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So, thanks very much for the opportunity to speak at this school. Today I would like to present two 
loosely connected results. They both involve some of the more subtle aspects of symmetries in 
gauge theories. 

One is the question of classical central charges in gravitational theories and whether they only arise 
in asymptotically ADS spacetimes. The result I would like to report on in this context is the existence 
of a new central extension in 3D flat spacetime at null infinity. This work has been done with a 
student of mine, Geoffrey Compère. 

The other topic I would like to talk about is black holes which carry both electric and magnetic 
charge and how to discuss their thermodynamics. In order to do so, it is extremely convenient to 
extend the construction of a manifestly duality invariant formulation of Maxwell’s theory, the so-
called double potential formalism. In fact, this formulation provides a full-fledged alternative to 
Dirac’s theory of magnetic poles and does not involve Dirac strings in the case of fixed sources. It is 
based on work done in collaboration with Andy Gomberoff.



Generalized conserved 

charges: ωn−p ∼ ωn−p + dηn−p−1 + tn−p, tn−p ≈ 0
dωn−p ≈ 0{

irreducible gauge theories (no 2,3-forms):

Hn−p
char(d) = 0 for p ! 3

Hn−2
char(d)←→ fα such that Ri

α(fα) = 0

Qf [φs] =
∮

Sn−2
kn−2

f [φs]charges:

Surface charges & generalized Killing vectors Central extensions:

p = 1 : conserved currents associated with global symmetries

Generalized conserved charges are associated with differentials forms that are closed when the 
equations of motion hold. In this context, one should define as trivial forms which are automatically 
closed, either because they are exact, or because they vanish no-shell. This defines the so-called 
characteristic cohomology associated with given equations of motions. 

In form degree n-1 one finds, the usual conserved currents of Noether’s first theorem. They are 
associated with global symmetries. 

For irreducible gauge theories, i.e., for gauge theories that do not contain 2,3-forms, one can show 
that the only other group that may be non trivial is in degree n-2 and that there is a 1-1 
correspondence of elements of this group with gauge parameters that define trivial gauge 
transformations, so called reducibility parameters. 

The associated charges are to be integrated over closed n-2 dimensional surfaces, for example 
spheres at constant t and r. By applying Stokes’ theorem, they  do not depend on t nor on r. 



semi-simple YM theory:

Examples

EM: ←→ kn−2 = ∗F

electric charge Q =
∮

Sn−2

∗F

δεA
a
µ = Dµεa = 0 =⇒ εa = 0

δεAµ = ∂µε = 0 =⇒ ε = cte

linearized gravity: δξhµν = Lξ ḡµν = 0 =⇒ ξµ
Killing vector of ḡµν

GR: δξgµν = Lξgµν = 0 =⇒ ξµ = 0

Abbott & Deser Nucl. Phys. B195 (1982) 76

Qξ =
∮

Sn−2
kξ[h, ḡ]

Surface charges & generalized Killing vectorsCentral extensions:

For example, in YM theory they would be defined by gauge parameters whose covariant derivatives 
vanish, for all choices of potentials. There are no such parameters for semi-simple gauge groups, 
however in the U(1) case, for electromagnetism, there is precisely 1 solution, a constant gauge 
parameter. The associated conserved n-2 form turns out to be precisely the dual of of the field 
strength F, so that the charge is of course the electric charge, as determined by Gauss’s law. 

In GR, one would have to find Killing vectors for a generic metric, which do not exist, so there are 
again no non trivial surface charges. For linearized gravity however, the gauge transformations of 
the metric perturbations involve the Lie derivative of the background metric, which might very well 
have Killing vectors, for instance in the flat case, the Kvf represent the Poincare algebra. The 
associated surface charges can then be constructed. In a flat background, they describe the ADM 
energy-momentum and angular momentum. In a curved background, they coincide with expressions 
derived originally in the AdS context by Abott and Deser. 



δ1
ξhµν = LξhµνLξ ḡµν = 0 =⇒global symmetry 

ḡµν = ηµν Poincaré invariance of Pauli-Fierz theory

Algebra: Surface charges form a representation of the algebra of Killing vectors 

{Qξ1 , Qξ2} := δ1
ξ1

Qξ2 = Q[ξ1,ξ2]

at boundary

replace 

gµν = ḡµν + O(
1

rχµν
) r −→∞

Qξ =
∮

S∞
kξ[g − ḡ, ḡ]chargeshµν = gµν − ḡµν

full GR, asymptotics

Central extensions: Algebra & asymptotics

In linearized gravity, if xi is a Killing vector of the background, then the Lie derivative of the metric 
perturbation defines a global symmetry of the linearized theory, to wit the Poincaré invariance in 
the case of a flat background. One can then show that the surface charges under the action of this 
global symmetry, form a representation of the Lie algebra of Killing vectors. The question is then 
how to use this analysis of the linearized theory in full GR. 

