentials

Gabriela A. Caldera-Cabral.

In collaboration with C.G Boehmer, R. Lazkoz and R. Maartens

gaby.calderacabral@port.ac.uk

1

INSTITUTE OF

GRAVITATION

UNIVERSITY OF PORTSMOUTH, UK

OUTLINE

- Introduction
- Scalar-tensor Coupling
- Phenomenological Model
- Our Model: Curvaton-like Model
- Conclusions

Introduction

- A light scalar field called Quintessence has been proposed to explain cosmic acceleration.
- The models with uncoupled quintessence cannot explain acceleration since:

$$w_{\phi} \rightarrow w$$

- We study some models of interacting dark matter/dark energy, with an interaction term Q
 - \circ Scalar-tensor coupling $Q=C
 ho_c\dot{\phi}$
 - \circ Phenomenological Model $Q = \alpha H \rho_c$
 - \circ Curvaton-like Model $Q = \Gamma \rho_c$

Introduction

- Mathematical Background
 - The evolution equations are:

$$H^{2} = \frac{\kappa}{3}(\rho_{c} + \rho_{\gamma} + \rho_{\phi})$$

$$\dot{H} = -\frac{\kappa}{2} \left[\rho_{c} + \frac{4}{3}\rho_{\gamma} + \dot{\phi}^{2} \right]$$

$$\dot{\rho}_{c} + 3H\rho_{c} = -Q$$

$$\dot{\rho}_{\phi} + 3H(1 + w_{\phi})\rho_{\phi} = Q$$

Introduction

• The Klein-Gordon equation is:

$$\dot{\phi}(\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi}) = Q$$

• The potential is:

$$V = V_0 \exp[-\kappa \lambda \phi]$$

Scalar-tensor Coupling, $Q=C\rho_c\dot{\phi}$

MODEL: Quintessence + matter

Defining:

$$x = \frac{\kappa \dot{\phi}}{\sqrt{6}H} \quad y = \frac{\kappa \sqrt{V}}{\sqrt{3}H}$$

The equations become:

$$x' = -3x + \lambda \sqrt{\frac{3}{2}}y^2 + \frac{3}{2}x(1 + x^2 - y^2) + \beta(1 - x^2 - y^2)$$

$$y' = -\lambda \sqrt{\frac{3}{2}}xy + \frac{3}{2}y(1 + x^2 - y^2)$$

with
$$\beta = \sqrt{\frac{3}{2}} \frac{C}{\kappa}$$

Scalar-tensor Coupling, $Q=C\rho_c\dot{\phi}$

We found two late-time attractor admitting acceleration:

	w_{ϕ}	Acceleration
1	$\frac{\lambda^2}{3}-1$	Yes for $\lambda^2 < 2$
2	$\frac{12\beta(\lambda\sqrt{6}-2\beta)}{108-12\beta(\lambda\sqrt{6}-2\beta)}$	Yes for $\beta < 0$

Table 1. Attractors for the Scalar-tensor model

Phenomenological Model, $Q = \alpha H \rho_c$

MODEL: Quintessence + matter

The dynamical system is:

$$x' = -3x + \lambda \sqrt{\frac{3}{2}}y^2 + \frac{3}{2}x(1 + x^2 - y^2)$$

$$+ \frac{\alpha}{2x}(1 - x^2 - y^2)$$

$$y' = -\lambda \sqrt{\frac{3}{2}}xy + \frac{3}{2}y(1 + x^2 - y^2)$$

Phenomenological Model, $Q = \alpha H \rho_c$

We found two late time attractors:

	w_{ϕ}	Acceleration
1	$\frac{\lambda^2}{3} - 1$	Yes for $\lambda^2 < 2$
2	$\frac{\alpha\lambda^2}{(3+\alpha)^2 - \alpha\lambda^2}$	Yes for $\alpha < 0$

Table 2. Attractors for the phenomenological model.

