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OUTLINE: WHAT HAVE WE LEARNED FROM THE CMB? |

Parameters from the CMB
Current measurements
Major milestones passed
CMB constraints on inflation

The future:
— Planck
— Secondary anisotropies

— Gravitational waves



PARAMETERS FROM CMB: MATTER AND GEOMETRY |

e Acoustic physics (dark energy and curvature negligible):
— Peak locations depend on sound horizon r5 at last scattering
— Damping scale 1/kp(roughly geometric mean of horizon and mean free path)
— Both depend only on 2, H5 and 2, H3 for fixed Tcpp

— Peak heights depend on baryon loading (QbHCQ)) and gravitational driving
(QmHg; see shortly) — rs and kp then calibrated standard rulers

e Main influence of geometry, dark energy and sub-eV massive neutrinos then
through angular diameter distance to last scattering

— d 4 accurately determined from angular size of standard rulers rs and kp

— Weak influence on large scales (where cosmic variance bad) through ISW



PARAMETERS FROM CMB: PRIMORDIAL POWER SPECTRUM |

e Scalar power spectrum C; essentially e =27 P (k) at k ~ 1/d 4 processed by
acoustic physics

— CMB probes scales 7 Mpc < k1 < 5000 Mpc

o Tensor power spectra sensitive to e 27P;, (k)
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DEGENERACIES |

e Some params not determined by linear T" anisotropies:

— Angular diameter test gives only d 4 = d4 (2, Qqge, w, . ..) ONCe matter
densities determined from peak morphology

x Disentangling dark energy and K relies on large-scale anisotropies, where
cosmic variance large, or other datasets (e.g. Hubble, supernovae, shape of
matter power spectrum or baryon oscillations)

— Addition of gravity waves and renormalisation mimics reionization but can break
with polarization
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CURRENT TEMPERATURE DATA AND MILESTONES I
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CURRENT POLARIZATION DATA AND MILESTONES I
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e Acoustic peaks at ‘adiabatic’ locations
e F-mode polarization and cross-correlation with AT’

e Large-angle polarization from reionization



ACOUSTIC PEAK HEIGHTS: BARYON AND CDM DENSITY |

e Peak spacing fixed by rs(2,,h2, Qh2) and angular diameter distance d 4

— Peak heights depend on baryon offset of oscillation: increasing baryons at fixed
Qmh? boosts compressional peaks (1, 3 etc. for adiabatic) and reduces

— Increasing th?.reduces d 4 and shifts equality to earlier times reducing
resonant driving ¢ for low-order peaks

e Current constraints from CMB alone (weak priors): Qh? = 0-02231_8.'88855 and

Qmh? = 0.1271L8_'8§)7 (Spergel et al. 2006)
— Some tension with €2,,,h2 from CMB and lensing data

— Should improve to sub-percent level with Planck data

10%
10*

2
L 0,h°=0.06
L Q,h%=0.005

[L(l+1)C,/2m] / uK?
2000 4000 6000 8000
[L+1)C,/2m] / pK?
2000 4000 6000 8000

0

0




ACOUSTIC PEAK LOCATIONS: CURVATURE AND DARK ENERGY I

e Mainly affect CMB through d 4; small effects from ISW and mode quantisation for
K >0

— CMB alone only well constrains d 4 = 13.7 4= 0.5 Gpc

— A\ = 0, closed models fit CMB alone but have very low A, high $2,,h cf. LSS,
and don't fit ISW-LSS correlation (see later)

— WMAPS3 with HST prior gives 2 = —0.0031J 913 (w = —1) and
QA = 0.7581 008
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DAMPING TAIL, SZ AND THE AMPLITUDE OF THE FLUCTUATIONS I

Predicted exponential decline due to photon diffusion seen by CBI (30 GHz) and
ACBAR (150 GHz)

CBI and BIMA see significant excess emission at [ > 2000 not seen by ACBAR

— Favours non-thermal secondary anisotropy (SZ effect) but then requires
og ~ 0.92 £ 0.05

