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Decoherence

System - Measuring Apparatus - Environment

Example: |¢) = a|+) + b|—)

Density matrix:p = |1) (1| = ('f*'z T,ﬁ:)

The state be interpreted as a statistical mixture of the and
|—) states
However: Coupling to an (= trace out) environment can

dynamically diagonalize

_ (lal? 0
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The same considerations apply to Inflationary Perturbagiobheir
density matrix is not diagonal. Some sort of decoherencd apgsate
before they can be considered statistical mixtures.
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Can decoherence considerations be applied to Inflationary
Perturbations?
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Isocurvature and Adiabatic perturbations (I)
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The Lagrangian of gauge invariant perturbations is:

L= [z 30,90,9 — 39 (—V?+ (aH)?*Q) q
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Two fields withV (¢, x): 22 ~ %V e O g2 sV

Asusual: ¢(x,t) = o(t) + dop(x,t), x(x,t) = x(t) + ox(x,t),
ds® = —(1 +2®(x, t))dt? + a?(t)(1 — 2P(x, t))dx>

The Lagrangian of gauge invariant perturbations is:

L= [z 30,90,9 — 39 (—V?+ (aH)?*Q) q

q:a(5g0+%<1>) +a(5x+%@) = o€, + gy

ancﬁg‘/ Re,—(2—€)l—6ee;®er + ...,

The inclusion ofp produces a coupling between the two degrees of
freedom even if there is no couplingW(y, x)
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Isocurvature and Adiabatic perturbations (lI) ...

Define Adiabatic/Isocurvature directions:

e; = cosbfe, + sm@ex_\/iesp \/7

e; = —sinfle, +cosbe,
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Then, using the conjugate momentuitx) = a(aig( ) the

Hamiltonian can be written as:
H= [z in"mr—in'72q9—3q9"Z"m+ 3q" (=V? + (aH)?Q) q
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...and their Schrodinger equation

The quantum Hamiltonia#/ is obtained by:

n(x) = —ihsds & [a(x),7y)] = ih6(x —y)
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...and their Schrodinger equation

The quantum Hamiltonia#/ is obtained by:

n(x) = —ihsds & [a(x),7y)] = ih6(x —y)

The wavefunction satisfies the Schrodinger equatioh ¥ = HU

With the vacuum ansatz. .. :
U = Nexp (—3 [dBzd3y qT(X)B(X —y)q(y))

...the Schrodinger equation gives:
ih 9,B(x —y) = h*([d’2B(x—2)B(z—y)) + ih[B(x—Y), Z] +
(VX = (aH)*Q) 6@ (x —y)

ihd,In N = 2 [ d3z B(0)
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System - Apparatus - Environment

A gravitational "Apparatus" - Inflationary perturbationg aetectable
through their gravitational effect:
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Trace oufgs

System - apparatus - Environmeng£- R - g
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The density matrix

The full density matrix isp(q1,dz2,q1,492) = ¥(q192)¥*(q1, G2)
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The density matrix

The full density matrix isp(q1,dz2,q1,492) = ¥(q192)¥*(q1, G2)

The reduced density matrix is obtained by tracingaqut
plq1,q1) = | dgadq3 ¥ (q1, 42) V™ (q1, 2)

For the vacuum state we find:

(- ) (BB ()2

x 2 .
7’(% Bi1) %[3213%[]82512]) %(%[Bll]JFJ[BlQ] ) A=q—q

=
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The density matrix

The full density matrix isp(q1,dz2,q1,492) = ¥(q192)¥*(q1, G2)

The reduced density matrix is obtained by tracingaqut
plq1,q1) = | dgadq3 ¥ (q1, 42) V™ (q1, 2)

For the vacuum state we find:

plu, A) = exp [—5(u, A)C (&)]

512 : 1_R[B12]S[Byo] =

C= 2(§R [B11]- R[Bao] ) Z(%[BHJ 2R[Ba2] ) U = (Q1 +Q1)/2
— R[B B 3[B12]? = —q
z(% Bi1] [213‘?[]52[2]12]) %(%[Bll]"‘ §R[[81222]] ) A= 1 91

If C11/Co2 — 0, the A terms become unimportant
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A simple model

Vg, x) = im2p? + 122 with o « 1 = 9y6 < 1.

m2
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A simple model

Vie,x) =

1

2

m2902 4

%M2X2

with

12— m?2
m2

< 1=0yny0<1.

