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Quasi-normal modes . . . 1

“To many practitioners of quantum gravity the black hole plays

the role of a soliton, a non-perturbative field configuration that

is added to the spectrum of particle-like objects only after the

basic equations of their theory have been put down, much like

what is done in gauge theories of elementary particles, where

Yang-Mills equations with small coupling constants determine

the small-distance structure, and solitons and instantons gov-

ern the large-distance behavior.

Such an attitude however is probably not correct in quantum

gravity. The coupling constant increases with decreasing dis-

tance scale which implies that the smaller the distance scale,

the stronger the influences of “solitons”. At the Planck scale

it may well be impossible to disentangle black holes from ele-

mentary particles.”

– G. ’t Hooft
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Quasi-normal modes (QNMs) describe small perturbations of a black hole.

• A black hole is a thermodynamical system whose (Hawking) temperature
and entropy are given in terms of its global characteristics (total mass,
charge and angular momentum).

QNMs obtained by solving a wave equation for small fluctuations subject to the
conditions that the flux be

• ingoing at the horizon and

• outgoing at asymptotic infinity.

⇒ discrete spectrum of complex frequencies.

• imaginary part determines the decay time of the small fluctuations

=ω =
1

τ
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Flat spacetime
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Schwarzschild black holes
I study QNMs in asymptotically flat space-times
Metric:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2 , f(r) = 1− 2GM

r

Hawking temperature:

TH =
1

8πGM
=

1

4πr0

r0 = 2GM : radius of horizon.
A spin-j perturbation of frequency ω is governed by the radial equation

−f(r) d
dr

(
f(r)

dΨ

dr

)
+ V (r)Ψ = ω2Ψ

where V (r) is the “Regge-Wheeler” potential

V (r) = f(r)

(
`(`+ 1)

r2
+

(1− j2)r0
r3

)
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j Wave
0 scalar
1 electromagnetic
2 gravitational

avoid integer values of j throughout the discussion and only take the limit

j → integer

at the end of the calculation.
“tortoise coordinate”

r∗ =
∫

dr

f(r)
= r+ r0 ln

(
r

r0
− 1

)

Wave equation:

−d
2Ψ

dr2∗
+ V (r(r∗))Ψ = ω2Ψ

to be solved along the entire real axis.
At both ends the potential vanishes

V → 0 as r∗ → ±∞
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∴ solutions behave as

Ψ ∼ e±iωr∗

For QNMs, demand

Ψ ∼ e∓iωr∗ , r∗ → ±∞
assuming <ω > 0.
Limit `→∞

[Ferrari, Mashhoon]

expand around the maximum of the potential: V ′0(rmax) = 0,

rmax =
3

2
r0 +O(1/`) .

V0[r(r∗)] ≈ α2 − β2(r∗ − r∗(rmax))2 ,
where

α2 =
4

27

(
`+ 1

2

)
r20 +O(1/`)

β2 =
16

729

(
`+ 1

2

)
+O(1/`) .
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solutions

Ψn = Hn(
√
iβx)eiβx

2/2 , n = 0,1,2, . . .

where Hn are Hermite polynomials.
corresponding eigenvalues

ωn =
2

3
√

3 r0

{
`+ 1

2 + i(n+ 1
2)

}
+O(1/`)

in agreement with standard WKB approach

George Siopsis Mytilene - September 2007



Flat. . . 8

Limit n→∞
Asymptotic form of QNMs:

ωn

TH
= (2n+ 1)πi+ ln3

• derived numerically
[Chandrasekhar and Detweiler; Leaver; Nollert; Andersson; Bachelot and Motet-Bachelot]

• subsequently confirmed analytically
[Motl and Neitzke]

=ωn is large

⇒ numerical analysis cumbersome

⇒ easy to understand ∵ spacing of frequencies is 2πiTH
– same as spacing of poles of a thermal Green function on the Schwarzschild

black hole background.
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<ωn is small

• Analytical value proposed by Hod.

Number of microstates is related to Bekenstein-Hawking entropy

gn = eSBH ∼ kn , k = 2,3, . . .

[Mukhanov and Bekenstein]

spacing of eigenvalues

eδSBH =
gn+1

gn
⇒ δSBH = ln k

Area spectrum of black holes

δA = 4G ln k , k = 2,3, . . .

since

SBH =
1

4G
A

Bohr’s correspondence principle

δM = ~<ω
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and first law of black hole mechanics

δM = THδSBH

imply

δS =
<ω
TH

= ln3

∴ k = 3

Intriguing value from LQG point of view:

⇒ gauge group should be SO(3) rather than SU(2)
∵ k = 3 instead of k = 2

⇒ The study of QNMs may lead to a deeper understanding of black holes
and quantum gravity.

Analytical derivation of asymptotic form of QNMs by Motl and Neitzke offered
a new surprise

∵ it heavily relied on the black hole singularity.

It is intriguing that the unobservable region beyond the horizon influences the
behavior of physical quantities.
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GOAL

• Calculate asymptotic formula for QNMs incl. first-order correction
– by solving wave equation perturbatively for arbitrary spin of the wave.

We shall obtain agreement with results from

• numerical analysis for gravitational and scalar waves
[Nollert; Berti, Kokkotas]

• a WKB analysis for gravitational waves.
[Maassen van den Brink]

Let

Ψ = e−iωr∗f(r∗)
∴

f(r∗) ∼ 1 as r∗ → +∞
and near the horizon

f(r∗) ∼ e2iωr∗ as r∗ → −∞
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continue r analytically into the complex plane and define the boundary condi-
tion at the horizon in terms of the monodromy of f(r∗(r)) around the singular
point r = r0,

M(r0) = e−4πωr0

along a contour running counterclockwise.
Deform contour in complex r-plane so that it either lies

• beyond the horizon (Rer < r0) or

• at infinity (r →∞).

⇒ monodromy only gets a contribution from the segment lying beyond the
horizon.
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Change variables to

z = ω(r∗ − iπr0) = ω(r+ r0 ln(1− r/r0))

(choose branch s.t. z → 0 as r → 0.)
The potential can be written as a series in

√
z,

V (z) = − ω2

4z2

(
1− j2 +

3`(`+ 1) + 1− j2

3

√
− 2z

ωr0
+ . . .

)

(formal expansion in 1/
√
ω).

Deform contour so that it gets mapped onto the real axis in the z-plane.
Near the singularity z = 0,

z ≈ − ω

2r0
r2

Choose contour in r-plane so that near r = 0, positive (negative) real axis in
z-plane are mapped onto

arg r = π − argω

2
, arg r =

3π

2
− argω

2
in the r-plane, respectively.
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Segments form a π/2 angle (independent of argω).
Avoid the r = 0 singularity: go around an arc of angle 3π/2

⇒ angle of 3π around z = 0 in the z-plane.

Considering black hole singularity (r = 0)

⇒ two solutions

f±(r) = r1±jZ±(r)

Z±: analytic functions of r.

Go around an arc of angle of 3π/2,

f±(e3πi/2r) = e3π(1±j)i/2 f±(r)

Exact result!
To proceed further, relate

• behavior near the black hole singularity to

• behavior at large r in the complex r-plane.

Solve the wave equation perturbatively.

⇒ write wavefunction as a perturbation series in 1/
√
ω.
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Zeroth order:

d2Ψ(0)

dz2
+

(
1− j2

4z2
+ 1

)
Ψ(0) = 0

Solutions:

f
(0)
± (z) = eizΨ(0)

± = eiz
√
πz

2
J±j/2(z)

behavior at infinity (z →∞)

f
(0)
± (z) ∼ eiz cos(z − π(1± j)/4)

B.C. ⇒
f(z) ∼ const. as z →∞

along the positive real axis in the z-plane.
∴ adopt linear combination

f(0) = f
(0)
+ − e−πji/2 f(0)

− ∼ eiz
√
z H

(1)
j/2(z)

As desired,

f(0)(z) ∼ −e−π(1+j)i/4 sin(πj/2)
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Go along the 3π arc around z = 0 in the z-plane

f(0)(e3πiz) = e3π(1+j)i/2
(
f
(0)
+ (z)− e−7πji/2 f

(0)
− (z)

)

as z →∞,

f(0)(z) ∼ e−π(1+j)i/4 sin(3πj/2)

+eπ(1−j)i/4 sin(2πj)e2iz

Monodromy to zeroth order

M(r0) = −sin(3πj/2)

sin(πj/2)
= −(1 + 2cos(πj))

⇒ discrete set of complex frequencies (QNMs)

ωn

TH
= (2n+ 1)πi+ ln(1 + 2cos(πj)) + o(1/

√
n)

[Motl and Neitzke]
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First order
expand wavefunction in 1/

√
ω

Ψ = Ψ(0) +
1√−ωr0

Ψ(1) + o(1/ω)

First-order correction obeys

d2Ψ(1)

dz2
+

(
1− j2

4z2
+ 1

)
Ψ(1) =

√−ωr0 δVΨ(0)

δV (z) =
1− j2

4z2
+

1

ω2
V (r(z))

Solutions:

Ψ(1)
± (z) = CΨ(0)

+ (z)
∫ z

0
Ψ(0)
− δVΨ(0)

±

−CΨ(0)
− (z)

∫ z

0
Ψ(0)

+ δVΨ(0)
±

C =

√−ωr0
sin(πj/2)
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integral along positive real axis on z-plane
(z > 0).
Large-z behavior:

Ψ(1)
± (z) ∼ c−± cos(z − π(1 + j)/4)

−c+± cos(z − π(1− j)/4)

c±± = C
∫ ∞
0

Ψ(0)
± δVΨ(0)

±

For small-z behavior, expand

δV (z) = −3`(`+ 1) + 1− j2

6
√−2ωr0

z−3/2 + o(1/ω)

It follows that

Ψ(1)
± = z1±j/2G±(z) + o(1/ω)

G± even analytic functions of z.
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For desired behavior as z →∞, define

Ψ = Ψ(0)
+ +

1√−ωr0

{
Ψ(1)

+ − e−πji/2Ψ(1)
−

+e−πji/2ξΨ(0)
−

}
+ . . .

• ξ ∼ O(1)

• dots represent terms of order higher than O(1/
√
ω).