One application is in the case where the metric approaches a background metric with some 
appropriate fall-off conditions. What one does is replace the metric perturbations by the difference 
between between the full metric and the background. In the asymptotic region, where the linearized 
EOM are supposed to be valid due to the fall-off conditions, one then still has conservation in time, 
but not in r because the linearized approximation will fail as one goes into the bulk. One way to 
think about this is that the linearized surface integrals contain all the sources, including those due 
to the self-interactions of the fields, only in the asymptotic region. 



new feature: asymptotic Killing vectors Lξ ḡµν → 0

that preserve  the fall-off conditions

to leading order

{Qξ1 , Qξ2} := δξ1Qξ2 = Q[ξ1,ξ2] + Kξ1,ξ2 Kξ1,ξ2 =
∮

S∞
kξ2 [Lξ1 ḡ, ḡ]

suitable tuning of fall-off conditions on metrics and asymptotic Killing vectors: 

centrally extended charge representation of  algebra of asymptotic Killing vectors

NB: central extension vanishes for exact symmetries of the background

Lξgµν = O(
1

rχµν
)

Central extensions: Algebra & asymptotics

The new feature is then that one will only need approximate Killing vectors in order to guarantee 
conservation of charges. One has to require that the associated large gauge transformations leave 
the space of asymptotically background metrics invariant. Under suitable fall-off conditions on 
metrics and gauge parameters, one then arrives at the following algebra of conserved charges, 
which represents the algebra of asymptotic reducibility parameters. The central extension vanishes 
for exact Killing vector fields of the background metric. 



non trivial asymptotic Kvf= conformal Kvf of flat 
boundary metric  

n>3: so(n− 1, 2) only exact Killing vectors of AdS, no central extension

n=3: pseudo-conformal algebra in 2 dimensions, 2 copies of Wit algebra

charges algebra: 2 
copies of 
Virasoro

Brown & Henneaux CMP 104 
(1986) 207

similar results in de Sitter spacetimes at timelike infinity

Central extensions: Asymptotically ADS spacetimes

In the example of asymptotically AdS spacetimes, one then finds that the non trivial asymptotic 
Killing vectors are given by the conformal Killing vectors of the flat metric induced on the boundary. 

For n> 3, one finds so(n-1,2), the exact Kvf of the background and thus no central extension. 

In three dimensions, one finds the pseudo-conformal algebra in 2 dimensions. For the charges one 
then gets 2 copies of the centrally extended Virasoro algebra, with a central charge that involves the 
gravitational coupling G and the cosmological constant l.

In the de Sitter case, essentially the same results hold, except that the boundary is now at timelike 
infinity instead of spatial infinity. 



conformal boundary in asymptotically flat spacetimes: null infinity  

conformal Kvf of n-2 sphere

T (θA)

Y A(θA)

“supertranslations”, 
arbitrary function on n-2 

sphere

bmsn

Central extensions: Asymptotically flat spacetimes

Witten suggested in 2001 that the appropriate boundary from a conformal point of view in 
asymptotically flat spacetimes is null infinity.  If one introduces the retarded time u, future null 
infinity  is still at r goes to infinity for fixed u and fixed angles. 

The non trivial asymptotic Killing vectors turn out to be determined by functions T and Y which 
depend on the angles. The functions Y describe conformal Killing vectors of the n-2 sphere, while 
the functions T depend arbitrarily on the angles and are the so-called supertranslations.  



algebra: semi-direct product with abelian ideal

so(n− 1, 1)n>4: !

ξ̂ = [ξ, ξ′]

n=4: conformal algebra in 2d !

in−2

i2

in−2

so(3, 1)
∪

Bondi-Metzner-Sachs (1962)

Central extensions: Asymptotically flat spacetimes

As an algebra, one finds the semi-direct product of the conformal Kvf’s of the n-2 sphere with the 
abelian ideal of supertranslations. 

In 4 dimensions, one finds the semi-direct product of the 2d conformal algebra with the 
supertranslations. The former contains the Lorentz algebra as a subalgebra. In the original 1962 
derivation by Bondi Metzner & Sachs of the symmetry group of asymptotically flat spacetimes at null 
infinity, they required these trsf to be well defined on the 2-sphere, and found thus only the 
Lorentz algebra and as only symmetry enhancement with respect to the exact case the 
supertranslations, which contain the ordinary translations for particular choices of the function T. It 
would be interesting to study if there are central extensions in the representation by charges of 
bms4. We have not done so, though. 



n=3:  no restriction on Y (θ)

iso(2, 1)

1 copy of Wit algebra acting on i1
∪

charge algebra:

relation to AdS3

Ashtekar et al. Phys. Rev. D55 (1997) 669

similar to contraction between so(2, 2)→ iso(2, 1)

l→∞

Central extensions: Asymptotically flat spacetimes

L±m =
1
2
( lP±m ± J±m)

In 3 dimensions, the conformal Killing equation on the circle imposes no restrictions on the 
function Y(theta), so that the algebra is described by 2 arbitary functions on the circle. After Fourier 
analyzing, the algebra consists of 1 copy of the Wit algebra acting on the functions on the circle in a 
similar way than the Lorentz transformations act on the ordinary translations. In fact the bms3 
algebra has been originally discussed in a paper by Ashtekar et al in 1997. 

