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Abstract

Soon after Kaup and Ruffini and Bonazzola derived asymptot-
ically flat, spherically symmetric equilibrium solutions of Einstein-
Klein-Gordon equations describing the so-called boson stars, these
have been seen as candidates for non-baryonic dark matter in the uni-
verse, sources of gravitational waves, or the supermassive compact
dark object which have been observed in the center of our Galaxy,
producing similar spectra to a black hole. Since the the system of
coupled equations describing fields interacting via gravity, have been
treated mainly by numerical formalisms, the aim of the present paper
is to derive approximating analytical solutions to the system of Klein-
Gordon-Maxwell-Einstein equations, describing a minimally coupled
charged boson to a spherically symmetric spacetime. The correspond-
ing metric functions are used to compute the main observables of a
boson nebula, in terms of the model parameters, which can accom-
modate a wide range of numerical estimations. Finally, within a first-
order perturbative approach, we derive the effective potential and the
current, employed in computing quantum transitions related to the
gravitoelectric particle creation.
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1 Introduction

We term by a boson star a gravitationally bound, both globally U(1) and

spherically symmetric, compact equilibrium configurations of cold complex

scalar fields. At almost 40 years, since Kaup [1] and Ruffini and Bonazzola

[2] discovered them, they still arise as promising candidates for non-baryonic

dark matter in the universe [3]. Recently, on serious theoretical grounds, it

has been revealed that a boson star can supplant a black hole in the role of

a compact object accreting matter since, for certain values of its parameters,

they both produce similar spectra. Few years ago, by lensing experiments, it

has been shown that the hypothesis of a central black hole was unconclusive

and that a boson star could better explain the supermassive compact dark

object Sagittarius A* which have been observed in the center of our Galaxy,

[4].

Such configurations, if existed, are remnants of first-order gravitational

phase transitions and their mass should be ruled by the epochs when they

decoupled from the cosmological background.

These assumptions raise the question whether such configurations are

dynamically stable [5] and the settling down of a boson star to a stable state

has been investigated via numerical calculations [6].

In our approach, we are dealing with a boson nebula defined as the

charged scalar cloud which finds itself in one of the spherically symmetric

positive-frequency modes of radial wave number k, with k2 → 0+, and pul-

sation ωk = [m2
0 + k2]

1/2
. Such a configuration is obviously unstable [7] and

the instabilities are expected to lead to the formation of a boson star from

an initially smooth state [8]. Not very much is specifically known in this

direction [7], although the reversed stability to instability passage has been

extensively investigated [5, 6, 9]. Analytically, exactly solvable models for

boson stars with large self-interaction [10] and for boson-fermion stars [11]
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have been worked out only in low dimensional gravity. In four dimensions,

the bosonic or the mixed fermion-bosonic fields interacting via gravity have

been investigated mainly by numerical calculations [1− 7, 9, 12].

Nevertheless, using the Newtonian approximation, the whole analysis gets

greatly simplified allowing interesting and inspiring investigations, as for ex-

ample the process of gravitational-radiation emission from an excited boson

star [13]. On the other hand, the role of a non-vanishing radial-momentum

is important when dealing with quantum transitions since it is affecting both

the effective potential and the current, leading to serious consequences re-

garding the actual dispersion, the continuity equation and the growth, and

respectively decay, of the quantum mode-excitations. Therefore, a general-

relativistic analytical study of the coupled field equations could be of interest

for a better understanding of different stellar configurations as well as for a

numerical-functional combined iterative treatment which describes the dy-

namics of charged boson nebulae.

Recently, besides the bosonic or the mixed fermion-bosonic configura-

tions, the spherically symmetric stable quark stars with shells of hadronic

composition has been also taken as candidates for the missing matter of any

kind. For a total mass of few solar masses, these objects could be detected by

gravitational microlensing of the galactic halo towards the Magellanic clouds

[14].