— Some tension with WMAP3-alone value 0.75 4+ 0.06

— Also some tension with (low) og from CMB cf. weak lensing and Ly-« forest
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ISW EFFECT AND DARK ENERGY |

e Potentials decay once dark energy comes to dominate =- positive correlation of
AT with LSS tracer on large scales

e Many detections over range of redshifts — highest at z ~ 1.5 with quasars from
SDSS (Giannantonio et al. 2006)
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E-MODE POLARIZATION AND THE CHARACTER OF FLUCTUATIONS |

o Well-defined peaks =- phase coherence (cf. defects)

e Super-horizon correlations at last scattering surface from T'E correlation and sign
= adiabaticity

e Peak positions in TT', T'E and E E consistent with adiabatic models

— CMB, LSS and BBN still allow ~ 20% CMB contribution from single,
uncorrelated isocurvature modes and significantly more for more general cases
(Bean et al. 2006), but not favoured over adiabatic
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e WMAP3 EFE large-angle correlation = 7 = 0.09 £ 0.03 (Page et al. 2006)

REIONIZATION |

— Required aggressive cleaning of polarized Galactic foregrounds (synchrotron
dust emission)

and thermal
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TESTING INFLATION I

e Key predictions of simple inflation models:
— Universe should be flat (cf. 25 = —0.003750:)

— Small curvature fluctuations and (possibly) gravitational waves with almost
scale-invariant, power-law spectra (see later)

— Adiabatic initial conditions

— Fluctuations should be Gaussian (to observational accuracy):
® = b + fyL * (D7 — (D2))  with fy ~ O(1)

« Best constraints on ‘local’ f : —54 < £ < 114 (Spergel et al. 2006)

« Planck sensitive down to |f{%@!| ~ 5
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CONSTRAINTS ON SLOW-ROLL INFLATION I

Observables in Pr (k) ~ As(k/k«)™ 1 and Py, (k) ~ A:(k/k«)™ related to
slow-roll parameters [~ parameterise gradient and curvature of V' (¢)]

H? 16H?
ASZ—Q, ns — 1 = —4e 4 2n, AtErASZ—Q, ny = —2¢

V1/4 < 2.4 x 1016 GeV from non-detection of gravity waves

HZ (nS — 1’ r = O) dlsfavoured 1 — | | Kiflneyl, Kollb, Mlelchilorri,lRiotIto |
but not strongly excluded:

0.8 eN =
For low-energy models, conditional - &N =
constraint ns = 0.958 + 0.016is 06

evidence for inflationary dynamics o4

— Difficult  measurement critical!
0.2 +

Persistent (but weak!) 20 ‘evid-
ence’ for curvature in spectrum 0O =9 " o095 1 {05
from CMB; vanishes when add
(small-scale) Ly-«
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WHAT RANGE OF V' (¢) DOES CMB PROBE DIRECTLY? I
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THE FUTURE |

e Planck

e Small-scale CMB (SPT, ACT, AMI, APEX) — using the CMB as a backlight
— SZ clusters, scattering secondaries and physics of reionization

— Weak gravitational lensing

e Large-angle CMB polarization (BICEP, Clover, QUIET, EBEX, SPIDER etc.)

— Gravitational waves
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PLANCKI

e Launch in late 2008

e Full-sky imaging from L2 in nine frequency

bands (30—-857 GHz)

o Polarization retro-fitted but may be sensitive 8
tor ~0.1
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GALAXY CLUSTERS AND THE THERMAL SZ EFFECT I

e Free electrons in hot (~ 10 keV) intra-cluster gas Compton up-scatter CMB
photons = decrement below 217 GHz but excess above

e Detected towards known clusters but new arcmin-scale instruments (AMI, SZA,
ACT, SPT) soon to start blind surveying for clusters

— Will produce mass-limited cluster catalogues to all z; evolution of e.g. number
counts sensitive to late-time growth of structure (i.e. physics of dark energy)

e Effect from unresolved clusters may already have been seen in small-scale ClT

Abell 1914 z=0.17 CLCO16+16 z=0.04 M31004-C381 z2=0.83

—
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KINETIC SZ AND THE MORPHOLOGY OF REIONIZATION I

e Doppler shifts scattering off ionized regions with peculiar velocities

— Generate small-angle AT from patchy reionization (probing epoch of
reionization) and kSZ (mostly from low redshift, high over-densities)
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WEAK GRAVITATIONAL LENSING OF THE CMB |

e, Yo

Millenium simulation (VIRGO); = = 1.5

e View CMB through LSS = r.m.s. deflection 2.4 arcmin coherent over several
degrees
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WEAK GRAVITATIONAL LENSING OF THE CMB |