Demanding

Ψ ∼ e−iz as z → +∞
fixes

ξ = ξ+ + ξ− , ξ+ = c++e
πji/2 − c+−

ξ− = c−−e−πji/2 − c+−
Then f = eizΨ ∼ const. as z →∞,

f(z) ∼ −e−π(1+j)i/4 sin(πj/2)

{
1− ξ−√−ωr0

}
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In the neighborhood of the black hole singularity (around z = 0), go around a
3π arc,

Ψ(1)
± (e3πiz) = e3π(2±j)i/2Ψ(1)

± (z)

∴
Ψ(e3πiz) = Ψ(0)(e3πiz)

−ie3π(1+j)i/2 1√−ωr0

{
Ψ(1)

+ (z)

−e−7πji/2(Ψ(1)
− (z)− iξΨ(0)

− (z))
}

As z →∞ along the real axis,

f(z) ∼ e−π(1+j)i/4 sin(3πj/2)

{
1− 1√−ωr0

A

}

+eπ(1−j)i/4 sin(2πj)

{
1− 1√−ωr0

B

}
e2iz
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where

A =
i− 1

2
eπji/2

(
ξ+ + iξ− − ξ cot(3πj/2)

)

and B is not needed.
monodromy to this order:

M(r0) = −sin(3πj/2)

sin(πj/2)

×
{
1 +

i− 1

2
√−ωr0

eπji/2
(
ξ− − ξ+ + ξ cot(3πj/2)

)}

∴ QNM frequencies

ωn

TH
= (2n+ 1)πi+ ln(1 + 2cos(πj)) +

eπji/2√
n+ 1/2

(ξ− − ξ+ + ξ cot(3πj/2)) +O(1/n)

(includes O(1/
√
n) correction to original O(1) asymptotic formula)
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For explicit expression, use

J (ν, µ) ≡
∫ ∞
0

dz z−1/2Jν(z)Jµ(z) =

√
π/2Γ(ν+µ+1/2

2 )

Γ(−ν+µ+3/2
2 )Γ(ν+µ+3/2

2 )Γ(ν−µ+3/2
2 )

We obtain

c±± = π
3`(`+ 1) + 1− j2

12
√

2 sin(πj/2)
J (±j/2,±j/2)

∴

ξ− − ξ+ + ξ cot(3πj/2) = (1− i)
3`(`+ 1) + 1− j2

24
√

2π3/2

sin(2πj)

sin(3πj/2)
Γ2(1/4) Γ(1/4 + j/2) Γ(1/4− j/2)

[Musiri, Siopsis]

where we used the identity

Γ(y)Γ(1− y) =
π

sin(πy)

⇒ well-defined finite limit as j → integer.
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Scalar waves

j → 0+

ωn

TH
= (2n+1)πi+ ln3+

1− i√
n+ 1/2

`(`+ 1) + 1/3

6
√

2π3/2
Γ4(1/4)+O(1/n)

in agreement with numerical results
[Berti and Kokkotas]

Gravitational waves
j → 2

ωn

TH
= (2n+ 1)πi+ ln3 +

1− i√
n+ 1/2

`(`+ 1)− 1

18
√

2π3/2
Γ4(1/4) +O(1/n)

in agreement with the results from

• a WKB analysis
[Maassen van den Brink]

• numerical analysis
[Nollert]
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Kerr black holes
Extend above to rotating (Kerr) black holes

• NOT straightforward!

Bohr’s correspondence principle

δM = ~<ω
and first law of black hole mechanics

δM = THδSBH + ΩδJ

⇒ asymptotic expression
[Hod]

<ω = TH ln 3 +mΩ

m: azimuthal eigenvalue of wave
Ω: angular velocity of horizon.
Some numerical results ⇒

[Berti, Cardoso, Kokkotas, Onozawa]

<ω = mΩ

CONFLICT!
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GOAL
Analytic solution to the wave (Teukolsky) equation

• valid for asymptotic modes bounded from above by 1/a

a =
J

M

J : angular momentum, M : mass of Kerr black hole.

Calculation valid for

a¿ 1

includes Schwarzschild case (a = 0).
Results [Musiri, Siopsis]

• confirm Hod’s expression

• do not necessarily contradict numerical results
(may be valid in asymptotic regime 1/a <∼ ω)

• In Schwarzschild limit (a = 0)
– range of frequencies extends to infinity
– our expression reduces to the expected form
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Metric

ds2 = −
(
1− 2Mr

Σ

)
dt2 +

4Mar sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+ Σdθ2 + sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
dφ2

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr+ a2 = (r − r−)(r − r+)

M : mass of black hole
Newton’s constant G = 1.
Angular velocity

Ω =
a

2Mr+

Hawking temperature

TH =
1− r−/r+

8πM
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Small perturbations are governed by the Teukolsky wave equation
(
(r2 + a2)2

∆
− a2 sin2 θ

)
∂2Ψ

∂t2
+

4Mar

∆

∂2Ψ

∂t∂φ
+

(
a2

∆
− 1

sin2 θ

)
∂2Ψ

∂φ2

− 1

∆s

∂

∂r

(
∆s+1∂Ψ

∂r

)
− 2s

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂Ψ

∂t

− 1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
−2s

(
a(r −M)

∆
+
i cos θ

sin2 θ

)
∂Ψ

∂φ
+(s2 cot2 θ−s)Ψ = 0

s Wave
0 scalar
−1 electromagnetic
−2 gravitational

Solution

Ψ = e−iωteimφS(θ)f(r)
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Angular equation:
1

sin θ
(sin θ S′)′+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ

)
S = −(A+s)S

A: separation constant (eigenvalue)
Radial equation:

1

∆s
(∆s+1f ′)′ + V (r)f = (A+ a2ω2)f

where
∆V (r) = (r2+a2)2ω2−4aMrωm+a2m2+2ia(r−M)ms−2iM(r2−a2)ωs+2irωs∆

simplify by placing horizon at r = 1

2M = 1 + a2 , r− = a2 , r+ = 1

Solve the two wave equations by expanding in a

• keep terms up to o(a)

• assume ω is large but bounded from above by 1/a,

1 <∼ ω <∼ 1/a

ω is in an intermediate range
(asymptotic in Schwarzschild limit a→ 0)
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Solutions to angular equation to lowest order: spin-weighted spherical harmon-
ics, and

A = `(`+ 1)− s(s+ 1) + o(aω)

Near the horizon (r → 1)

f(r) ∼ (r − 1)λ , λ = i(ω − am) + o(1/ω)

At infinity (r →∞)

f(r) ∼ eiωr

Introduce “tortoise coordinate”

z = ωr+ (ω − am) ln(r − 1)

∴ boundary conditions

f(z) ∼ e±iz , z → ±∞
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Define B.C. at horizon. . .

• Observe

F(z) ≡ eizf(z) ∼ const. as z →∞
Monodromy of F around the singular point r = 1 to this order (o(a))

M(1) = e4π(ω−am)

To express the radial equation in terms of the tortoise coordinate, define

f(r) = ∆
−s/2
0

R(r)√
r(ωr − am)

∆0 = r(r − 1) (NB: ∆ = ∆0 + o(a2)).

George Siopsis Mytilene - September 2007



Flat. . . 31

Inverting z = z(r),

r =

√
−2z

ω
+ o(1/ω)

⇒ radial equation to lowest order in 1/
√
ω in terms of R,

d2R

dz2
+

{
1 +

3is

2z
+

4− s2 − 4iams

16z2

}
R = 0

to be solved along the entire real axis.
Whittaker’s equation!
Solutions (set x = 2iz)

Mκ,±µ(x) = e−x/2x±µ+1/2M(1
2 ± µ− κ,1± 2µ, x)

κ =
3s

4
, µ2 =

s(s+ 4iam)

16

M : Kummer’s function (also called Φ).

George Siopsis Mytilene - September 2007



Flat. . . 32

Need Whittaker’s function:

Wκ,µ(x) =
Γ(−2µ)

Γ(1
2 − µ− κ)

Mκ,µ(x) +
Γ(2µ)

Γ(1
2 + µ− κ)

Mκ,−µ(x)

due to its clean asymptotic behavior,

Wκ,µ(x) ∼ e−x/2 xκ (1 + o(1/x))

as |x| → ∞.
Compute monodromy by deforming contour as before.
Go around an arc of angle 3π

Mκ,±µ(e3πix) = −ie±3πiµM−κ,±µ(x)
where we used

M(a, b,−x) = e−xM(b− a, b, x)

∴

Wκ,µ(e
3πix) = −ie3πiµ Γ(−2µ)

Γ(1
2
− µ− κ)

M−κ,µ(x)− ie−3πiµ Γ(2µ)

Γ(1
2
+ µ− κ)

M−κ,−µ(x)
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For asymptotic behavior, we need

M−κ,µ(x) =
Γ(1 + 2µ)

Γ(1
2
+ µ+ κ)

e−iπκWκ,µ(e
iπx) +

Γ(1 + 2µ)

Γ(1
2
+ µ− κ)

e
−iπ(1

2
+µ+κ)

W−κ,µ(x)

As |x| → ∞,

M−κ,µ(x) ∼ Γ(1 + 2µ)

Γ(1
2
+ µ+ κ)

e−iπκ ex/2 (−x)κ +
Γ(1 + 2µ)

Γ(1
2
+ µ− κ)

e−iπ(
1
2
+µ+κ)e−x/2 x−κ

∴
Wκ,µ(e

3πix) ∼ Aex/2xκ + Be−x/2x−κ

A = −ie3πiµ Γ(−2µ)

Γ(1
2
− µ− κ)

Γ(1 + 2µ)

Γ(1
2
+ µ+ κ)

e−πiκ + (µ→ −µ)

B = −ie3πiµ Γ(−2µ)

Γ(1
2
− µ− κ)

Γ(1 + 2µ)

Γ(1
2
+ µ− κ)

e
−iπ(1

2
+µ+κ) + (µ→ −µ)

After some algebra,

A = −(1 + 2cosπs) + o(a2)

where we used the identities

Γ(1− x)Γ(x) =
π

sinπx
, Γ(1

2
+ x)Γ(1

2
− x) =

π

cosπx
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• correct Schwarzschild limit

• no O(a) corrections.

Monodromy around r = 1

M(1) = e4π(ω−ma) = A
∴

<ω =
1

4π
ln(1 + 2cosπs) +ma+ o(a2)

[Musiri, Siopsis]

in agreement with Hod’s formula

• for gravitational waves (s = −2)

• in the small-a limit

Ω ≈ a , TH ≈ 1

4π

NB: QNMs bounded from above by 1/a.
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Half-integer spin
Need Teukolsky equation

[Khriplovich, Ruban]

Set r0 = 1. Potential

V (r) = f(r)

(
`(`+ 1)

r2
+

1

r3

)
+

2iωj

r
− 3iωj

r2
+

j2

4r4

for a spin-j field (e.g., j = 1/2 for Dirac fermion).
Expand around singularity z = ωr∗ = 0,

1

ω2
V (z) =

3ij

2z
− 4− j2

16z2
+

A
ω1/2z3/2

+O(1/ω) , A =
`(`+ 1) + 1−j2

3

2
√

2

Zeroth-order wave equation

d2Ψ

dz2
+

[
1− 3ij

2z
− 4− j2

16z2

]
Ψ = 0

solutions are Whittaker functions

Ψ(0)
± (z) = Mλ,±µ(−2iz) , λ =

3j

4
, µ =

j

4
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Calculation of monodromy ⇒
ωn

TH
= −(2n+ 1)πi+ ln(1 + 2cosπj) +O(1/

√
n)

in agreement with integer spin (Regge-Wheeler equation)!
For Dirac fermion,

ωn

TH
= −(2n+ 1)πi+O(1/

√
n) , j +

1

2
∈ N

⇒ asymptotically, real part vanishes.
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First-order correction
[Musiri, Siopsis]

Result:
ωn

TH
= −(2n+ 1)πi+ ln(1 + 2cosπj)

− 2i√
−in/2

sin 4πµ
b̄+A−B− + b̄−A+B+

e−4πiµA+B− − e4πiµA−B+
+O(1/n)

where

b̄± =
A
4µ

∫ ∞
0

dz

z3/2
Mλ,±µ(−2iz)Mλ,±µ(−2iz)

A± =
Γ(1± 2µ)

Γ(1
2 ± µ+ λ)

eiπ(
1
2±µ−λ) , B± =

Γ(1± 2µ)

Γ(1
2 ± µ− λ)

e−iπλ

looks complicated, but look at cases. . .
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j = 1/2 (Dirac)

ωn

TH
= −(2n+ 1)πi+

1 + i

2
√
n

(
`+

1

2

)2
Γ2

(
1

4

)
+O(1/n)
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High overtones (n ≥ 100) of massless Dirac fermions for ℓ + j = 1. Numerical data by Konoplya.
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♦
analytic

High overtones (n ≥ 100) of massless Dirac fermions for ℓ + j = 2. Numerical data by Konoplya.