Curvaton-like Model, $Q = \Gamma \rho_c$

- IDEA: CDM decays into Dark Energy (Curvaton decays into radiation, astro-ph/0211602).
- The constant decay rate of dark matter into dark energy is $\Gamma > 0$.
- The potential is given by $V = V_0 \exp(-\lambda \kappa \phi)$.
- The equations are:

$$\dot{\rho}_c + 3H\rho_c = -\Gamma\rho_c$$

$$\dot{\rho}_\phi + 3H(1+w_\phi)\rho_\phi = \Gamma\rho_c$$

Curvaton-like Model, $Q=\Gamma \rho_c$

 The phase space is now 3-dimensional, we need a new variable:

$$z = \frac{H_0}{H + H_0} \text{ and } \gamma = \frac{\Gamma}{H_0}$$

So, the system is:

$$x' = -3x + \lambda \sqrt{\frac{3}{2}}y^2 + \frac{3}{2}x(1+x^2-y^2)$$

$$- \frac{\gamma(1-x^2-y^2)}{2x} \frac{z}{z-1}$$

$$y' = -\lambda \sqrt{\frac{3}{2}}xy + \frac{3}{2}y(1+x^2-y^2)$$

$$z' = z(1-z) \left[\frac{3}{2}(1+x^2-y^2)\right]$$

Curvaton-like Model, $Q=\Gamma \rho_c$

	x	y	z	Stability	Acceleration
Α	1	0	0	Saddle $\lambda > \sqrt{6}$	No
				Unstable $\lambda < \sqrt{6}$	
В	-1	0	0	Unstable $\lambda > -\sqrt{6}$	No
				Saddle $\lambda < -\sqrt{6}$	
С	$\lambda/\sqrt{6}$	$[1 - \lambda^2/6]^{1/2}$	0	Saddle $\lambda^2 < 6$	Yes
D	$\sqrt{6}/2\lambda$	$\sqrt{6}/2\lambda$	0	Saddle $\lambda^2 > 3$	No
Е	1	0	1	Saddle $\sqrt{6} < \lambda < 3$	No
				Stable $\lambda > 3$, $\gamma > 0$	
F	-1	0	1	Saddle	No
G	$\lambda/\sqrt{6}$	$[1 - \lambda^2/6]^{1/2}$	1	Stable $\lambda^2 < 6$, $\gamma > 0$	Yes for $\lambda^2 < 2$

Table 3. Critical points for the Curvaton-like model

Curvaton-like Model, $Q=\Gamma \rho_c$

Late-time Attractor

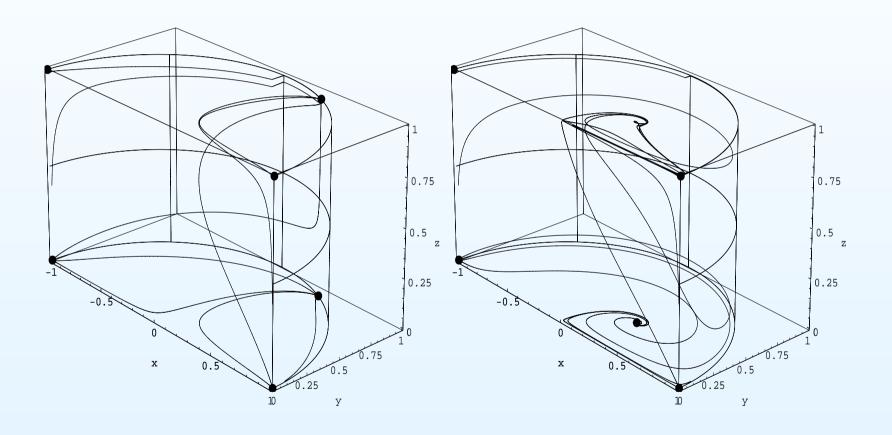


Fig. 1 Phase-space, the left hand plot is for $\lambda=1$ and $\gamma=10^{-6}$. The right hand plot is for $\lambda=4$

Conclusions

- We found two late-time attractors.
- Just one admit accelerating solution.

Future work

- Perturbations need to be investigated for the model with late-time acceleration.
- Observations need to be used to constrain the parameters in the model.