2 The Klein–Gordon–Maxwell–Einstein Sys-

tem of Equations

For a spherically symmetric configuration, let us consider the metric, ex-

pressed in Schwarzschild coordinates, as being

ds2 = e2f (dr)2 + r2
(
dθ2 + sin2 θ dϕ2

)
− e2h (dt)2 , (1)
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where f and h are functions of r and t. We introduce the pseudo-orthonormal

tetradic frame {ea}a=1,4 , with the corresponding dual orthonormal base

ω1 = ef dr , ω2 = r dθ , ω3 = r sin θ dϕ , ω4 = eh dt (2)

and derive the non-vanishing connection coefficients

Γ12 = − e−f

r
ω2 , Γ13 = − e−f

r
ω3 , Γ23 = − cot θ

r
ω3 ,

Γ14 = f|4 ω1 + h|1 ω4 , (3)

and the components of the Einstein tensor

G11 = 2
e−f

r
h|1 − 1− e−2f

r2
,

G22 = G33

= h|11 +
(
h|1

)2 −
[
f|44 +

(
f|4

)2
]

+
e−f

r
h|1 +




(
e−f

r

)

|1
+

e−2f

r2


 ,

G44 = − 2




(
e−f

r

)

|1
+

e−2f

r2


 +

1− e−2f

r2
,

G14 = 2
e−f

r
f|4 , (4)

where ( · )|a = ea( · ).
In this configuration, a charged boson of mass m0, coupled to the elec-

tromagnetic field, is described by the SO(3, 1) × U(1)-gauge invariant La-

grangean density

L = ηab φ̄;aφ;b + m2
0 φ̄φ +

1

4
F abFab , (5)

where

φ;a = φ|a − iqAaφ , φ̄;a = φ̄|a + iqAaφ̄ , (6)

and the Maxwell tensor Fab = Ab:a − Aa:b is expressed in terms of the Levi–

Civita covariant derivatives of the four-potential Aa, i.e. Aa:b = Aa|b−AcΓ
c
ab.
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By varying with respect to different fields, we come to the Klein–Gordon–

Maxwell (KGM) equations

2φ − m2
0 φ = 2iq Acφ|c + q2AcAcφ , and its h.c. , (7)

F ab
:b = − iq ηab

[
φ̄

(
φ|b − iqAbφ

)
−

(
φ̄|b + iqAbφ̄

)
φ

]
(8)

and to the Einstein ones Gab = κTab, where Gab have the explicit form (4)

and the energy-momentum tensor Tab is

Tab = φ̄;aφ;b + φ̄;bφ;a + FacF
c

b − ηabL . (9)

Working in the minimally symmetric ansatz A1 = A1(r, t), A4 = A4(r, t),

φ = φ(r, t), the KGM system (7–8) turns into

e−2f
{
φ,rr +

[
h,r−f,r +

2

r

]
φ,r

}
− e−2h {φ,tt + [f,t−h,t ] φ,t } − m2

0φ

= 2iq A1e
−fφ,r − 2iqA4e

−hφ,t + q2
[
(A1)

2 − (A4)
2
]
φ , and its h.c. ,(10)

e−h
[
e−f (A4,r + h,r A4)− e−h (A1,t + f,t A1)

]
,t

= iq
[
e−f

(
φ̄φ,r−φ̄,r φ

)
− 2iqA1φ̄φ

]
; (11)

e−f
[
e−f (A4,r + h,r A4)− e−h (A1,t + f,t A1)

]
,r

+ 2
e−f

r

[
e−f (A4,r + h,r A4)− e−h (A1,t + f,t A1)

]

= iq
[
e−h

(
φ̄φ,t−φ̄,t φ

)
− 2iqA4φ̄φ

]
, (12)

where ( , ) stands for the usual derivatives, the Lorentz condition reads

e−f
[
A1,r +

(
h,r +

2

r

)
A1

]
− e−h [A4,t +f,t A4] = 0 , (13)

5



while the Einstein equations explicitly become

2
e−2f

r
h,r − 1− e−2f

r2
= κ

[
φ̄;1φ;1 + φ̄;4φ;4 − m2

0 φ̄φ − 1

2
(F14)

2
]
;

e−2f
[
h,rr + (h,r−f,r ) h,r +

1

r
(h,r−f,r )