George Siopsis Mytilene - September 2007



Flat. . . 41

j = 3/2

ωn

TH
= −(2n+ 1)πi+O(1/n)

no first-order corrections to the spectrum!

j = 5/2

ωn

TH
= −(2n+ 1)πi+

1 + i√
2n

A Γ2
(
1

4

)
+O(1/n)

All above spectra agree with spectrum from Regge-Wheeler equation!
I including integer spin
I no general proof
What is the relation between the Regge-Wheeler and Teukolsky equations?
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AdS
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AdS Black Holes

AdS/CFT correspondence:

⇒ QNMs for AdS b.h. expected to correspond to perturbations of dual CFT.

establishment of correspondence hindered by difficulties in solving wave eq.

• In 3d: Hypergeometric equation ∴ solvable

[Cardoso, Lemos; Birmingham, Sachs, Solodukhin]

• In 5d: Heun equation ∴ unsolvable.

• Numerical results in 4d, 5d and 7d

[Horowitz, Hubeny; Starinets; Konoplya]
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Asymptotic form of QNMs of AdS black holes
Approximation to the wave equation valid in the high frequency regime.

• In 3d: exact equation.

• In 5d: Heun eq. → Hypergeometric eq., as in low frequency regime.
– analytical expression for asymptotic form of QNM frequencies
– in agreement with numerical results.
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AdS3

wave equation

1

R2 r
∂r

(
r3

(
1− r2h

r2

)
∂rΦ

)
− R2

r2 − r2h
∂2
t Φ +

1

r2
∂2
xΦ = m2Φ

Solution:

Φ = ei(ωt−px)Ψ(y), y =
r2h
r2

where Ψ satisfies

y2(y − 1)
(
(y − 1)Ψ′)′ + ω̂2 yΨ + p̂2 y(y − 1)Ψ + 1

4m̂
2 (y − 1)Ψ = 0

in the interval 0 < y < 1, and

ω̂ =
ωR2

2rh
=

ω

4πTH
, p̂ =

pR

2rh
=

p

4πRTH
, m̂ = mR
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Two independent solutions obtained by examining the behavior near the hori-
zon (y → 1),

Ψ± ∼ (1− y)±iω̂

Ψ+ : outgoing; Ψ− : ingoing.
Different set obtained by studying behavior at large r (y → 0).

Ψ ∼ yh± , h± =
1

2
± 1

2

√
1 + m̂2

In massless case (m = 0): h+ = 1 and h− = 0

∴ one of the solutions contains logarithms.

For QNMs, we are interested in the analytic solution

Ψ(y) = y(1− y)iω̂2F1(1 + i(ω̂+ p̂),1 + i(ω̂ − p̂); 2; y)
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Near the horizon (y → 1): mixture of ingoing and outgoing waves
[∵ standard Hypergeometric function identities]

Ψ ∼ A(1− y)−iω̂ +B(1− y)iω̂

A =
Γ(2iω̂)

Γ(1 + i(ω̂+ p̂))Γ(1 + i(ω̂ − p̂))

B =
Γ(−2iω̂)

Γ(1− i(ω̂+ p̂))Γ(1− i(ω̂ − p̂))

Ψ linear combination of Ψ+ and Ψ− ∴
Ψ = AΨ− +BΨ+

For QNMs: Ψ purely ingoing at horizon, so set

B = 0

Solutions (QNM frequencies):

ω̂ = ±p̂− in , n = 1,2, . . .

discrete set of complex frequencies with =ω̂ < 0.
NB: we obtained two sets of frequencies, with opposite <ω̂.
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AdS5

For a large black hole, scalar wave equation with m = 0

1

r3
∂r(r

5 f(r) ∂rΦ)− R4

r2 f(r)
∂2
t Φ− R2

r2
~∇2Φ = 0

f̂(r) = 1− r4h
r4

Solution:

Φ = ei(ωt−~p·~x)Ψ(r)

change coordinate r to y,

y =
r2

r2h

Wave equation:

(y2 − 1)
(
y(y2 − 1)Ψ′)′ +

(
ω̂2

4
y2 − p̂2

4
(y2 − 1)

)
Ψ = 0
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Two solutions by examining behavior near the horizon (y → 1),

Ψ± ∼ (y − 1)±iω̂/4

Different set by studying behavior at large r
(y →∞)

Ψ ∼ yh± , h± = 0,−2

so one of the solutions contains logarithms.
For QNMs, we are interested in analytic solution

Ψ ∼ y−2 as y →∞
By considering the other (unphysical) singularity at y = −1,
⇒ another set of solutions

Ψ ∼ (y+ 1)±ω̂/4 near y = −1

Write wavefunction as

Ψ(y) = (y − 1)−iω̂/4(y+ 1)±ω̂/4F (y)

⇒ Two sets of modes with same =ω̂, but opposite <ω̂.

George Siopsis Mytilene - September 2007



AdS. . . 50

F (y) satisfies the Heun equation

y(y2 − 1)F ′′ +
{(

3− i± 1

2
ω̂

)
y2 − i± 1

2
ω̂y − 1

}
F ′

+

{
ω̂

2

(
±iω̂

4
∓ 1− i

)
y − (i∓ 1)

ω̂

4
− p̂2

4

}
F = 0

Solve in a region in the complex y-plane containing |y| ≥ 1
(includes physical regime r > rh)
For large ω̂: constant terms in Polynomial coefficients of F ′ and F small com-
pared with other terms

∴ they may be dropped.

∴ wave eq. may be approximated by Hypergeometric equation

(y2−1)F ′′+
{(

3− i± 1

2
ω̂

)
y − i± 1

2
ω̂

}
F ′+ω̂

2

(
±iω̂

4
∓ 1− i

)
F = 0

in asymptotic limit of large frequencies ω̂.

Analytic solution:

F0(x) = 2F1(a+, a−; c; (y+1)/2) , a± = 1− i±1
4 ω̂±1 , c = 3

2± 1
2 ω̂
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For proper behavior at y →∞, demand that F be a Polynomial.

∴
a+ = −n , n = 1,2, . . .

∴ F is a Polynomial of order n, so as y →∞,

F ∼ yn ∼ y−a+

Ψ ∼ y−iω̂/4y±ω̂/4y−a+ ∼ y−2

as expected.

∴ QNM frequencies

ω̂ =
ω

4πTH
= 2n(±1− i)

[Musiri, Siopsis]
in agreement with numerical results.
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Monodromy argument
If the function has no singularities other than y = ±1, the contour around
y = +1 may be unobstructedly deformed into the contour around y = −1,

M(1)M(−1) = 1

Since

M(1) = eπω̂/2 , M(−1) = e∓iπω̂/2

and using =ω̂ < 0, we deduce

ω̂ = 2n(±1− i)

same as before.
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Gravitational perturbations
AdS Schwarzschild black holes with metric in d dimensions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2 , f(r) =
r2

R2
+ 1− 2µ

rd−3
.

I derive analytical expressions including first-order corrections.
I results in good agreement with results of numerical analysis.
radial wave equation

−d
2Ψ

dr2∗
+ V [r(r∗)]Ψ = ω2Ψ ,

in terms of the tortoise coordinate defined by

dr∗
dr

=
1

f(r)
.

potential V from Master Equation [Ishibashi and Kodama]

For tensor, vector and scalar perturbations, we obtain, respectively,
[Natário and Schiappa]
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VT(r) = f(r)

{
`(`+ d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

(d− 2)f ′(r)
2r

}

VV(r) = f(r)

{
`(`+ d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
− rf ′′′(r)

2(d− 3)

}

VS(r) =
f(r)

4r2

[
`(`+ d− 3)− (d− 2) +

(d− 1)(d− 2)µ

rd−3

]−2

×
{
d(d− 1)2(d− 2)3µ2

R2r2d−8
− 6(d− 1)(d− 2)2(d− 4)[`(`+ d− 3)− (d− 2)]µ

R2rd−5

+
(d− 4)(d− 6)[`(`+ d− 3)− (d− 2)]2r2

R2
+

2(d− 1)2(d− 2)4µ3

r3d−9

+
4(d− 1)(d− 2)(2d2 − 11d+ 18)[`(`+ d− 3)− (d− 2)]µ2

r2d−6

+
(d− 1)2(d− 2)2(d− 4)(d− 6)µ2

r2d−6
− 6(d− 2)(d− 6)[`(`+ d− 3)− (d− 2)]2µ

rd−3

−6(d− 1)(d− 2)2(d− 4)[`(`+ d− 3)− (d− 2)]µ

rd−3

+4[`(`+ d− 3)− (d− 2)]3 + d(d− 2)[`(`+ d− 3)− (d− 2)]2

}
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Near the black hole singularity (r ∼ 0),

VT = − 1

4r2∗
+

AT

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . , AT =
(d− 3)2

2(2d− 5)
+
`(`+ d− 3)

d− 2
,

VV =
3

4r2∗
+

AV

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . , AV =
d2 − 8d+ 13

2(2d− 15)
+
`(`+ d− 3)

d− 2

and

VS = − 1

4r2∗
+

AS

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2∗ + . . . ,

where

AS =
(2d3 − 24d2 + 94d− 116)

4(2d− 5)(d− 2)
+

(d2 − 7d+ 14)[`(`+ d− 3)− (d− 2)]

(d− 1)(d− 2)2

We may summarize the behavior of the potential near the origin by

V =
j2 − 1

4r2∗
+A r−

d−1
d−2∗ + . . .

where j = 0 (2) for scalar and tensor (vector) perturbations.
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for large r,

V =
j2∞ − 1

4(r∗ − r̄∗)2
+ . . . , r̄∗ =

∫ ∞
0

dr

f(r)

where j∞ = d−1, d−3 and d−5 for tensor, vector and scalar perturbations,
respectively.
After rescaling the tortoise coordinate (z = ωr∗), wave equation

(
H0 + ω

−d−3
d−2 H1

)
Ψ = 0,

where

H0 =
d2

dz2
−

[
j2 − 1

4z2
− 1

]
, H1 = −A z

−d−1
d−2.

By treating H1 as a perturbation, we may expand the wave function

Ψ(z) = Ψ0(z) + ω
−d−3
d−2 Ψ1(z) + . . .

and solve wave eq. perturbatively.
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The zeroth-order wave equation,

H0Ψ0(z) = 0,

may be solved in terms of Bessel functions,

Ψ0(z) = A1
√
z J j

2
(z) +A2

√
z N j

2
(z).