The wavefunction - the matrik - is determined by

 aH o k \2v1, . (3
Bi1 = 5 (F(u1)2 ()™ +i (53— Vl))

_ aH 2 k \2v2, . (3
Ba2 = 5 (F(u2)2 ()™ +i (53— V2)>

-~ iuQ—mQ sin 260

BlQ(N) — h 23 \/,uQ—I—mQ—(,uQ—fm2 cos 2w “ N)I(N)
where
V] % + %e — 6# (1 +m?* — (p* — m?) cos 26p)
vy o % — %e — 6# (,u2 —m? + (,u2 +m2) (308290)
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A simple model

Vie,x) =

1

2

m2902 4

1

=X

12— m?2
2

B e

with < 1=0n50 K 1.

The wavefunction - the matrik - is determined by

 aH o k \2v1, . (3
Bii =~ 5 (F(u1)2 (zam)” +i (53— Vl))

_ aH o k \2v2, - (3
Baz >~ % (F(u2)2 (zam)” +i(5- V2)>

-~ iuQ—mQ sin 260

BlQ(N) — h 23 \/,uQ—I—mQ—(,uQ—mQ)COSZwO “ N)I(N)
where
vy o % + %e — 6# (,u2 +m? — (,u2 — m2) 008290)
vy o % — %e — 6# (,u2 —m? + (,u2 +m2) (308290)

After a few efolds: 3[Bia] > 21/R[B11]R[Ba2)
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Entanglement Entropy

The Wigner FunctionW (q, 7) = [ drdr* pe iA™ —IA™ =

W(Qa 7T) X €Xp ( — qAqu* — (7T — 7Tcl) AL% (7T — 7Tcl)*)

(1 = —1S(B11)R)
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Entanglement Entropy

The Wigner FunctionW (q, 7) = [ drdr* pe iA™ —IA™ =

W(Qa 7T) X exXp ( — quq* - <7T — 7Tcl) A <7T — 7Tcl)*)

(1 = —1S(B11)R)

Entropy:
S =trln[2AqA /R =V [ (33/;3 s Vf d3k 11 [4&212}

sk = (3+ a)ln (2% )—I—ln[ i Sln290(3 3) L (1 F(VQ)}

112 +m?2
3H?

— 4. _
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Entanglement Entropy

The Wigner FunctionWW (¢,

_ f dmdm* pe—z’AW*—iA*W —

W(g,m) o exp (= azzq" — (7 — 7et) z7 (7 = 7a1)” )
(1 = —1S(B11)R)
Entropy:
S =trin[28qAr /0] =V [ &k g =V [ Lh 11 [451212}
sk = (3+ a)ln (2% )—I—ln[ i " sin 26, (3 — ﬁ) (’/2)}
o= e Lo

\\

Dy

-
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Numerics

Decoherence persists for a wide range of mass ratios

* u=1.05m

* u=10m
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Summary

* Decoherence is a framework for explaining the appearanae of
classical world within quantum mechanics

* [t can be applied to quantum inflationary perturbations

* An unobservable isocurvature perturbation can coupledo th
adiabatic perturbation during inflation gravitationally

* Tracing it out can decohere the adiabatic perturbation

* Decoherence can be guantified by the entropy of adiabatic
perturbations

Decoherence from Isocurvature Perturbations in Inflation 3/13



	small Decoherence
	small Decoherence
	small Decoherence
	small Decoherence
	small Decoherence
	small Decoherence
	small Decoherence

	small Decoherence
	small Decoherence
	small Decoherence
	small Decoherence

	small Isocurvature and Adiabatic perturbations (I)
	small Isocurvature and Adiabatic perturbations (I)
	small Isocurvature and Adiabatic perturbations (I)
	small Isocurvature and Adiabatic perturbations (I)

	small Isocurvature and Adiabatic perturbations (II) ldots 
	small Isocurvature and Adiabatic perturbations (II) ldots 
	small Isocurvature and Adiabatic perturbations (II) ldots 

	small ldots and their Schr"{o}dinger equation 
	small ldots and their Schr"{o}dinger equation 
	small ldots and their Schr"{o}dinger equation 
	small ldots and their Schr"{o}dinger equation 

	small System - Apparatus - Environment
	small System - Apparatus - Environment
	small System - Apparatus - Environment
	small System - Apparatus - Environment
	small System - Apparatus - Environment

	small The density matrix
	small The density matrix
	small The density matrix
	small The density matrix
	small The density matrix

	small A simple model
	small A simple model
	small A simple model
	small A simple model

	small Entanglement Entropy
	small Entanglement Entropy
	small Entanglement Entropy
	small Entanglement Entropy

	small Numerics
	small Summary
	small Summary
	small Summary
	small Summary
	small Summary
	small Summary