]
− e−2h [f,tt + (f,t−h,t ) f,t ]

= −κ
[
φ̄;1φ;1 − φ̄;4φ;4 + m2

0 φ̄φ − 1

2
(F14)

2
]
;

2
e−2f

r
f,r +

1− e−2f

r2
= κ

[
φ̄;1φ;1 + φ̄;4φ;4 + m2

0 φ̄φ +
1

2
(F14)

2
]
;

2

r
e−(f+h)f,t = κ

[
φ̄;1φ;4 + φ̄;4φ;1

]
, (14)

The system of equations (10–12, 14) generalizes the one derived in [12], for

the equilibrium configuration when the metric functions are time-independent,

the gauge field is chosen in such a way that one has only electric charges and

a self-interacting term has been added in order to increase the limits on the

critical mass and particle number.

3 Charge, Radius and Mass of Boson Nebu-

lae

Since for bosonic fields interacting via gravity, only the zero-node solutions,

corresponding to the lowest energy state, has been under investigation, and

the interest has been focused mainly on numerical analyses of different stellar

configurations, let us follow an analytical perturbative approach, in order to

derive a solution to the system (10–14).

What we generally mean by a (charged) boson star is a charged scalar

“cloud” which finds itself, at large radial coordinate distances, in one of the

spherically symmetric positive-frequency modes, of the complex scalar field,

of radial wave number k, with k2 → 0+, and pulsation ωk = [m2
0 + k2]

1/2
. Of

course, such a configuration is obviously unstable as ω2
k −m2

0 = k2 ≥ 0, in-
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stead of ω < m0, i.e. k2 < 0, as it is required for the possible stable (charged)

boson star. Yet, we would like to derive first, within a first-order approxima-

tion by the U(1)-gauge coupling constant “q”, the concretely expressed form,

in terms of elementary functions, of the Klein–Gordon–Maxwell–Einstein

equations. Their analytical, (r, t)-dependent, solutions might be serving well

as an easily handling starting point in conceiving a combined numerical-

functional iterative method which aims, by its higher-order solutions to the

U(1)-gauge invariant KGME-system, to a better understanding of the dy-

namics of charged boson stars formation from the initially unstable stars.

As it is mentioned in the Introduction, not very much is specifically known

in this direction, although the reversed way — the stability to instability

passage — has been extensively investigated.

So, we start with the physically reasonable assumption that the charged

scalar field is the main source of both the electromagnetic and gravitational

fields. Hence, at large radial distances and within the framework of a first-

order approximation in the U(1)-gauge coupling q, the feedbacks of gravity

and electromagnetism on the charged scalar source can be neglected and

therefore, its equation of motion does simply become the one of an l = 0 (i.e.

spherically symmetric) state on a Minkowskian background (f = 0 = h), i.e.

φ,rr +
2

r
φ,r −φ,tt −m2

0 φ = 0 , and its h.c. , (15)

with the positive-frequency mode solutions

φ =
N
r

ei(kr−ωkt) ⇒ φ̄ =
N̄
r

e−i(kr−ωkt) , (16)

where ωk = [k2 + m2
0]

1/2
and the dimensionless amplitude-factor N can be

semiclassically related (see [7]), by its squared modulus, to the Minkowskian

(f = 0 = h) estimated number

N0 =
Q

q
= i 4π

∫ R

0

[
φ̄φ,t− φ̄,t φ

]
r2 dr (17)
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of charged spinless bosons, making up a Minkowskian averaged star of radius

R, i.e.

N0 = 8πm0 R|N |2 ⇔ |N| =
[

N0

8πm0R

]1/2

,

whenever k2 → 0+. Similarly, concerning the employed approximation, the

gravity feedback on the Maxwell sector can be neglected at first, as it effec-

tively involves second-order contributions of the charged scalar φ, and, on the

right hand side of the Maxwell equations, the source of the electromagnetic

(actually, electric) field is only given — within the first-order contributions

of q — by the globally U(1)-conserved current

ja = − iq ηab
[
φ̄φ,b− φ̄,b φ

]
, a ∈ {1, 4}. (18)