For large z, it behaves as

Ψ0(z) ∼
√

2

π

[
A1 cos(z − α+) +A2 sin(z − α+)

]
,

=
1√
2π

(A1 − iA2)e
−iα+eiz +

1√
2π

(A1 + iA2)e
+iα+e−iz

where α± = π
4(1± j).
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large z (r →∞)
wavefunction ought to vanish ∴ acceptable solution

Ψ(r∗) = B
√
ω(r∗ − r̄∗) Jj∞

2
(ω(r∗ − r̄∗))

NB: Ψ → 0 as r∗ → r̄∗, as desired.
Asymptotically, it behaves as

Ψ(r∗) ∼
√

2

π
B cos [ω(r∗ − r̄∗) + β] , β =

π

4
(1 + j∞)

match this to asymptotic behavior in the vicinity of the black-hole singularity
along the Stokes line =z = =(ωr∗) = 0

⇒ constraint on the coefficients A1, A2,

A1 tan(ωr̄∗ − β − α+)−A2 = 0.

impose boundary condition at the horizon

Ψ(z) ∼ eiz , z → −∞ ,

⇒ second constraint
analytically continue wavefunction near the origin to negative values of z.
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I rotation of z by −π corresponds to a rotation by − π
d−2 near the origin in

the complex r-plane.

using

Jν(e
−iπz) = e−iπνJν(z) , Nν(e

−iπz) = eiπνNν − 2i cosπν Jν(z)

for z < 0, the wavefunction changes to

Ψ0(z) = e−iπ(j+1)/2√−z
{[
A1 − i(1 + eiπj)A2

]
J j

2
(−z) +A2e

iπjN j
2
(−z)

}

whose asymptotic behavior is given by

Ψ ∼ e−iπ(j+1)/2
√

2π

[
A1 − i(1 + 2ejπi)A2

]
e−iz+e−iπ(j+1)/2

√
2π

[A1 − iA2] e
iz

⇒ second constraint

A1 − i(1 + 2ejπi)A2 = 0

constraints compatible provided
∣∣∣∣∣

1 −i(1 + 2ejπi)
tan(ωr̄∗ − β − α+) −1

∣∣∣∣∣ = 0
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∴ quasi-normal frequencies

ωr̄∗ =
π

4
(2 + j + j∞)− tan−1 i

1 + 2ejπi
+ nπ

[Natário and Schiappa]
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First-order corrections
[Musiri, Ness and Siopsis]

To first order, the wave equation becomes

H0Ψ1 +H1Ψ0 = 0

The solution is

Ψ1(z) =
√
z N j

2
(z)

∫ z

0
dz′
√
z′ J j

2
(z′)H1Ψ0(z′)

W −√z J j

2
(z)

∫ z

0
dz′
√
z′N j

2
(z′)H1Ψ0(z′)

W
W = 2/π is the Wronskian.
∴ wavefunction up to first order

Ψ(z) = {A1[1− b(z)]−A2a2(z)}
√
zJ j

2
(z) + {A2[1 + b(z)] +A1a1(z)}

√
zN j

2
(z)

where

a1(z) =
πA
2
ω−

d−3

d−2

∫ z

0
dz′ z′−

1

d−2J j

2
(z′)J j

2
(z′)

a2(z) =
πA
2
ω−

d−3

d−2

∫ z

0
dz′ z′−

1

d−2N j

2
(z′)N j

2
(z′)

b(z) =
πA
2
ω−

d−3

d−2

∫ z

0
dz′ z′−

1

d−2J j

2
(z′)N j

2
(z′)

A depends on the type of perturbation.
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asymptotically

Ψ(z) ∼
√

2

π
[A′1 cos(z − α+) +A′2 sin(z − α+)] ,

where

A′1 = [1− b̄]A1 − ā2A2 , A′2 = [1 + b̄]A2 + ā1A1

and we introduced the notation

ā1 = a1(∞) , ā2 = a2(∞) , b̄ = b(∞) .

First constraint modified to

A′1 tan(ωr̄∗ − β − α+)−A′2 = 0

∴
[(1− b̄) tan(ωr̄∗−β−α+)− ā1]A1−[1+ b̄+ ā2 tan(ωr̄∗−β−α+)]A2 = 0

For second constraint,
↪→ approach the horizon
↪→ rotate by −π in the z-plane
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a1(e
−iπz) = e

−iπd−3
d−2e−iπja1(z) ,

a2(e
−iπz) = e

−iπd−3
d−2

[
eiπja2(z)− 4cos2

πj

2
a1(z)− 2i(1 + eiπj)b(z)

]
,

b(e−iπz) = e
−iπd−3

d−2
[
b(z)− i(1 + e−iπj)a1(z)

]

∴ in the limit z → −∞,

Ψ(z) ∼ −ie−ijπ/2B1 cos(−z − α+)− ieijπ/2B2 sin(−z − α+)

where

B1 = A1 −A1e
−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1]

−A2e
−iπ d−3

d−2

[
e+iπjā2 − 4cos2

πj

2
ā1 − 2i(1 + e+iπj)̄b

]

−i(1 + eiπj)
[
A2 +A2e

−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1] +A1e
−iπ d−3

d−2e−iπjā1

]

B2 = A2 +A2e
−iπ d−3

d−2 [̄b− i(1 + e−iπj)ā1] +A1e
−iπ d−3

d−2e−iπjā1

∴ second constraint

[1− e−iπ
d−3

d−2(iā1 + b̄)]A1 − [i(1 + 2eiπj) + e−iπ
d−3

d−2((1 + eiπj)ā1 + eiπjā2 − īb)]A2 = 0
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compatibility of the two first-order constraints,
∣∣∣∣

1 + b̄+ ā2 tan(ωr̄∗ − β − α+) i(1 + 2eiπj) + e−iπ
d−3

d−2((1 + eiπj)ā1 + eiπjā2 − īb)

(1− b̄) tan(ωr̄∗ − β − α+)− ā1 1− e−iπ
d−3

d−2(iā1 + b̄)

∣∣∣∣ = 0

⇒ first-order expression for quasi-normal frequencies,

ωr̄∗ =
π

4
(2 + j + j∞) +

1

2i
ln 2 + nπ

−1

8

{
6īb− 2ie−iπ

d−3
d−2 b̄− 9ā1 + e

−iπd−3
d−2 ā1 + ā2 − e

−iπd−3
d−2 ā2

}

where

ā1 =
πA
4

(
nπ

2r̄∗

)− d−3

d−2 Γ( 1
d−2

)Γ( j
2
+ d−3

2(d−2)
)

Γ2( d−1
2(d−2)

)Γ( j
2
+ d−1

2(d−2)
)

ā2 =

[
1 + 2cot

π(d− 3)

2(d− 2)
cot

π

2

(
−j +

d− 3

d− 2

)]
ā1

b̄ = − cot
π(d− 3)

2(d− 2)
ā1

I first-order correction is ∼ O(n−
d−3
d−2).
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4d
compare with numerical results [Cardoso, Konoplya and Lemos]

set the AdS radius R = 1: radius of horizon rH related to black hole mass µ
by

2µ = r3H + rH

f(r) has two more (complex) roots, r− and its complex conjugate, where

r− = eiπ/3




√
µ2 +

1

27
− µ




1/3

− e−iπ/3



√
µ2 +

1

27
+ µ




1/3

The integration constant in the tortoise coordinate is

r̄∗ =
∫ ∞
0

dr

f(r)
= − r−

3r2− + 1
ln
r−
rH

− r∗−
3r∗2− + 1

ln
r∗−
rH
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Scalar perturbations

1.5
1.55
1.6

1.65
1.7

1.75
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2
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♦
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♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

-2.38
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2 4 6 8 10 12 14 16 18 20=∆ωn

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Fig. 1: rH = 1 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

ωnr̄∗ =
(
n+

1

4

)
π+

i

2
ln 2 + eiπ/4

ASΓ
4(1

4)

16π2

√
r̄∗

2µn
, AS =

`(`+ 1)− 1

6

only the first-order correction is `-dependent.

In the limit of large horizon radius (rH ≈ (2µ)1/3 À 1),

r̄∗ ≈ π(1 + i
√

3)

3
√

3rH
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Numerically for ` = 2,

ωn

rH
= (1.299− 2.250i)n+ 0.573− 0.419i+

0.508 + 0.293i

r2H
√
n

which compares well with the result of numerical analysis,
(
ωn

rH

)

numerical
≈ (1.299− 2.25i)n+ 0.581− 0.41i

including both leading order and offset.
For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n+ 0.752− 0.370i+
0.654 + 0.458i√

n

In Fig. 1 we compare with data from numerical analysis. We plot the gap

∆ωn = ωn − ωn−1

because the offset does not always agree with numerical results.
I numerical estimates of the offset ought to be improved.
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For a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n+ 0.487− 0.0441i+
1.093 + 0.561i√

n

to be compared with the result of numerical analysis,

(ωn)numerical ≈ (1.61− 0.6i)n+ 2.7− 0.37i

The two estimates of the offset disagree with each other.

George Siopsis Mytilene - September 2007



AdS. . . 69

Tensor perturbations

1.963
1.964
1.965
1.966
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Fig. 2: rH = 1 and ` = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

ωnr̄∗ =
(
n+

1

4

)
π+

i

2
ln 2+eiπ/4

ATΓ
4(1

4)

16π2

√
r̄∗

2µn
, AT =

3`(`+ 1) + 1

6

Numerically for large rH and ` = 0,

ωn

rH
= (1.299− 2.250i)n+ 0.573− 0.419i+

0.102 + 0.0586i

r2H
√
n
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For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n+ 0.752− 0.370i+
0.131 + 0.0916i√

n

in good agreement with the result of numerical analysis (Fig. 2), including the
offset.
For a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n+ 2.182− 0.615i+
0.489 + 0.251i√

n

1.45
1.5

1.55
1.6

1.65
1.7

1.75

0 2 4 6 8 10 12<∆ωn

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

-0.7
-0.68
-0.66
-0.64
-0.62

-0.6
-0.58
-0.56

0 2 4 6 8 10 12=∆ωn

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

Fig. 3: rH = 0.2 and ` = 0: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).
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Vector perturbations

ωnr̄∗ =
(
n+

1

4

)
π+

i

2
ln 2+eiπ/4

AVΓ
4(1

4)

48π2

√
r̄∗

2µn
, AV =

`(`+ 1)

2
+

3

14
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Fig. 4: rH = 1 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).

Numerically for large rH and ` = 2,

ωn

rH
= (1.299− 2.250i)n+ 0.573− 0.419i+

8.19 + 6.29i

r2H
√
n
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to be compared with the result of numerical analysis,
(
ωn

rH

)

numerical
≈ (1.299− 2.25i)n+ 0.58− 0.42i

For an intermediate black hole, rH = 1, we obtain

ωn = (1.969− 2.350i)n+ 0.752− 0.370i+
0.741 + 0.519i√

n

and for a small black hole, rH = 0.2, we obtain

ωn = (1.695− 0.571i)n+ 0.487− 0.0441i+
1.239 + 0.6357i√

n

estimates of the offset agree for large rH but diverge as rH → 0.
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Fig. 5: rH = 0.2 and ` = 2: zeroth (horizontal line) and first order (curved line) analytical (eq. ()) compared with
numerical data (diamonds).
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Electromagnetic perturbations
electromagnetic potential

VEM =
`(`+ 1)

r2
f(r).

