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Abstract

We consider scalar perturbations in the time-dependent Hŏrava-Witten Model in
order to study its stability. We show that during the pre-big bang epoque the
model evolves without instabilities until it encounters the curvature singularity
where the big bang is supposed to happen. We compute the frequencies of the
scalar field oscillation during the stable period and show how the oscillations
encounter the singularity.
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where H̃ = 1 + k̃|ỹ| , φ = −3 log H̃ .



3

Hŏrava-Witten Model

P.Hŏrava, E.Witten, NPB 460, 506 (1996)

♣ 11D spacetime → Calabi-Yau × E3,1 × S1/Z2.

♣ By dimensional reduction the 5D supergravity solution is

ds2
5 = H̃(−dt2 + d~x2) + H̃4dỹ2 , (1)

where H̃ = 1 + k̃|ỹ| , φ = −3 log H̃ .

♣ The equations of motion are obtained from

L5 =
√
−g (R− 1

2
(∂φ)2 −m2e2φ) . (2)
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♣ A 2nd domainwall is introduced at y = L (y has period 2L), and we Z2
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♣ A 2nd domainwall is introduced at y = L (y has period 2L), and we Z2

identify y ↔ −y.

♣ The model is not realistic.

♣ Attempts to incorporate HW Model into Braneworld cosmology: Ekpyrotic
Universe, Cyclic Universe.
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Time-Dependent Hŏrava-Witten Model

W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lu, C.N. Pope, NPB 732, 118 (2006)

The metric is given by

ds2
5 = H1/2(−dt2 + d~x2) + Hdy2 , (3)

with

H = ht + k|y| , φ = −3
2

log H . (4)
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Time-Dependent Hŏrava-Witten Model

W. Chen, Z.-W. Chong, G.W. Gibbons, H. Lu, C.N. Pope, NPB 732, 118 (2006)

The metric is given by

ds2
5 = H1/2(−dt2 + d~x2) + Hdy2 , (3)

with

H = ht + k|y| , φ = −3
2

log H . (4)

♣ t < 0 → Two 3-branes approaching.

♣ t = 0 → Curvature singularity on negative tension brane → reaches positive
tension brane at t = kL/(−h).
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Scalar Perturbation

We consider a scalar perturbation obeying
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Scalar Perturbation

We consider a scalar perturbation obeying

�Φ = m2Φ , (5)

or using the metric (3)

{
−H−1/2∂2

t − hH−3/2∂t + H−1/2∂2
r +

2
r
H−1/2∂r +

H−1/2

r2
×

×
[

1
sin θ

∂θ(sin θ∂θ) +
1

sin2 θ
∂2

φ

]
+ H−1∂2

y +
k

2
H−2sgn(y)∂y −m2

}
Φ = 0 . (6)
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We decompose the scalar field as

Φ(t, r, θ, φ, y) = Z(t, r, y)Y`m(θ, φ) , (7)

where the spherical harmonic part obeys

1
sin θ

∂θ(sin θ∂θY`m) +
1

sin2 θ
∂2

φY`m = −`(` + 1)Y`m . (8)
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A further variable separation Z(t, r, y) = Ψ(t, y)R(r) produces

∂2
rR +

2
r
∂rR +

(
α2 − `(` + 1)

r2

)
R = 0 , (9)

which solution is

R(r) =
A√
r

J

(
1
2

+ `, αr

)
+

B√
r

Y

(
1
2

+ `, αr

)
. (10)
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A further variable separation Z(t, r, y) = Ψ(t, y)R(r) produces

∂2
rR +

2
r
∂rR +

(
α2 − `(` + 1)

r2

)
R = 0 , (9)

which solution is

R(r) =
A√
r

J

(
1
2

+ `, αr

)
+

B√
r

Y

(
1
2

+ `, αr

)
. (10)

And

∂2
t Ψ +

h

H
∂tΨ−

1√
H

∂2
yΨ− k sgn(y)

2H3/2
∂yΨ + (α2 + m2H1/2)Ψ = 0 . (11)
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Figure 1: Potential α2 + m2 H1/2 for α2 = 1, m = 0.1.
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Figure 2: Quasinormal modes at y = 0 for m = 0 and different values of k.
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Figure 3: Quasinormal modes at y = 0 for m = 0.1, 2.0 and different values of k.
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Quasinormal Frequencies

Table 1: Quasinormal Frequencies at y = 0.

|h| m = 0 m = 0.1 m = 2
k ωR ωI ωR ωI ωR ωI

1 1.428 -0.0023 3.452 0.0015 6.411 0.0010
2 1.428 -0.0021 4.028 0.0016 7.662 0.0025
3 1.428 -0.0021 4.363 0.0014 8.491 0.0026
4 1.428 -0.0020 4.689 0.0017 8.976 0.0022
5 1.428 -0.0020 4.909 0.0016 9.520 0.0028
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Figure 4: Quasinormal modes at y = 50 for m = 0, 0.1, 2.0 and different values of k.
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Table 2: Quasinormal Frequencies at y = 50.

|h| m = 0 m = 0.1 m = 2
k ωR ωI ωR ωI ωR ωI

1 1.293 -0.0005 3.740 0.0006 7.140 0.0013
2 1.288 -0.0005 4.363 0.0008 8.491 0.0010
3 1.293 -0.0006 4.760 0.0008 9.240 0.0017
4 1.293 -0.0006 5.150 0.0003 10.134 -0.0025
5 1.293 -0.0006 5.417 0.0007 10.472 0.0022
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Figure 5: Quasinormal modes at y = 100 for m = 0, 0.1, 2.0 and different values of k.
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Table 3: Quasinormal Frequencies at y = 100.

|h| m = 0 m = 0.1 m = 2
k ωR ωI ωR ωI ωR ωI

1 1.199 0.0076 3.927 0.0773 7.854 0.0863
2 1.200 0.0639 4.620 0.0642 9.240 0.0799
3 1.204 0.0582 5.150 0.0590 10.472 0.0838
4 1.213 0.0548 5.512 0.0551 10.833 0.0232
5 1.213 0.0519 5.818 0.0524 11.220 0.0271
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Conclusions

♣ We studied the stability of the time-dependent HW model through scalar
perturbations.
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Conclusions

♣ We studied the stability of the time-dependent HW model through scalar
perturbations.

♣ During the pre-big bang epoque the model evolves without instabilities.

♣ The quasinormal frequencies calculated at the stable period show a strong
dependence on the parameters of the model for m 6= 0 as it is expected.

♣ Between t = 0 and t = kL/(−h) the scalar field oscillations increase
frequency and amplitude showing the instability generated by the curvature
singularity at the negative tension brane that finally envelopes all the spacetime.
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