Thus, the Lorentz condition (13) and the Maxwell equations (11) and (12)

do actually read

A1,r +
2

r
A1 − A4,t = 0 (19)

and

A1,rr +
2

r
A1,r − 2

r2
A1 − A1,tt = − 2qk

|N |2
r2

,

A4,rr +
2

r
A4,r − A4,tt = 2qωk

|N |2
r2

, (20)

with the (particular) solution(s)

A1 = qk|N |2 , (21)

A4 = 2qωk|N |2 log
r

r0

+ 2qk
|N |2

r
t , (22)

which correspond to the electric field (intensity)

E = F14 ≈ A4,r − A1,t = 2qωk
|N |2

r
− 2qk

|N |2
r2

t . (23)
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In these assumptions, the components (9) of the energy-momentum tensor

have the explicit form:

T11 = 2k2 |N |2
r2

+
|N |2
r4

− 2q2
(
2k2 + m2

0

) |N |4
r2

+ 4q2ω2
k

|N |4
r2

log
r

r0

+ 8q2ωkk
|N |4
r3

t − 2q2k2 |N |4
r4

t2 ,

T22 = T33

= − |N |
2

r4
+ 2q2

(
2k2 + m2

0

) |N |4
r2

+ 4q2ω2
k

|N |4
r2

log
r

r0

+ 2q2k2 |N |4
r4

t2 ,

T44 = 2ω2
k

|N |2
r2

+
|N |2
r4

+ 2q2m2
0

|N |4
r2

+ 4q2ω2
k

|N |4
r2

log
r

r0

+ 2q2k2 |N |4
r4

t2 ,

T14 = − 2ωkk
|N |2
r2

+ 2q2ωkk
|N |4
r2

− 4q2ωkk
|N |4
r2

log
r

r0

− 4q2k2 |N |4
r3

t .

(24)

Consequently, the system of Einstein equations, in the long range approx-

imation and for |N |2 = 1/q2, have the following solutions:

f(r, t) = − 1

2
log

[
1 +

2κ(k2 − 2ω2
k)

q2
+

κ(1 + 2k2t2)

q2 r2
− C

r

]
,

h(r, t) = − C

2r
+

κk2t2

q2 r2
,

where

C =
8κq2ω2

k

4κω2
k − q2

.

In the particular case k = 0 where the star is just above the passage to

the possible stable excited states, its mode pulsation ω = m0 being located

at the accumulation point of the eigenfrequencies of an excited boson star,
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the correspondingly linearized Einstein field equations become

2

r
h,r − 2

r2
f = κ

[ |N |2
r4

− 2q2m2
0

|N |4
r2

+ 4q2m2
0

|N |4
r2

log
r

r0

]
;

h,rr +
1

r
(h,r−f,r ) = κ

[
− |N |

2

r4
+ 2q2m2

0

|N |4
r2

+ 4q2m2
0

|N |4
r2

log
r

r0

]
;

2

r
f,r +

2

r2
f = κ

[
2m2

0

|N |2
r2

+
|N |2
r4

+ 2 q2m2
0

|N |4
r2

+ 4q2m2
0

|N |4
r2

log
r

r0

]
.

(25)

The solutions

f(r) =
C1

r
− b

2r2
+ 2c log

r

r0

+ (a− c) , (26)

h(r) = − C1

r
+ C2 + (a− 2c) log

r

r0

+ 2c
(
log

r

r0

)2

, (27)

where

a = κm2
0 |N |2 , b = κ|N |2 , c = κq2m2

0 |N |4 (28)

and C1, C2 are two integration constants — the former getting the clear

significance of a Schwarzschild mass M — generalize the asymptotic relation

in [12]. By imposing to have the ordinary Minkowski metric at asymptotia,

we get C2 = 0 and a = 2c or |N |2 = 1/(2q2) and thus, in the next calculations,

we may use the simplified h function

h(r) = − C1

r
. (29)

With these metric functions, solutions of Klein–Gordon–Maxwell–Einstein

equations (in a first order approximation), one is able to compute the to-

tal charge, particle number, radius and mass of the analyzed configuration.