Near the origin,

VEM =
j2 − 1

4r2∗
+
`(`+ 1)r

−3/2
∗

2
√−4µ

+ . . . ,

where j = 1 - vanishing potential to zeroth order!
I need to include first-order corrections for QNMs.
QNMs

ωr̄∗ = nπ − i

4
lnn+

1

2i
ln

(
2(1 + i)A√r̄∗

)
, A =

`(`+ 1)

2
√−4µ

I correction behaves as lnn.
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Fig. 6: rH = 100 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For a large black hole, we obtain the spectrum

∆ωn

rH
≈ 3

√
3(1− i

√
3)

4

(
1− i

4πn
+ . . .

)
= 1.299−2.25i−0.179 + 0.103i

n
+. . .
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Fig. 7: rH = 1 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

For an intermediate black hole, rH = 1,

ωn = (1.969− 2.350i)n− (0.187 + 0.1567i) lnn+ . . .

and for a small black hole, rH = 0.2,

ωn = (1.695− 0.571i)n− (0.045 + 0.135i) lnn+ . . .
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Fig. 8: rH = 0.2 and ` = 1: zeroth (horizontal line) and first order (curved line) analytical compared with
numerical data (diamonds).

All first-order analytical results are in good agreement with numerical results.
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Unitarity
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black-hole perturbations governed by a discrete spectrum of complex eigen-
frequencies (QNMs)

⇒ breakdown of unitarity.

In asymptotically AdS spaces, this is puzzling

∵ corresponding CFT is unitary.

PLAN

• In 3d, replace the BTZ black hole by a wormhole, following a suggestion
by Solodukhin.

• solve the wave equation for a massive scalar field and find an equation for
the poles of the propagator.

RESULTS

• rich spectrum of real eigen-frequencies.

• throat of wormhole must be o(e−1/G), where G is Newton’s constant.

• quantum effects which might produce the wormhole are non-perturbative.
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imaginary part of QNM is negative

⇒ black hole eventually relaxes back to its original (thermal) equilibrium at
(Hawking) temperature TH .

⇒ leakage of information into the horizon

⇒ breakdown of unitarity

⇒ closely related to Hawking’s information loss paradox

resolution will require understanding of quantum gravity beyond semi-classical
approximation.
asymptotically AdS space-times

additional tool due to AdS/CFT correspondence:

• complex QNM frequencies are poles of the retarded propagator in CFT

• puzzling: CFT is unitary ∴ propagator should possess real poles only.
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Poincaré recurrence theorem

• two-point function quasi-periodic with a period

tP ∼ eS

S: entropy.

• For times t ¿ tP , system may look like it is decaying back to thermal
equilibrium, but for t >∼ tP , it should return to its original state (or close) an
infinite number of times.

• system will never relax back to its original state.
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Linear response theory
[Birmingham, Sachs and Solodukhin]

system in thermal equilibrium described by density matrix ρ.
perturbation

H ′ =
∫
dxJ(t, x)O(t, x)

J : external source
change in ensemble average

δ〈O(t, x)〉 =
∫ ∞
−∞

dt′
∫
dx′J(t′, x′)GR(t, x; t′, x′)

in terms of retarded propagator

GR(t, x; t′, x′) = −iθ(t− t′)Tr
(
ρ[O(t, x),O(t′, x′)]

)
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Fourier transform G̃R(ω, p):

• analytic in upper-half ω-plane.

• discrete energy levels
⇒ simple poles on real axis
⇒ meromorphic in lower-half ω-plane
⇒ oscillatory behavior

• continuous energy levels
⇒ poles (stable states) or cuts (multi-particle states) on real axis
⇒ poles (resonances) in lower-half ω-plane
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FINITE SYSTEM
Correlator on torus of periods 1/T and 1.
EXAMPLE: free fermion (∆ = 1)
Correlator:

〈ψ(w)ψ(0)〉 =
∂wϑ1(0|T )

ϑν(0|iT )

ϑν(wT |iT )

ϑ1(wT |iT )
, ν = 3,4

w = i(t+ φ), invariant under w → w+ 1/T , w → w+ i,
⇒ periodic in t, period 1.
poles:

w =
m

T
+ in , m, n ∈ Z
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As T → 0, oscillating behavior:

〈ψ(w)ψ(0)〉 ∼ 1

sinπ(t+ φ)

As T →∞, exponential decay

〈ψ(w)ψ(0)〉 =
πT

4 sinhπT (t+ φ)

{
1± 2e−πT cosh2πT (t+ φ) + . . .

}

violation of periodicity (t→ t+ 1) and loss of unitarity? NO!
Two time scales: 1 and 1/T ¿ 1.

• When t <∼ 1/T , system decays

• When t ∼ 1/T , corrections important

• When t >∼ 1, periodicity is restored
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’t Hooft’s brick wall

divergent physical quantities due to infinite blue shift expe-
rienced by an in-falling object near the horizon.
I infinite energy levels

∴ information loss
∴ Hawking radiation

↪→ continuous spectrum due to horizon. Set rh = 1.

place brick wall at distance ε from horizon

φ(r) = 0 , r ≤ 1 + ε

discrete energy levels

ωn ∼ nπ

− ln ε

Free energy F ∼ T3
H
A
ε .

Entropy

S = −∂F
∂T

∼ A

ε
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PROBLEM: Unnatural cutoff (coordinate invariance broken)
subsequently understood that. . .

I infinities may be absorbed by the gravitational parameters
– ε contributes to renormalization of G.

I theory is finite when expressed in terms of physical parameters like any
renormalizable field theory.

[Susskind and Uglum; Demers, Lafrance and Myers]

I form of entropy, including these quantum effects, remains unchanged.
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Solodukhin’s wormhole

replace black hole by a wormhole

⇒ eliminate horizon and attendant leakage of information.

size of narrow throat λ ∼ o(e−1/G)

leading to a Poincaré recurrence time

tP ∼
1

λ
∼ o(e1/G)

in agreement with expectations.
GOAL

• calculate two-point functions explicitly

• obtain the real poles of the propagator,
thus demonstrating unitarity.

• Calculate λ
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Three dimensions
wave equation for massive scalar of mass m at BTZ black hole

1

r
∂r

(
r3

(
1− r2h

r2

)
∂rΦ

)
− 1

r2 − r2h
∂2
t Φ +

1

r2
∂2
xΦ = m2Φ

rh: radius of horizon (set AdS radius R = 1)
Let

Φ = ei(ωt−px)Ψ(y), Ψ(y) = yip̂(1− y)−iω̂F (y)

Solution

F (y) = F (a+, a−; c; 1− y)

where

a± = 1
2∆± − i(ω̂ − p̂) , c = 1− 2iω̂ , ∆± = 1±

√
1 +m2

in terms of dimensionless variables

ω̂ =
ω

2rh
=

ω

4πTH
, p̂2 =

p

2rh
=

p

4πTH

TH = rh/(2π): Hawking temperature.
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As y →∞, this function behaves as

F (y) ∼ Ay−a+ + By−a−
where

A =
Γ(c)Γ(a− − a+)

Γ(a−)Γ(c− a+)
, B =

Γ(c)Γ(a+ − a−)

Γ(a+)Γ(c− a−)

For desired behavior (Ψ ∼ y−∆+/2 as y →∞), set

B = 0

This condition implies

ω̂ = ±p̂− i(n+ 1
2∆+ − 1) , n = 1,2, . . .

asymptotically AdS space-times

additional tool due to AdS/CFT correspondence:

• complex QNM frequencies are poles of the retarded propagator in CFT

• puzzling: CFT is unitary ∴ propagator should possess real poles only.
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AdS/CFT correspondence:

I flux at the boundary (y → ∞) is related to the retarded propagator of the
corresponding CFT living on the boundary.

A standard calculation yields

G̃R(ω, p) ∼ lim
y→∞

F ′(y)
F (y)

Explicitly,

G̃R(ω, p) ∼ A
B

∼ |Γ(1
2
∆+ − i(ω̂ − p̂))Γ(1

2
∆+ − i(ω̂+ p̂))|2

× sinπ(1
2
∆+ − i(ω̂ − p̂)) sinπ(1

2
∆+ − i(ω̂+ p̂))

Plainly, QNMs (zeroes of B) are poles of the retarded propagator ∵

G̃R ∼ 1/B
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2-point correlator

〈O(t, x)O(0,0)〉 =
(πTH)2∆+

(sinhπTH(t− x) sinhπTH(t+ x))∆+

decays exponentially as t→∞,

〈O(t, x)O(0,0)〉 ∼ e−2πTH∆+t
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AdS3

associated with zero temperature
Metric

ds2 = − cosh2 ρdτ2 + dρ2 + sinh2 ρdφ2

The boundary on which the corresponding CFT lives is the cylinder R× S1.
Upon a change of coordinates,

y = cosh2 ρ , x =
τ

2πT

metric identical to the BTZ black hole metric with y = r2/r2h, rh = 2πT .

cf. with corresponding CFT:

I write propagator in terms of invariant distance in the embedding

P(X,X ′) = (X −X ′)2

where
X0 = cosh ρ cos τ , X3 = cosh ρ sin τ

X1 = sinh ρ cosφ , X2 = sinh ρ sinφ

and similarly for X ′.
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propagator on the boundary

G(τ, φ; τ ′, φ′) ∼ lim
ρ,ρ′→∞

P−∆+/2

In this limit,

P ∼ cosh(τ − τ ′)− cos(φ− φ′)
therefore,

G(τ, φ; τ ′, φ′) ∼ 1

(cos(τ − τ ′)− cos(φ− φ′))∆+/2

real poles

ω = p+ 2(n+ 1
2∆+ − 1) , p ∈ Z , n = 1,2, . . .

⇒ oscillatory behavior
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CFT calculation
(without reference to the corresponding AdS)

two-point function of a massless scalar on the cylinder R× S1 is

G0(τ, φ; τ
′, φ′) ∼ T

∞∑

j=−∞

∫
dk

2π
e−ik·x i

k2

∣∣∣∣
k0=2πjT

After integrating over k, summing over j and subtracting an irrelevant (infinite)
constant, we obtain

G0(τ, φ; τ
′, φ′) ∼ lnP

For a scalar operator O of dimension ∆, the two point function then reads

G(τ, φ; τ ′, φ′) ≡ 〈T (O(τ, φ)O(τ ′, φ′))〉 ∼ 1

P∆/2

as before.
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SUMMARY

I high temperature limit: BTZ black hole

I zero temperature limit: AdS space (locally equivalent to BTZ black hole)

I intermediate temperature? Hard
Correlator on torus of periods 1/T and 1.
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Strong coupling
AdS3 arises in type IIB superstring theory in the near horizon limit of a large
number of D1 and D5 branes.

I Low energy excitations form a gas of strings wound around a circle with
winding number k and target space T4.

