Stability of the Hořava-Witten Model

B. Cuadros-Melgar

Departamento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago, Chile

In collaboration with

C. E. Pellicer Instituto de Física, Universidade de São Paulo, C.P.66.318, CEP 05315-970, São Paulo, Brazil

Abstract

We consider scalar perturbations in the time-dependent Hořava-Witten Model in order to study its stability. We show that during the pre-big bang epoque the model evolves without instabilities until it encounters the curvature singularity where the big bang is supposed to happen. We compute the frequencies of the scalar field oscillation during the stable period and show how the oscillations encounter the singularity. Horava-Witten Model

P.Hořava, E.Witten, NPB 460, 506 (1996)

 $11D \text{ spacetime} \rightarrow \text{Calabi-Yau} \times \mathbb{E}^{3,1} \times S^1/\mathbb{Z}_2.$

Horava-Witten Model

P.Hořava, E.Witten, NPB 460, 506 (1996)

 $\mathbf{\stackrel{}{\diamond}} \quad 11 \mathsf{D} \text{ spacetime} \to \mathsf{Calabi-Yau} \times \mathbb{E}^{3,1} \times S^1/\mathbb{Z}_2.$

By dimensional reduction the 5D supergravity solution is

$$ds_5^2 = \tilde{H}(-dt^2 + d\vec{x}^2) + \tilde{H}^4 d\tilde{y}^2, \qquad (1)$$

where $ilde{H} = 1 + ilde{k} | ilde{y}|\,, \quad \phi = -3\log ilde{H}\,.$

Hořava-Witten Model

P.Hořava, E.Witten, NPB 460, 506 (1996)

 $I1D \text{ spacetime} \rightarrow \mathsf{Calabi-Yau} \times \mathbb{E}^{3,1} \times S^1/\mathbb{Z}_2.$

By dimensional reduction the 5D supergravity solution is

$$ds_5^2 = \tilde{H}(-dt^2 + d\vec{x}^2) + \tilde{H}^4 d\tilde{y}^2, \qquad (1)$$

where $ilde{H} = 1 + ilde{k} | ilde{y}|\,, \quad \phi = -3\log ilde{H}\,.$

The equations of motion are obtained from

$$\mathcal{L}_{5} = \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^{2} - m^{2} e^{2\phi} \right).$$
 (2)

Stability of the Hořava-Witten Model

A 2^{nd} domainwall is introduced at y = L (y has period 2L), and we Z_2 identify $y \leftrightarrow -y$.

A 2^{nd} domainwall is introduced at y = L (y has period 2L), and we Z_2 identify $y \leftrightarrow -y$.

he model is not realistic.

A 2^{nd} domainwall is introduced at y = L (y has period 2L), and we Z_2 identify $y \leftrightarrow -y$.

he model is not realistic.

Attempts to incorporate HW Model into Braneworld cosmology: Ekpyrotic Universe, Cyclic Universe.

Time-Dependent Hořava-Witten Model

W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lu, C.N. Pope, NPB 732, 118 (2006) The metric is given by

$$ds_5^2 = H^{1/2}(-dt^2 + d\vec{x}^2) + Hdy^2, \qquad (3)$$

with

$$H = ht + k|y|, \quad \phi = -\frac{3}{2}\log H.$$
 (4)

Time-Dependent Hořava-Witten Model

W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lu, C.N. Pope, NPB 732, 118 (2006) The metric is given by

$$ds_5^2 = H^{1/2}(-dt^2 + d\vec{x}^2) + Hdy^2, \qquad (3)$$

with

$$H = ht + k|y|, \quad \phi = -\frac{3}{2}\log H.$$
 (4)

 $t < 0 \rightarrow \mathsf{Two}$ 3-branes approaching.

Time-Dependent Hořava-Witten Model

W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lu, C.N. Pope, NPB 732, 118 (2006) The metric is given by

$$ds_5^2 = H^{1/2}(-dt^2 + d\vec{x}^2) + Hdy^2, \qquad (3)$$

with

$$H = ht + k|y|, \quad \phi = -\frac{3}{2}\log H.$$
 (4)

 $t < 0 \rightarrow \text{Two 3-branes approaching.}$

• $t = 0 \rightarrow$ Curvature singularity on negative tension brane \rightarrow reaches positive tension brane at t = kL/(-h).

Scalar Perturbation

We consider a scalar perturbation obeying

$$\Box \Phi = m^2 \Phi \,, \tag{5}$$

Scalar Perturbation

We consider a scalar perturbation obeying

$$\Box \Phi = m^2 \Phi \,, \tag{5}$$

or using the metric (3)

$$\left\{-H^{-1/2}\partial_t^2 - hH^{-3/2}\partial_t + H^{-1/2}\partial_r^2 + \frac{2}{r}H^{-1/2}\partial_r + \frac{H^{-1/2}}{r^2} \times \left[\frac{1}{\sin\theta}\partial_\theta(\sin\theta\partial_\theta) + \frac{1}{\sin^2\theta}\partial_\phi^2\right] + H^{-1}\partial_y^2 + \frac{k}{2}H^{-2}\mathsf{sgn}(y)\partial_y - m^2\right\}\Phi = 0.$$
(6)