Thus, by integrating the time component of the conserved current, one gets

the total charge of the boson star,

Q =
∫

ef−h j4 4πr2dr = 4π
m0

q

(
b

2r2
0

)c
√

b

2
ez Intq , (30)
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where z = 2C2
1/b and

Intq =
∫ ∞

−√z

e−y2

(y +
√

z)
2c+2 dy =

π

2
e− z 1

Γ
(

3
2

+ c
)

×
{
− 1

cos(cπ)
1F1

(
− 1

2
− c,

1

2
, z

)
−

√
πz

sin(cπ)
L

(
c,

1

2
, z

)}
(31)

is expressed in terms of the Kummer confluent hypergeometric function

1F1(α; β; z) and of the LaguerreL polynomial.

The radius of the Bose star, defined via the particle number density

N = Q/q [15], is

R =
1

qN

∫
r ef−h j4 4πr2dr =

1

Q
4π

m0

q

(
b

2r2
0

)c
b

2
ez Intr , (32)

where

Intr =
∫ ∞

−√z

e−y2

(y +
√

z)
2c+3 dy =

1

2
e−z (33)

×
{
Γ(−1− c) 1F1

(
−1− c,

1

2
, z

)
+ 2

√
z Γ

(
−1

2
− c

)
1F1

(
−1

2
− c,

3

2
, z

)}
.

Finally, the total gravitational mass of the Bose star, given by the Tol-

man’s relation [16], which in our conventions reads

M =
∫

T44 ef+h 4πr2dr , (34)

gets the expression

M =
8π2

κ

√
2b

(
b

2

)c {
Γ

(
1

2
− c

)

+ c Γ
(
− 1

2
− c

) [
3 + log

b

2
− PolyGamma

(
0,− 1

2
− c

)]}
, (35)

depending on the mass of the quanta and on the value of the U(1) coupling

constant, included in the c and b parameters.
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Of course, the results we have analytically derived are quite general and

a numerical estimation would be of a real help in a better understanding of

the analyzed configurations. In this respect, we use the asymptotically flat

simplified solutions

f(r) =
C1

r
− b

2r2
,

h(r) = − C1

r
, (36)

where, in the expression of f , the term in a ∼ (m0/MP )2 can be neglected

at energy scales much below the Planck one. Here,

|N |2 =
1

8πα
, b = κ |N |2 =

1

αM2
P

, C1 =
MADM

M2
P

, (37)

where α = q2/(4π) is the fine structure constant, MP denotes the Planck

mass and

MADM = − 1

8π

∫

S2∞
∗ dK (38)

is the Arnowitz-Desser-Misner mass computed at infinity, using the timelike

Killing 1-form field K = − eh ω4. The dimensionfull parameter r0 is a pivot

length scale characterizing the nebula radial extension with respect to the

central Coulomb-like singularity in the source field φ(r, t).

Using the proper energy density

T44 =
α−1m2

0

8πr2

[
3 +

m−2
0

r2
+ 2 ln

(
r

r0

)]

and the metric functions (36) the Tolman formula (34) for the boson nebula

mass comprised within a sphere of radius R, does concretely become (in

dimensionless variables z = m0r, z0 = m0r0)

M =
α−1

2
m0

∫ m0R

0

[
1

z2
+ 2 ln

(
z

z0

)
+ 3

]
e−

c
z2 dz , with c =

α−1

2

(
m0

MP

)2

(39)
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and exhibits an intriguing self-similarity-based resonance which uniquely sets

the pivot length scale, the radius of the becoming star and the maximum mass

of the seeds. A complete analysis of this point is too long to be given here.