I They are described by a strongly coupled CFT2 whose central charge is

c = 6k ∼ 1

G
À 1

At finite temperature, the thermal CFT2 has entropy

S ∼ k ∼ 1

G
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BTZ black hole:
If radius of horizon is o(1), then so is area of horizon

A ∼ 1

Bekenstein-Hawking entropy:

S =
A

4G
∼ 1

G

in agreement with CFT.
Poincaré recurrence time:

tP ∼ eS ∼ o(e1/G)

To understand this, one ought to include contributions to gravity correlators

I beyond the semi-classical approximation

which will modify the black-hole background.
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Wormhole metric

ds2 = −(sinh2 y+ λ2) dt2 + dy2 + cosh2 y dφ2

In the limit λ→ 0, reduces to BTZ black hole.
no horizon at y = 0:

I wormhole has a very narrow throat (o(λ)) joining two regions of space-
time with two distinct boundaries (at y → ±∞, respectively).

I Information may flow in both directions through the throat.

I modification significant near the “horizon” point y = 0.

I As y → 0, time-like distance is ds2 ≈ −λ2dt2,
⇒ time scale of system is ∼ 1/λ.
⇒ Poincaré recurrence time

tP ∼ o(1/λ)

as advertised.

λ will be fixed upon comparison with CFT.
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wave equation

1

cosh y (sinh2 y+ λ2)1/2

(
cosh y (sinh2 y+ λ2)1/2 Ψ′

)′
+

(
ω2

sinh2 y+ λ2
+

k2

cosh2 y

)
Ψ = m2Ψ

to be solved along the entire real axis (y ∈ R)
cf. black hole: y ≥ 0, horizon at y = 0.
solve wave equation in the small-λ limit (λ¿ 1).
⇒ quantization condition

(
2

λ

)2iω
=
B−
B+

=
Γ(−iω)Γ(h+ + i

2(ω+ k))Γ(h+ + i
2(ω − k))

Γ(+iω)Γ(h+ − i
2(ω+ k))Γ(h+ − i

2(ω − k))

⇒ discrete spectrum of real frequencies
For small ω,

ωn ≈
(
n+ 1

2

) π

ln 2
λ

, n ∈ Z

⇒ periodicity with period Leff ∼ ln(1/λ).

cf. with CFT (string winding k times around circle of length o(1))
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Leff ∼ k ∼ 1/G

λ ∼ o(e−1/G)

as promised.
Notice: Leff ¿ tP , ∴ two time scales.

In the limit λ→ 0 (or, equivalently, k→∞),

⇒ spectrum of real frequencies becomes continuous,

⇒ emergence of a horizon.

⇒ QNMs emerge

It should be emphasized that for no other value of λ, no matter how small, do
complex poles arise.
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Stability
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IMPORTANT: study classical stability of solutions to Einstein’s eqs of General
Relativity.

I solution not stable⇒ cannot be found in nature, unless instability timescale
is much larger than the age of our Universe.

EXAMPLE: Schwarzschild spacetime is stable against all kinds of perturba-
tions, massive or massless

I Schwarzschild geometry appropriate to study astrophysical objects.

EXAMPLE: Kerr spacetime (rotating black hole) is stable against massless per-
turbations but not against massive bosonic fields, but instability timescale is
much larger than the age of the Universe.
AdS space
unstable solutions are common especially with extra dimensions

I ADS/CFT correspondence: A black hole corresponds to a thermal state on
the CFT.

I D > 5 of interest to string theory
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• Schwarzschild black holes are stable

• black branes are classically unstable against tensorial gravitational pertur-
bations
[Gregory and Laflamme]

• ultra-spinning black holes are similarly unstable
[Emparan and Myers]
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4d rotating black hole
[Detweiler]

for massive scalar of mass µ, radial wave equation:

d

dr

(
∆
dR

dr

)
+

{
ω2(r2 + a2)2 − 4aMmωr+m2a2

∆

−µ2r2 − a2ω2 − `(`+ 1)
}
R = 0,

where ∆ = r2 − 2Mr+ a2 = (r − r+)(r − r−), rotation parameter

a =
J

M

for µ, ω ¿ 1/M .
Away from horizon (r ÀM ), approximate

d2

dr2
(rR) +

[
−k2 +

2Mµ2

r
− `(`+ 1)

r2

]
rR = 0 , k2 = µ2 − ω2

Solution in terms of confluent hypergeometric function,

R(r) = (2kr)`e−krU(`+ 1−Mµ2/k,2(`+ 1),2kr)
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Near horizon (r ¿ `/|k|), approximate

z(z + 1)
d

dz

[
z(z + 1)

dR

dz

]
+

[
P2 − `(`+ 1)z(z + 1)

]
R = 0

where P =
am−2Mr+ω
r+−r− , z =

r−r+
r+−r− .

Solution in terms of hypergeometric function,

R(z) =
(

z

z + 1

)iP
F (−`, `+ 1;1− 2iP ; z + 1)

Matching in overlap region (M ¿ r ¿ `/|k|),
ωn ≈ µ+ iγn , n ∈ N

where

γn = C`nµ(µM)4(`+1) am

M − 2µr+

∏̀

j=1

[
j2

(
1− a2

M2

)
+

(
am

M
− 2µr+

)2
]

C`n = 22(2`+1)(2`+1+n)!(`!)2

(`+1+n)2(`+2)(2`+1)2n!((2`)!)4

For m > 0, γn > 0⇒ instability!
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Fastest growing mode with ` = 1, m = 1, n = 2 (2p state) and

τ =
1

γ
=

24

aµ2(µM)7

generally large.
No instability (γ → 0, τ →∞):

• Schwarzschild, a→ 0

• massless perturbation, µ→ 0

George Siopsis Mytilene - September 2007



Stability 108

higher-dimensional rotating black holes
[Cardoso, Siopsis, Yoshida]

GOAL
investigate quantitatively the stability of ultra-spinning black holes.

NB: For D > 5, there is no upper bound on rotation parameter

a =
J

M

Use QNMs:

• D ≤ 5: frequencies have negative imaginary part
⇒ Kerr spacetime is stable.

• D > 5: if imaginary part flips sign as a→∞
⇒ instability

Concentrate on scalar perturbations in D = 6.
Basic Equations
D = 4 + n. Wavefunction:

Φ = eiωt−imϕR(r)S(ϑ)Y (Ω)

where Y (Ω) are spherical harmonics.
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Angular equation:

1

sinϑ cosn ϑ

(
d

dϑ
sinϑ cosn ϑ

dS

dϑ

)
+

[
ω2a2 cos2 ϑ

−m2 csc2 ϑ− j(j + n− 1) sec2 ϑ+A
]
S = 0,

radial equation:

r−n
d

dr

(
rn∆

dR

dr

)
+

{[
ω(r2 + a2)−ma

]2
∆

−j(j + n− 1)a2

r2
− λ

}
R = 0,

where λ := A− 2mωa+ ω2a2 and

∆ = r2 + a2 − µr1−n

horizon at r = rH , ∆ = 0
I exactly one positive root for arbitrary a > 0.

⇒ no bound on a
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Numerical Computation
Use method by Leaver which makes use of a continued fraction representation

I can determine resonant frequency ω and separation constant A with very
high accuracy.

define dimensionless quantities

ω∗ := ωrH , a∗ := a/rH

RESULTS

l j m ωNum
QN rH ωWKB

QN rH %Re %Im
0 0 0 0.8894+0.5331i 0.7682+0.5265i 13.6 1.2
0 0 1 1.4465+0.5093i 1.3846+0.4933i 4.3 3.1
1 0 1 2.5791+0.4989i 2.5455+0.4942i 1.3 0.9
1 1 1 3.1478+0.4973i 3.1205+0.4944i 0.9 0.6

We compare our numerical results for the QN frequencies of six-dimensional, non-rotating
black holes, with results obtained through WKB techniques, and we also indicate the error
involved using the WKB approach. The results refer to the fundamental mode of several l, j,m
perturbations.
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Real part of the fundamental QN frequency as a function of the rotation parameter a for some
l , j ,m values. The maximum is reached at zero rotation, and as a increases the real part of
ωQN decreases monotonically.
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Imaginary part of the fundamental QN frequency as a function of the rotation parameter a for
some l , j ,m values. Notice that, for all values of a the imaginary part is always positive, which
means that even ultra-spinning black holes are stable.
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Analytical results
bring radial wave equation into a Schrödinger-like form

Ψ(y) = yn/2(g(y))1/4R(y) , g(y) = (y2 + a2∗)2 − a2∗∆̂
where ∆̂ = ∆/r2H .

tortoise coordinate y∗ defined by

dy

dy∗
=

∆̂√
g(y)

wave equation:

−d
2Ψ

dy2∗
+ V [y(y∗)] Ψ = (ω∗ −mΩ∗)2Ψ .
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The potential is

g(y)

∆̂
V (y) = A− 2mω∗Ω∗ −m2a2∗Ω2∗ +

n(n+ 2)

4
+

[j(j + n− 1) + n/2(n/2− 1)]a2

y2
+
n2(1 + a2)

4yn+1

+mΩ∗
y2 − 1

∆̂
[(mΩ∗ − 2ω∗)(y2 + a2) +ma] +

1

4

(
−5(g′)2

4g2
∆̂ +

g′′

g
∆̂ +

g′

g
∆̂′

)

angular velocity of horizon,

ΩH =
Ω∗
rH

=
a

r2H + a2
.

The potential

• vanishes at the horizon (y = 1)

• approaches a constant as y →∞
(V → mΩ∗(mΩ∗ − 2ω∗))
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Limit a→ 0

Schwarzschild wave equation

−d
2Ψ

dy2∗
+ V0[y(y∗)] Ψ = ω2∗Ψ ,

where

V0(y) =

(
1− 1

yn+1

) 


L2 − 1

4

y2
+

(n+ 2)2

4yn+3



 ,

and L = 2`+ j + |m|+ n+1
2 .

expand around the maximum of the potential: V ′0(ymax) = 0,

ymax =
(
n+ 3

2

)1/(n+1)
+ o(1/L) .

V0[y(y∗)] ≈ α2 − β2(y∗ − y∗(ymax))2 ,
where

α2 =
n+ 1

n+ 3

(
2

n+ 3

)2/(n+1)
L2 + o(1)
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β2 =
(n+ 1)3

(n+ 3)2

(
2

n+ 3

)4/(n+1)
L2 + o(1) .

solutions

ΨN = HN(
√
iβx)eiβx

2/2 , N = 0,1,2, . . .

where HN are Hermite polynomials.
corresponding eigenvalues

ω∗ = C(n)
{
L+ i

√
n+ 1(N + 1

2)
}
+ o(1/L) ,

with

C(n) =

√
n+ 1

n+ 3

(
2

n+ 3

) 1
n+1

.

In agreement with standard WKB approach
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Limit a→∞
the potential to leading order in 1/a,

V∞(y) = yn−3
(
1− 1

yn−1

)
×

{(
j +

n− 1

2

)2
−

(
n− 3

4

)2
+

(n+ 1)2

16yn−1

}

well-defined as a→∞.
For n > 3:

• potential is positive and diverges as y → ∞, so subleading terms are
needed to estimate the eigenfrequencies.