Stability of the Hořava-Witten Model

We decompose the scalar field as

$$\Phi(t, r, \theta, \phi, y) = Z(t, r, y) Y_{\ell m}(\theta, \phi), \qquad (7)$$

where the spherical harmonic part obeys

$$\frac{1}{\sin\theta}\partial_{\theta}(\sin\theta\partial_{\theta}Y_{\ell m}) + \frac{1}{\sin^{2}\theta}\partial_{\phi}^{2}Y_{\ell m} = -\ell(\ell+1)Y_{\ell m}.$$
(8)

A further variable separation $Z(t, r, y) = \Psi(t, y)R(r)$ produces

$$\partial_r^2 R + \frac{2}{r} \partial_r R + \left(\alpha^2 - \frac{\ell(\ell+1)}{r^2}\right) R = 0, \qquad (9)$$

which solution is

$$R(r) = \frac{A}{\sqrt{r}} J\left(\frac{1}{2} + \ell, \alpha r\right) + \frac{B}{\sqrt{r}} Y\left(\frac{1}{2} + \ell, \alpha r\right) .$$
(10)

A further variable separation $Z(t, r, y) = \Psi(t, y)R(r)$ produces

$$\partial_r^2 R + \frac{2}{r} \partial_r R + \left(\alpha^2 - \frac{\ell(\ell+1)}{r^2}\right) R = 0, \qquad (9)$$

which solution is

$$R(r) = \frac{A}{\sqrt{r}} J\left(\frac{1}{2} + \ell, \alpha r\right) + \frac{B}{\sqrt{r}} Y\left(\frac{1}{2} + \ell, \alpha r\right) .$$
(10)

And

$$\partial_t^2 \Psi + \frac{h}{H} \partial_t \Psi - \frac{1}{\sqrt{H}} \partial_y^2 \Psi - \frac{k \operatorname{sgn}(y)}{2H^{3/2}} \partial_y \Psi + (\alpha^2 + m^2 H^{1/2}) \Psi = 0.$$
 (11)

Stability of the Horava-Witten Model

Figure 1: Potential $\alpha^2 + m^2 H^{1/2}$ for $\alpha^2 = 1$, m = 0.1.

Stability of the Hořava-Witten Model

Figure 2: Quasinormal modes at y = 0 for m = 0 and different values of k.

Figure 3: Quasinormal modes at y = 0 for m = 0.1, 2.0 and different values of k.

Stability of the Hořava-Witten Model

Quasinormal Frequencies

Table 1: Quasinormal Frequencies at y = 0.

$ \mathbf{h} $	m = 0		m = 0.1		m=2	
k	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$
1	1.428	-0.0023	3.452	0.0015	6.411	0.0010
2	1.428	-0.0021	4.028	0.0016	7.662	0.0025
3	1.428	-0.0021	4.363	0.0014	8.491	0.0026
4	1.428	-0.0020	4.689	0.0017	8.976	0.0022
5	1.428	-0.0020	4.909	0.0016	9.520	0.0028

Figure 4: Quasinormal modes at y = 50 for m = 0, 0.1, 2.0 and different values of k.

Stability of the Hořava-Witten Model

Table 2: Quasinormal Frequencies at y = 50.

$ \mathbf{h} $	m = 0		m = 0.1		m=2	
k	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$
1	1.293	-0.0005	3.740	0.0006	7.140	0.0013
2	1.288	-0.0005	4.363	8000.0	8.491	0.0010
3	1.293	-0.0006	4.760	8000.0	9.240	0.0017
4	1.293	-0.0006	5.150	0.0003	10.134	-0.0025
5	1.293	-0.0006	5.417	0.0007	10.472	0.0022

Figure 5: Quasinormal modes at y = 100 for m = 0, 0.1, 2.0 and different values of k.

Table 3: Quasinormal Frequencies at y = 100.

$ \mathbf{h} $	m = 0		m = 0.1		m=2	
k	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$	$\omega_{\mathbf{R}}$	$\omega_{\mathbf{I}}$
1	1.199	0.0076	3.927	0.0773	7.854	0.0863
2	1.200	0.0639	4.620	0.0642	9.240	0.0799
3	1.204	0.0582	5.150	0.0590	10.472	0.0838
4	1.213	0.0548	5.512	0.0551	10.833	0.0232
5	1.213	0.0519	5.818	0.0524	11.220	0.0271

We studied the stability of the time-dependent HW model through scalar perturbations.

We studied the stability of the time-dependent HW model through scalar perturbations.

During the pre-big bang epoque the model evolves without instabilities.

We studied the stability of the time-dependent HW model through scalar perturbations.

During the pre-big bang epoque the model evolves without instabilities.

h The quasinormal frequencies calculated at the stable period show a strong dependence on the parameters of the model for $m \neq 0$ as it is expected.

We studied the stability of the time-dependent HW model through scalar perturbations.

During the pre-big bang epoque the model evolves without instabilities.

4 The quasinormal frequencies calculated at the stable period show a strong dependence on the parameters of the model for $m \neq 0$ as it is expected.

Between t = 0 and t = kL/(-h) the scalar field oscillations increase frequency and amplitude showing the instability generated by the curvature singularity at the negative tension brane that finally envelopes all the spacetime.