e Weak lensing remaps ©, Q and U by deflection field a = VW:
O(n) =0+ a)

e Main effects: .- AN | A /
w3
— Smoothing of acoustic peaks AN A
and transfers large-scale power o BENENVaWAY AWAWA)
to I > 2000 X \/\/\/\/\Z
— Generates B-mode polarization 2=
: : P el ANEAN /\ /\ /\ /\ /\
from primordial £-mode = ’*‘ o v‘ SV \/ \/ x
— Introduces  non-Gaussianity £ :
(which can be used to detect == :
IenSing!) = ° 10 100 500 1000 1500 2000 2500

l
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LENSING RECONSTRUCTION |

e Within coherence patch of shear, CMB blob-like features all sheared in same way
(like galaxy lensing) = non-Gaussianity of observed CMB

— Can use this non-Gaussianity to reconstruct a (e.g. Hu 2001)
+x Well-known source plane with well-understood statistics

* Sensitive to structure back to z ~ 10, though peaks around z ~ 2

e Deflection and T-T" and E-B reconstruction on 10° x 10° patch (1 uK -arcmin
noise on 7', 4-arcmin beam; Hu & Okamoto 2001):




DETECTION OF WEAK LENSING EFFECT ON CMB AT I

e Smith et al. (2007)

reconstruct (very noisy!) deflection map from WMAP3

e Detect signal power at 3.40 by cross-correlating reconstruction with (less noisy!)
LSS tracer (NVSS radio galaxies)
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FUTURE APPLICATIONS OF CMB LENSING |

e Lensing potential sensitive to parameters not constrained by primary CMB

— E.g. dark energy properties and sub-eV massive neutrinos almost degenerate
In primary anisotropies (through d 4) but influence lensing potential differently

+ Future CMB polarization satellite should allow Am, = 0.04 eV
(marginalised over w; Kaplinghat et al. 2003)

e Lens-induced B-modes are ‘noise’ for gravity-wave searches

— Limits » ~ 10~ but can use lens reconstruction to clean out B-modes

Am =0.1 eV (d, const.)

0.05
\
|

v v
acy /¢
0

—-0.05

10 100 1000

24



GRAVITY WAVE SEARCHES I

Q T T T T T T 7 T T T T T 1T
o ¢ : 4
= [ POLAR ¢ 33 :
o [ |
H BO3 NA $$$ §
— 1
NMTE E
=
E o F r=0.28 3
g — F 3—yr | | =
Qo O L =
m(;)coc : ///
= ‘@ ;* / E
+ ok
~ —
= ‘Q 2 \\_/;/ _|
| -
S ? // E
“‘3 _ -
© ~ | | | | | \\‘ \‘ ‘
— 10 100 1000

e B-mode polarization circumvents cosmic variance from (dominant) linear density
perturbations but current upper limits not competitive with AT’

e Next generation (Clover, QUIET, SPIDER, EBEX etc.) targeting » > 0.01
— Futuristic full-sky(!) survey limited to » > 10~% unless implement lens cleaning

e Will require exquisite control of systematics and accurate removal of synchrotron

and dust polarized foregrounds o5



B-MODE CONTRIBUTION IS SMALL!
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SUMMARYI

e Basic predictions from CMB now impressively verified:
— Large-scale Sachs-Wolfe effect and ISW
— Acoustic peaks and diffusion damping
— E-mode polarization, correlation with AT" and reionization in E

— Weak lensing effect on CMB temperature

e In the (near)-future:

— Better measurements of 3rd peak and beyond [resolve issues with €2,,h2 and
Pr(k)?]

— Better E-mode polarization: essential test but have to work hard to improve
parameters in standard models

— Direct detection of weak lensing effect in CMB temperature and polarization
(e.g. lens-induced B-mode power)

— Physics from scattering secondaries (reionization and clusters) and lensing
reconstruction

— Gravity waves from B-mode polarization (Fj,s and improved inflation
phenomenology)?
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THINGS | DON'T HAVE TIME TO DISCUSS! I

Non-Gaussianity
Cosmic (super-)strings
Magnetic fields
Large-angle anomalies

21-cm emission/absorption against the CMB (reionization and the dark ages)
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