<u>A UNIFIED TREATMENT OF</u> <u>GRAVITATIONAL COLLAPSE</u> <u>IN GENERAL RELATIVITY</u>

Paul Lasky & Anthony Lun

Fourth Aegean Summer School on Black Holes

Mytilene, Island of Lesvos

17/9/2007

CONTENTS

Junction Conditions

- Standard approach
- Alternative method
 - No junction conditions
 - Initial value formalism

Gravitational Collapse Models

- Spherical symmetry
 - Perfect fluid
 - **General Fluid**
 - Plasmas
- Non-spherically symmetric models

JUNCTION CONDITIONS

Consider 2 distinct spacetimes, \mathcal{M}^+ and \mathcal{M}^- , joined along some junction \mathcal{V}

What conditions must be put on the metrics such that $g^+_{\mu\nu} \cup g^-_{\mu\nu}$ forms a valid solution of EFEs?

In general $x^{\mu}_{+} \neq x^{\mu}_{-}$

Israel-Darmois junction conditions require the continuity of the first and second fundamental form across \mathcal{V}

ALTERNATIVE TO JUNCTIONS

What if
$$x^{\mu}_{+} = x^{\mu}_{-}$$
 and even $g^{+}_{\mu\nu} = g^{-}_{\mu\nu}$

All difficulties with junction conditions are then swept under the carpet

Only require usual continuity conditions acting on a single metric to be satisfied (for example in Hawking & Ellis)

How does one establish such a spacetime?

INITIAL VALUE PROBLEM

Consider spherical symmetry (the paradigm is generalizable....stay tuned)

Use 3+1 formalism to establish initial value problem, with arbitrary matter distribution on an initial spacelike Cauchy hypersurface

On initial slice, let all matter terms vanish beyond some finite radius, r_{\star} say, and evolve forward in time.

SPHERICAL SYMMETRY

Unique decomposition of energy momentum tensor is given by

 $T_{\mu\nu} = \rho n_{\mu} n_{\nu} + P \perp_{\mu\nu} + 2j_{(\mu} n_{\nu)} + \Pi_{\mu\nu}$

But **spherical symmetry** implies only 4 energy momentum variables

- ho Mass-Energy density
- P Isotropic Pressure
- j "Heat" flux
- Π Anisotropic Stress

Thus 4 metric coefficients to keep line element as general as possible

- α Lapse function
- β Radial component of shift vector
- E Energy function in LTB dust
- R Radial function

$$d\mathcal{S}^2 = -\alpha^2 dt^2 + \frac{\left(\beta dt + dr\right)^2}{1+E} + R^2 d\Omega$$

All functions depend only on *t* and *r*

Paul Lasky

PERFECT FLUID INTERIOR

Lasky & Lun (2006). Generalized Lemaitre-Tolman-Bondi solutions with pressure. Phys. Rev. D 74, 084013

Perfect fluid
$$\Rightarrow j = \Pi = 0$$

$$dS^{2} = -\alpha^{2}dt^{2} + \frac{\left(\alpha\sqrt{E + 2M/r} dt + dr\right)^{2}}{1 + E} + r^{2}d\Omega^{2}$$

Lapse function determined by Euler equation

$1 \partial \alpha$ _	-1	∂P
$\frac{1}{\alpha} \frac{\partial r}{\partial r} =$	$\overline{\rho + P}$	$\overline{\partial r}$

Two evolution equations for E and M

$$\frac{\partial E}{\partial t} - \alpha \sqrt{E + \frac{2M}{r}} \left(\frac{\partial E}{\partial r} + 2\frac{1+E}{\rho+P} \frac{\partial P}{\partial r} \right) = 0$$
$$\frac{\partial M}{\partial t} - \alpha \sqrt{E + \frac{2M}{r}} \left(\frac{\partial M}{\partial r} + 4\pi P r^2 \right) = 0$$

Paul Lasky

PERFECT FLUID INTERIOR

Lasky & Lun (2006). Generalized Lemaitre-Tolman-Bondi solutions with pressure. Phys. Rev. D 74, 084013

Perfect fluid
$$\Rightarrow j = \Pi = 0$$

$$dS^2 = -\alpha^2 dt^2 + \frac{\left(\alpha\sqrt{E + 2M/r} dt + dr\right)^2}{1+E} + r^2 d\Omega^2$$

et
$$P = \rho = 0$$
 for all $r > r_{\star}$
 $\Rightarrow M(t, r > r_{\star}) = M_S$
and $\alpha = 1$

We recover Schwarzschild spacetime for all $r > r_{\star}$

are subsets of the general

fluid equations

GENERAL FLUID INTERIOR

Lasky & Lun (2007). Spherically symmetric collapse of general fluids. Phys. Rev. D 75, 024031

$$dS^{2} = -\alpha^{2}dt^{2} + \frac{(\beta dt + dr)^{2}}{1 + E} + R^{2}d\Omega$$

$$\stackrel{\text{arbitrary fluid}}{\overset{\text{Vaidya}}{\text{Schwarzschild}}}$$

$$\rho, P, j, \Pi \neq 0$$

$$\frac{\partial M}{\partial r} := 4\pi \left(\rho \frac{\partial R}{\partial r} + j\mathcal{L}_{n}R\right)R^{2}$$

$$\left(\mathcal{L}_{n} := \frac{1}{\alpha}\frac{\partial}{\partial t} - \frac{\beta}{\alpha}\frac{\partial}{\partial r}\right)$$
Plus another five (hideous) equations
$$\frac{\text{The Vaidya and}}{\text{Schwarzschild spacetimes}}$$
Thus, we can write ALL regions of

Thus, we can write <u>ALL</u> regions of this spacetime in a single coordinate system (i.e. as one metric)

Paul Lasky

Paul Lasky

PLASMA INTERIOR

Lasky & Lun (2007). Gravitational collapse of spherically symmetric plasmas in Einstein-Maxwell spacetimes. *Phys. Rev. D* **75**, 024031

We can alter the uncharged model to the charged case simply by mapping

$$\rho \to \rho + \frac{Q^2}{8\pi R^4} \qquad P \to P + \frac{Q^2}{24\pi R^4}$$
$$j \to j \qquad \Pi \to \Pi + \frac{Q^2}{12\pi R^4}$$

Where Q is charge per unit volume

Now, the charged Vaidya and Reissner-Nordstrom spacetimes are subsets of the general plasma equations

NON-SPHERICAL MODELS (work in progress) Interior Robinson-Trautman Vacuum Robinson-Trautman Schwarzschild / C-metric u = 0 g^+

NON-SPHERICAL MODELS

(work in progress)

We begin with a similar metric ansatz

$$dS^{2} = -\alpha^{2}dt^{2} + \frac{\left(\beta dt + dr\right)^{2}}{1+E} + 2R^{2}d\zeta d\bar{\zeta}$$

where $\alpha, \beta, E \& R$ are all functions of $(t, r, \zeta, \bar{\zeta})$

Dust energy momentum tensor $T_{\mu\nu} = \rho \, n_{\mu} n_{\nu}$ implies

 $\alpha = 1$

Geodesic, hypersurface orthogonal, shearfree null congruence $\kappa = \sigma = 0$ $\rho = \overline{\rho}$ implies $\beta = \eta(t, r) - \sqrt{1 + E}$

Open Question:

Can we use this method to describe an interior **dust RT** spacetime, which reduces to the vacuum RT spacetime in non-null coordinates?