For n ≤ 3 (six and seven dimensions),

• ω approaches a constant value independent of a which is easily found by
solving the Schrödinger equation. This asymptotic value only depends on
j.

In 6d (n = 2), the potential exhibits a maximum and may be approximated by
an inverted harmonic oscillator potential
I as in the Schwarzschild limit.
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The frequencies can be found explicitly as functions of j

j ωAnaly
QN rH

0 0 + 0.162i
1 0.576 + 0i
2 1.078 + 0i

Results of an analytical WKB type scheme for computing the QN frequencies in the ultra-
spinning regime, a → ∞. The results depend only on j. This scheme shows that ωQN
asymptotes to a constant value, which is consistent both qualitatively and quantitatively with
the numerical results.

CONCLUSION

• geometry is stable against scalar field perturbations, even if the black hole
is ultra-spinning.

• interesting to check stability against gravitational perturbations (Gregory-
Laflamme-type instability)
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Hydrodynamics
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“A second unexpected connection comes from studies carried out using the Relativistic Heavy
Ion Collider, a particle accelerator at Brookhaven National Laboratory. This machine smashes
together nuclei at high energy to produce a hot, strongly interacting plasma. Physicists have
found that some of the properties of this plasma are better modeled (via duality) as a tiny black
hole in a space with extra dimensions than as the expected clump of elementary particles in
the usual four dimensions of spacetime. The prediction here is again not a sharp one, as the
string model works much better than expected. String-theory skeptics could take the point of
view that it is just a mathematical spinoff. However, one of the repeated lessons of physics is
unity - nature uses a small number of principles in diverse ways. And so the quantum gravity
that is manifesting itself in dual form at Brookhaven is likely to be the same one that operates
everywhere else in the universe.”

– Joe Polchinski

AuAu
fireball
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AdS/CFT correspondence and hydrodynamics
[Policastro, Son and Starinets]

correspondence between N = 4 SYM in the large N limit and type-IIB string
theory in AdS5 × S5.

I in strong coupling limit of field theory, string theory is reduced to classi-
cal supergravity, which allows one to calculate all field-theory correlation
functions.
↪→ nontrivial prediction of gauge theory/gravity correspondence

entropy of N = 4 SYM theory in the limit of large ’t Hooft coupling is precisely
3/4 the value in zero coupling limit.
long-distance, low-frequency behavior of any interacting theory at finite tem-
perature must be described by fluid mechanics (hydrodynamics).
universality: hydrodynamics implies very precise constraints on correlation func-
tions of conserved currents and stress-energy tensor:
I correlators fixed once a few transport coefficients are known.
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Hydrodynamics
conserved current: jµ

chemical potential µ = 0, so in thermal equilibrium

〈j0〉 = 0

retarded thermal Green function

GRµν(ω, q) = −i
∫
d4x e−iq·x θ(t)〈[jµ(x), jν(0)]〉 ,

where q = (ω, q), x = (t,x)

I determines response to a small external source coupled to the current.
ω and q small:

• external perturbation varies slowly in space and time

• macroscopic hydrodynamic description for its evolution is possible.

diffusion equation

∂0j
0 = D∇2j0 ,

where D is a diffusion constant with dimension of length.
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⇒ overdamped mode, dispersion relation

ω = −iDq2 ,
pole at ω = −iDq2 in the complex ω-plane, in the retarded correlation func-
tions of j0

stress-energy tensor Tµν

∂0T̃
00 + ∂iT

0i = 0 ,

∂0T
0i + ∂jT̃

ij = 0 ,

where

T̃00 = T00 − ρ, ρ = 〈T00〉 ,
T̃ ij = T ij − pδij = − 1

ρ+ p

[
η

(
∂iT

0j + ∂jT
0i − 2

3
δij∂kT

0k
)
+ζδij∂kT

0k
]
,

ρ (p): energy density (pressure)
η (ζ): shear (bulk) viscosity.
two types of eigenmodes:

• the shear modes - transverse fluctuations of momentum density T0i, with
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a purely imaginary eigenvalue

ω = −iDq2 , D =
η

ρ+ p
,

• sound wave - simultaneous fluctuation of energy density T00 and longitu-
dinal component of momentum density T0i, with dispersion relation

ω = usq − i

2

1

ρ+ p

(
ζ +

4

3
η

)
q2 , u2

s =
∂p

∂ρ
.

conformal theory ⇒ stress-energy tensor is traceless, so

ρ = 3p , ζ = 0 , us =
1√
3
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Gravity
The non-extremal 3-brane background is a solution of type-IIB low energy
equations of motion.
In the near-horizon limit r ¿ R, the metric becomes

ds210 =
(πTR)2

u

(
−f(u)dt2 + dx2 + dy2 + dz2

)
+

R2

4u2f(u)
du2+R2dΩ2

5 ,

where T = r0
πR2 is Hawking temperature, u =

r20
r2

, f(u) = 1− u2.

The horizon corresponds to u = 1, spatial infinity to u = 0.
gauge theory/gravity correspondence:

• background metric with non-extremality parameter r0 is dual to N = 4
SU(N) SYM at finite temperature T in the limit of N →∞, g2YMN →∞.
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retarded Green function

Gµν,λρ(ω, q) = −i
∫
d4x e−iq·x θ(t)〈[Tµν(x), Tλρ(0)]〉 .

I Deduce

Gxy,xy(ω, q) = −N
2T2

16

(
i2πTω+ q2

)
.

shear viscosity of strongly coupled N = 4 SYM plasma (Kubo formula)

η = lim
ω→0

1

2ω

∫
dt dx eiωt 〈[Txy(x), Txy(0)]〉 =

π

8
N2T3 .

I Deduce correlators

Gtx,tx(ω, q) =
N2πT 3q2

8(iω −Dq2) +O(w2,wq2, q4) ,

Gtx,xz(ω, q) = − N2πT 3ωq

8(iω −Dq2) +O(w2,wq2, q4) ,

Gxz,xz(ω, q) =
N2πT 3ω2

8(iω −Dq2) +O(w2,wq2, q4) ,

where D = 1
4πT
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Deduce η:
I recall from hydrodynamics D = η

ρ+p.

Entropy:

s =
3

4
s0 =

π2

2
N2T3 ,

where s0 is entropy at zero coupling.

From s = ∂P
∂T , ρ = 3p, deduce ρ+ p = π2

2 N
2T4, ∴

η =
π

8
N2T3 ,

η

s
=

1

4π

I agrees with Kubo formula.

I no agreement unless s = 3
4s0.

George Siopsis Mytilene - September 2007



Hydrodynamics 128

behavior of η as a function of the ’t Hooft coupling

η = fη(g
2
YMN)N2T3

where fη(x) ∼ 1
−x2 lnx

for x¿ 1 and fη(x) = π
8 for xÀ 1.

I At weak coupling,
η

s
À 1

4π
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Conformal soliton flow
the holographic image on Minkowski space of the global AdS5-Schwarzschild
black hole is a spherical shell of plasma first contracting and then expanding.

I conformal map from Sd−2 × R to (d− 1)-dim Minkowski space
[Friess, Gubser, Michalogiorgakis, Pufu]

QNMs ⇒ properties of plasma

•
v2
δ

=
1

6π
Re

ω4 − 40ω2 + 72

ω3 − 4ω
sin

πω

2

– v2 = 〈cos 2φ〉 at θ = π
2 (mid-rapidity), average with respect to energy

density at late times

– δ = 〈y2−x2〉
〈y2+x2〉 (eccentricity at time t = 0).

Numerically, v2δ = 0.37, cf. with result from RHIC data, v2δ ≈ 0.323
[PHENIX Collaboration, arXiv:nucl-ex/0608033]

George Siopsis Mytilene - September 2007



Hydrodynamics 130

• thermalization time

τ =
1

2|Imω| ≈
1

8.6Tpeak
≈ 0.08 fm/c , Tpeak = 300 MeV

cf. with RHIC result τ ∼ 0.6 fm/c
[Arnold, Lenaghan, Moore, Yaffe, Phys. Rev. Lett. 94 (2005) 072302]

Not in agreement, but encouragingly small
I perturbative QCD yields τ >∼ 2.5 fm/c.

[Baier, Mueller, Schiff, Son; Molnar, Gyulassy]
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Analytical calculation of low-lying QNMs
[G. S., hep-th/0702079]

Vector perturbations
introduce the coordinate

u =
(
rH
r

)d−3

wave equation

−(d− 3)2u
d−4
d−3 f̂(u)

(
u
d−4
d−3 f̂(u)Ψ′

)′
+ V̂V(u)Ψ = ω̂2Ψ , ω̂ =

ω

rH

where prime denotes differentiation with respect to u and

f̂(u) ≡ f(r)

r2
= 1− u

2

d−3

(
u− 1− u

r2H

)

V̂V(u) ≡
VV

r2H
= f̂(u)



L̂

2 +
(d− 2)(d− 4)

4
u−

2

d−3 f̂(u)−
(d− 1)(d− 2)

(
1 + 1

r2
H

)

2
u





where L̂2 = `(`+d−3)
r2H
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First consider large black hole limit rH → ∞ keeping ω̂ and L̂ fixed (small).
Factoring out the behavior at the horizon (u = 1)

Ψ = (1− u)−i
ω̂
d−1F (u)

the wave equation simplifies to

AF ′′ + Bω̂F ′ + Cω̂,L̂F = 0

where

A = −(d− 3)2u
2d−8

d−3 (1− u
d−1

d−3)

Bω̂ = −(d− 3)[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3 − 2(d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

Cω̂,L̂ = L̂2 +
(d− 2)[d− 4− 3(d− 2)u

d−1

d−3]

4
u−

2

d−3

− ω̂2

1− u
d−1

d−3

+ (d− 3)2 ω̂2

(d− 1)2

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3

1− u
− (d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2
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solve perturbatively:

(H0 +H1)F = 0

where

H0F ≡ AF ′′ + B0F
′ + C0,0F

H1F ≡ (Bω̂ − B0)F
′ + (Cω̂,L̂ − C0,0)F

Expanding the wavefunction perturbatively,

F = F0 + F1 + . . .

at zeroth order we have

H0F0 = 0

whose acceptable solution is

F0 = u
d−2

2(d−3)

regular at horizon (u = 1) and boundary (u = 0, or Ψ ∼ r−
d−2
2 → 0 as

r →∞).
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Wronskian

W =
1

u
d−4
d−3(1− u

d−1
d−3)

Another linearly independent solution

F̌0 = F0

∫ W
F2
0

unacceptable ∵ diverges at both horizon (F̌0 ∼ ln(1 − u) for u ≈ 1) and

boundary (F̌0 ∼ u
− d−4

2(d−3) for u ≈ 0, or Ψ ∼ r
d−4
2 →∞ as r →∞).