Nevertheless, we notice that, making the similarity assumption

R = m−1
0 s , r0 = m−1

0 · s · e3/2 , i.e. R = e−3/2r0 (40)

the mass function M turns into the form

M =
α−1

2
m0

∫ s

0

[
1

z2
+ 2 ln

(
z

s

)]
e−

c
z2 dz , (41)

whose approximative value is:

M ≈
√

π

8α
MP

[
1− Erf

(√
c

s

)]

and the extremum, M(s∗), of (41) is located at the solution of the highly

transcendental equation

dM
ds

∣∣∣∣∣
s∗

= 0 ⇔
∫ s∗

0
e−

c
z2 dz =

1

2s∗
e
− c

s2∗ . (42)

Fortunately, at scales m0 ¿ MP , c → 0 rapidly and e−c/s2
(for s 6= 0) does

basically equate 1. At s = 0 there is no singularity — on the contrary, it

stands for the trivial solution — and so, the equation turns extremely simple

s∗ =
1

2s∗
⇔ 2s2

∗ − 1 = 0 . (43)

This gets the positive root s∗ =
√

2/2, which clearly fixes the length-scale at

r0 ≈ 3.17 m−1
0 and the radius at R∗ ≈ 0.707 m−1

0 , for the region of the nebula

which is going to become a Bose star. A numerical estimation (nevertheless

imprecise because of the exponentially entering coefficient c ∼ 10−36, at

m0 ∼ 1 GeV ) yields the maximum mass M∗
∆
= M(s∗) of the seeding region

somewhere around 10 MP , being, somewhat intriguingly, quite insensitive to
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the realistic sub-Planckian values of the scalar quanta mass, m0. Also, it can

be shown that this similarity-induced mass-resonance M∗ is indeed a global

maximum over the rest of the other formations with radii R 6= R∗ ∼ m−1
0 and

therefore, just alike the case of Bose stars, it can be identified with MADM .

4 First-Order Perturbative Approach

In this section, we are going further and analyze the feedback of gravity and

electric field, respectively expressed by the metric functions (36) and the

four-potential (21-22), on the Klein–Gordon equations.

Within a first-order perturbative approach, we write down the wave func-

tion describing the charged scalar field as

Φ(r, θ, ϕ, t) = φ(r, t) + χ(r, θ, ϕ, t)ei(kr−ωt) , (44)

where φ is the Minkowskian background solution (16), with |N | = 1/
√

2q2,

namely

φ(r, θ, ϕ, t) =
1√
2qr

ei(kr−ωt) . (45)

While dealing with the Klein–Gordon equation (10), we employ the following

approximations:

• |χ| ¿ 1/(qr) ,

• in the metric function f(r) in (36), the term br−2 can be discarded

compared to 2C1r
−1, once r exceeds few tens of Planck distances.

• We apply the long range approximation where

e±
λC1

r ≈ 1± λC1

r
+O

[(
±λC1

r

)n]

n≥2

, for λ = 1, 2 . (46)
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Also, while grouping together the terms

C1

r
+ ln

(
r

r0

)
+ ln2

(
r

r0

)
,

we notice that, at any distance r, at least few units above 2r0 ≈
6.3 m−1

0 ≈ 9R∗, the leading contribution comes solely from the term

ln2(r/r0).

Finally, trading C1 = M∗/M2
P for the more common notation M , the ap-

proximating expression of the basic Klein–Gordon equation can be put in the

standard form employed in Perturbation Theory, Dχ = V̂ χ + J , as:

∂2χ

∂r2
+

[
2

r
+ ik

]
∂χ

∂r
− ∂2χ

∂t2
+

1

r2
4̃χ = V̂ χ + J . (47)

The operators

V̂ (r, t) =
2M

r

[
∂2

∂r2
+

(
3ik

2
+

1

r

)
∂

∂r
+

∂2

∂t2

]
− 2iG(r, t)

(
1 +

M

r

)
∂

∂t
,(48)

J (r, t) = − 1√
2qr

G(r, t)2 − k2

√
2qr

(
3

4
+

M

r

)
− ik√

2qr2

(
1 +

M

r

)
, (49)

where

G(r, t) =
kt

r
+ ω ln

(
r

r0

)
, (50)

are respectively describing the (perturbed) effective potential and the current.

In order to develop a first-order perturbative approach, we start with the 0-th

order equation

∂2χ

∂r2
+

[
2

r
+ ik

]
∂χ

∂r
− ∂2χ

∂t2
− `(` + 1)

r2
χ = 0 (51)

and we perform the variables separation

χ = e−iαt r` exp
[
− i

2
(k + Ω)r

]
η(r) Y m

` (θ, ϕ) , (52)
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with Ω =
√

k2 + 4α2. We come to the following differential equation,

z
d2η

dz2
+ [2 (` + 1)− z]

dη

dz
−

[
k

Ω
+ ` + 1

]
η = 0 , z = iΩr , (53)

which is satisfied by the hypergeometric function U(α; γ; z), with α = k/Ω+

`+1 and γ = 2`+2. Finally, one is able to compute the first-order transition

amplitudes:

Aω′l′m′
ωlm =

∫
χ∗ω′l′m′(x)

(
V̂ χωlm(x)

)
r2drdΩdt , (54)

where (x) = (r, θ, ϕ, t) and V̂ is given by (48), or to use (49) to study the

spontaneous creation of charged bosons in the presence of the electric field

potential A4. It can be noticed that the radial wave number k destroys by the

Coulomb term 2ikr−1 the hermiticity of the radial operator in (51), affects as

well the effective potential by the gravity-based dipole contribution 3ikMr−2

and drives the “current” J complex. These lead to serious consequences

regarding the actual dispersion, the continuity equation and the growth, and

respectively decay, of the quantum mode-excitations.

The case k = 0 deserves a closer attention and it has been extensively

investigated in previous papers [8]. Now, the 0-th order equation,

1

r2

∂

∂r

(
r2 ∂h

∂r

)
+

1

r2
∆̃h− ∂2h

∂t2
= 0 , (55)

provides the complete orthonormal set of positive-frequency modes (in terms

of spherical Hankel functions)

hωlm(r, θ, ϕ, t) =
1

2
√

r
H

(1)

l+ 1
2

(ωr)Y m
l (θ, ϕ)e−iωt . (56)

This has been employed, in [8], to compute the first-order transition ampli-

tudes between the initial and final states as:

Aω′l′m′
ωlm =

∫
h∗ω′l′m′(x)

(
V̂ hωlm(x)

)
r2drdΩdt , (57)
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where (x) = (r, θ, ϕ, t) and V̂ is given by (48), with k = 0, namely

V̂ (r, t) =
2M

r

[
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂t2

]
− 2iω ln

(
r

r0

) (
1 +

M

r

)
∂

∂t
. (58)

In what it concerns the current operator (49), whose form becomes

J (r, t) = − 1√
2qr

ω2 ln2
(

r

r0

)
, (59)

it enables us to study the possibility of spontaneous creation of charged

bosons in the presence of the electric field potential A4. This process is

described by the transition amplitude

AJ =
∫ √

ω h∗ωlm(x)J (r, t) r2drdΩdt

= − 2πδ(ω −m0)
√

2πω
m2

0

2q

∫ ∞

0

√
r H

(2)
1/2(ωr) ln2

(
r

r0

)
dr (60)

which comes to the closed form expression

AJ = 2πδ(ω −m0)
2m2

0

qω
I , (61)

where

I = − 1

2

[
X2 + iπX − π2

12

]
, (62)

with

X = γ + ln[ωr0]. (63)

Finally, using

d

dt
P+(m0;J ) = 2πδ(ω −m0)

(
2m2

0

qω

)2

|I|2 , (64)

we come to the coherent source-field regeneration rate and the power involved

in this process as being

Γ =
∫ ∞

0

dP+

dt

dω

ω
= 2

m0c
2

αh̄
|I|2 , τ = Γ−1 ,

P = 2
m2

0c
4

αh̄
|I|2 , where |I|2 = 5.35× 10−3 . (65)
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At m0 ∼ 1 GeV level, one gets the following numerical results: Γ ∼ (2 ÷
3) × 1024 s−1, τ ∼ (3 ÷ 5) × 10−25 s and P ∼ 4 × 1014 W respectively.

The extremely short time-constant (τ) seems to confirm the main conclusion

drawn in [13] that intense gravitational bursts are accompanying the boson

star formation. Nevertheless, in the case of nebulae, on their way to becoming

stars, the released power (P ) in the initiating phase is 24 orders of magnitude

smaller than the one emitted in the final stage.
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