At first order we have

H0F1 = −H1F0

whose solution may be written as

F1 = F0

∫ W
F2
0

∫
F0H1F0

AW
The limits of the inner integral may be adjusted at will

∵ this amounts to adding an arbitrary amount of the unacceptable solution.
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To ensure regularity at the horizon, choose one of the limits at u = 1

I integrand is regular at the horizon, by design.

at the boundary (u = 0),

F1 = F̌0

∫ 1

0

F0H1F0

AW + regular terms

The coefficient of the singularity ought to vanish,
∫ 1

0

F0H1F0

AW = 0

⇒ constraint on the parameters (dispersion relation)

a0L̂
2 − ia1ω̂ − a2ω̂

2 = 0

After some algebra, we arrive at

a0 =
d− 3

d− 1
, a1 = d− 3

The coefficient a2

• may also be found explicitly for each dimension d,
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• it cannot be written as a function of d in closed form.

• it does not contribute to the dispersion relation at lowest order.

• E.g., for d = 4,5, we obtain, respectively

a2 =
65

108
− 1

3
ln 3 ,

5

6
− 1

2
ln 2

quadratic in ω̂ eq. has two solutions,

ω̂0 ≈ −i L̂
2

d− 1
, ω̂1 ≈ −id− 3

a2
+ i

L̂2

d− 1

In terms of frequency ω and quantum number `,

ω0 ≈ −i`(`+ d− 3)

(d− 1)rH
,

ω1

rH
≈ −id− 3

a2
+ i

`(`+ d− 3)

(d− 1)r2H

The smaller of the two, ω0,

• is inversely proportional to the radius of the horizon,

• is not included in the asymptotic spectrum.
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The other solution, ω1,

• is a crude estimate of the first overtone in the asymptotic spectrum.

• shares important features with asymptotic spectrum:
– it is proportional to rH
– dependence on ` is O(1/r2H).

The approximation may be improved by including higher-order terms

I Inclusion of higher orders also increases the degree of the polynomial in
the dispersion relation whose roots then yield approximate values of more
QNMs.

I this method reproduces the asymptotic spectrum albeit not in an efficient
way.

Include finite size effects:
↪→ use perturbation (assuming 1/rH is small) and replace H1 by

H′1 = H1 +
1

r2H
HH
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where

HHF ≡ AHF ′′ + BHF ′ + CHF

AH = −2(d− 3)2u2(1− u)

BH = −(d− 3)u

[
(d− 3)(2− 3u)− (d− 1)

1− u

1− u
d−1

d−3

u
d−1

d−3

]

CH =
d− 2

2

[
d− 4− (2d− 5)u− (d− 1)

1− u

1− u
d−1

d−3

u
d−1

d−3

]

Interestingly, zeroth order wavefunction F0 is eigenfunction of HH ,

HHF0 = −(d− 2)F0

∴ first-order finite-size effect is simple shift of angular momentum

L̂2 → L̂2 − d− 2

r2H

∴ QNMs of lowest frequency are modified to

ω0 = −i`(`+ d− 3)− (d− 2)

(d− 1)rH
+O(1/r2H)
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For d = 4,5, we have respectively,

ω0 = −i(`− 1)(`+ 2)

3rH
, −i(`+ 1)2 − 4

4rH
in agreement with numerical results

[Cardoso, Konoplya and Lemos; Friess, Gubser, Michalogiorgakis and Pufu]

AdS/CFT correspondence

dual to AdS Schwarzschild bh: gauge theory fluid on boundary of AdS (Sd−2×R).
consider the fluid dynamics ansatz

ui = Ke−iΩτVi
ui: (small) velocity of a point in the fluid, Vi: vector harmonic on Sd−2.
Demanding that this ansatz satisfy standard eqs of linearized hydrodynamics,

⇒ constraint on the frequency of the perturbation Ω which yields

Ω = −i`(`+ d− 3)− (d− 2)

(d− 1)rH
+O(1/r2H)

[Michalogiorgakis and Pufu]
in perfect agreement with its dual counterpart.
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Scalar perturbations
V̂V replaced by

V̂S(u) =
f̂(u)

4

[
m̂+

(
1 +

1

r2H

)
u

]−2

×
{
d(d− 2)

(
1 +

1

r2H

)2

u
2d−8

d−3 − 6(d− 2)(d− 4)m̂

(
1 +

1

r2H

)
u

d−5

d−3

+(d− 4)(d− 6)m̂2u−
2

d−3 + (d− 2)2

(
1 +

1

r2H

)3

u3

+2(2d2 − 11d+ 18)m̂

(
1 +

1

r2H

)2

u2

+
(d− 4)(d− 6)

(
1 + 1

r2
H

)2

r2H
u2 − 3(d− 2)(d− 6)m̂2

(
1 +

1

r2H

)
u

−
6(d− 2)(d− 4)m̂

(
1 + 1

r2
H

)

r2H
u+ 2(d− 1)(d− 2)m̂3 + d(d− 2)

m̂2

r2H

}

where m̂ = 2`(`+d−3)−(d−2)
(d−1)(d−2)r2H

= 2(`+d−2)(`−1)
(d−1)(d−2)r2H
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In the large black hole limit rH →∞ with m̂ fixed, potential simplifies

V̂ (0)
S (u) =

1− u
d−1

d−3

4(m̂+ u)2

{
d(d− 2)u

2d−8

d−3 − 6(d− 2)(d− 4)m̂u
d−5

d−3

+(d− 4)(d− 6)m̂2u−
2

d−3 + (d− 2)2u3

+2(2d2 − 11d+ 18)m̂u2 − 3(d− 2)(d− 6)m̂2u+ 2(d− 1)(d− 2)m̂3

}

I additional singularity due to double pole of scalar potential at u = −m̂.

I desirable to factor out the behavior not only at the horizon, but also at the
boundary and the pole of the scalar potential,

Ψ = (1− u)−i
ω̂
d−1

u
d−4

2(d−3)

m̂+ u
F (u)

∴ wave equation

AF ′′ + Bω̂F ′ + Cω̂F = 0

George Siopsis Mytilene - September 2007



Hydrodynamics 142

where
A = −(d− 3)2u

2d−8

d−3 (1− u
d−1

d−3)

Bω̂ = −(d− 3)u
2d−8

d−3 (1− u
d−1

d−3)

[
d− 4

u
− 2(d− 3)

m̂+ u

]

−(d− 3)[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3 − 2(d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

Cω̂ = −u2d−8

d−3 (1− u
d−1

d−3)

[
−(d− 2)(d− 4)

4u2
− (d− 3)(d− 4)

u(m̂+ u)
+

2(d− 3)2

(m̂+ u)2

]

−
[{
d− 4− (2d− 5)u

d−1

d−3

}
u

d−5

d−3 + 2(d− 3)
iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

1− u

] [
d− 4

2u
− d− 3

m̂+ u

]

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1

d−3]u
d−5

d−3

1− u
− (d− 3)2 iω̂

d− 1

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

+
V̂ (0)

S (u)− ω̂2

1− u
d−1

d−3

+ (d− 3)2 ω̂2

(d− 1)2

u
2d−8

d−3 (1− u
d−1

d−3)

(1− u)2

Define zeroth-order wave equation H0F0 = 0, where

H0F ≡ AF ′′ + B0F
′

Acceptable zeroth-order solution

F0(u) = 1
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I plainly regular at all singular points (u = 0,1,−m̂).

I corresponds to a wavefunction vanishing at the boundary

(Ψ ∼ r−
d−4
2 as r →∞).

Wronskian

W =
(m̂+ u)2

u
2d−8
d−3 (1− u

d−1
d−3)

Unacceptable solution: F̌0 =
∫ W

• can be written in terms of hypergeometric functions.

• for d ≥ 6, has a singularity at the boundary, F̌0 ∼ u
−d−5
d−3 for u ≈ 0,

or Ψ ∼ r
d−6
2 →∞ as r →∞.

• for d = 5, acceptable wavefunction ∼ r−1/2; unacceptable ∼ r−1/2 ln r

• for d = 4, roles of F0 and F̌0 reversed; results still valid.

• F̌0 is also singular (logarithmically) at the horizon (u = 1).
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Working as in the case of vector modes, we arrive at the first-order constraint
∫ 1

0

Cω̂
AW = 0

∵ H1F0 ≡ (Bω̂ − B0)F
′
0 + Cω̂F0 = Cω̂

∴ dispersion relation

a0 − a1iω̂ − a2ω̂
2 = 0

After some algebra, we obtain

a0 =
d− 1

2

1 + (d− 2)m̂

(1 + m̂)2
, a1 =

d− 3

(1 + m̂)2
, a2 =

1

m̂
{1 +O(m̂)}

For small m̂, the quadratic equation has solutions

ω̂±0 ≈ −id− 3

2
m̂±

√
d− 1

2
m̂

related to each other by ω̂+
0 = −ω̂−∗0

I general symmetry of the spectrum.
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Finite size effects at first order amount to a shift of the coefficient a0 in the
dispersion relation

a0 → a0 +
1

r2H
aH

after some tedious but straightforward algebra, we obtain

aH =
1

m̂
{1 +O(m̂)}

The modified dispersion relation yields the modes

ω̂±0 ≈ −id− 3

2
m̂±

√
d− 1

2
m̂+ 1

in terms of the quantum number `,

ω±0 ≈ −i(d− 3)
`(`+ d− 3)− (d− 2)

(d− 1)(d− 2)rH
±

√
`(`+ d− 3)

d− 2

in agreement with numerical results
[Friess, Gubser, Michalogiorgakis and Pufu]
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• imaginary part inversely proportional to rH , as in vector case

• finite real part independent of rH
↪→ speed of sound vs = 1√

d−2
(due to conformal invariance)

AdS/CFT correspondence

perturb gauge theory fluid on the boundary of AdS (Sd−2×R) using the ansatz

ui = Ke−iΩτ∇iS , δp = K′e−iΩτS
ui: (small) velocity of a point in the fluid,
δp: pressure perturbation,

S: scalar harmonic on Sd−2.
Demanding that this ansatz satisfy eqs of linearized hydrodynamics,
⇒ frequency of perturbation Ω in perfect agreement with our analytic result.
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Tensor perturbations
Unlike the other two cases, asymptotic spectrum is entire spectrum.
In large bh limit, wave equation

−(d− 3)2(u
2d−8

d−3 − u3)Ψ′′ − (d− 3)[(d− 4)u
d−5

d−3 − (2d− 5)u2]Ψ′

+

{
L̂2 +

d(d− 2)

4
u−

2

d−3 +
(d− 2)2

4
u− ω̂2

1− u
d−1

d−3

}
Ψ = 0

For zeroth-order eq., set L̂ = 0 = ω̂

↪→ two solutions are (Ψ = F0 at zeroth order)

F0(u) = u
d−2

2(d−3) , F̌0(u) = u−
d−2

2(d−3) ln
(
1− u

d−1

d−3

)

Neither behaves nicely at both ends (u = 0,1)

∴ both are unacceptable.

∴ impossible to build a perturbation theory to calculate small frequencies.

in agreement with numerical results and in accordance with the
AdS/CFT correspondence

I there is no ansatz that can be built from tensor spherical harmonics Tij
satisfying the linearized hydrodynamic eqs because of the conservation
and tracelessness properties of Tij.
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CONCLUSIONS

• Quasi-normal modes are a powerful tool in understanding hydrodynamic
behavior of gauge theory fluid at strong coupling

• RHIC’s fireball can be described by a dual black hole

• RHIC and LHC may probe black holes and provide information on string
theory as well as non-perturbative QCD effects.
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