What was not done though was the computation of the charge algebra. It turns out to contain a non 
trivial central extension between the two factors. A posteriori, it is clear that this is the only place 
that the central extension as it cannot appear in the one copy of the Wit algebra on account of the 
missing dimensional parameter l in the flat case. The relation to the AdS3 Virasoro case is by a 
contraction similar to the one between so(2,2) and iso(2,1). More precisely, if one introduces a 
parameter of dimension length, there is an extension of the BMS algebra, and after redefining the 
generators, one finds both for the asymptotic symmetries and for the charges, including the central 
ones, the AdS3 results. 

What would be interesting is to analyze in details what this classical central extension can teach us 
about quantum gravity in asymptotically flat 3d spacetimes. Indeed, let me recall that in the AdS3 
case, the central extension was a crucial ingredient that allowed Strominger to use the Cardy 
formula to give a microscopic explanation of black entropy. 



d∗F = 0 −→ ∗F = dB

Magnetic charge as a surface charge ?

Magnetic charge:  

What about dyons?  

Action principle? 

We have seen that electric charge, in the same way as energy-momentum in GR, can be described 
as a surface charge. What about magnetic charge ? By introducing potentials for the dual of F 
instead of F, Magnetic charge can be described in a similar way as a surface charge. But then the 
problem arises for electric charge, or more generally, if you want to describe solutions that carry 
both electric and magnetic charge. What you want in order to do thermodynamics of dyonic black 
holes in the standard way is an action principle that is capable of describing through surface 
charges both electric and magnetic charges. 



Thermodynamics for RN

RN dyon:

infer thermodynamics for parameter variations from purely electric case using duality

Problem: excluded in action based derivations of 1st law for arbitrary variations because of 
string singularity and absence of magnetic potential 

Dyons and duality: 

Consider for instance the Reissner-Nordstrom dyon. It is a black hole solution to the Einstein-
Maxwell equations with both electric and magnetic charge. The thermodynamics for variations of 
parameters can easily be inferred from the well-known purely electric case by using duality. In a 
geometric derivation of the first law,  for discussing uniqueness theorems and in Euclidean 
approaches one needs to derive the first law starting from an action principle. For stationary black 
hole solutions, for instance, the leading contribution to the path integral comes from the classical 
action which reduces to surface terms that are closely related to the surface charges we have 
discussed previously. The case with both electric and magnetic charges is usually excluded in these 
discussions because of the string singularity of the vector potential and the absence of the analog 
of A_0, whose value on the horizon plays the role of chemical potential for electric charge. 



Double potential formalism 

key: existence of 1st order formalism that makes invariance of action under 
duality rotations manifest

Deser & Teitelboim Phys. Rev. D 13 (1976) 1592

in curved space: 

Dyons and duality: 

The idea is then to use a formulation where duality is manifestly a symmetry of the action. Such a 
formulation is well known in the Hamiltonian approach where the electric field is an independent 
variable, the momentum conjugate to the vector potential. A0 is the Lagrange multiplier for Gauss’ 
law, which can be solved in the sourcefree case to yield an action principle purely in terms of the 
transverse fields. 

In terms of these variables, the duality rotations mix transverse electric fields with vector potential 
and indeed leave the action invariant. Hence, in this formulation, duality is a symmetry of the action 
rather than just of the equations of motion. 

By using the standard ADM decomposition of the metric, Deser and Teitelboim have generalized 
this duality invariant action to curved space and also shown that they have a theory for 2 vector 
potentials, since the divergence free electric field can be written in terms of the curl of a second 
vector potential. 



independent rederivation :

Schwarz & Sen Nucl. Phys. B411 (1994) 35

Double potential formalism Dyons and duality: 

In 1993, Schwarz and Sen gave an independent rederivation of these result. They wrote the first 
order action in the above form, collecting the 2 vector potentials in an SO(2) doublet and using only 
the two SO(2) invariant tensor deltaab and epsilonab to write the action. What is really interesting is 
that they also introduce a doublet of scalar potential. They are spurious in their action because 
electic and magnetic fields are transverse, so that the scalar potentials only appear in a total 
derivative. This is the reason why their gauge invariance is not 2 copies of the electromagnetic one 
and why these scalar potential are not really present in their theory at all. 



“complicated” proof of duality between electric and magnetic BH 

Z(β, P ) vs Z(β, φH)

partition function through semi-classical evaluation of Euclidean path integral

additional Legendre transformation needed to compare

Hawking & Ross, Phys. Rev. D52 (1995) 5685

Applications to black hole dualityDyons and duality: 

In the BH context Hawking and Ross have shown that there is a duality between electric and 
magnetic BH. Their proof is somewhat involved in the standard formulation, where duality is not 
manifest. Indeed, they compute the partition function through a semi-classical approximation of the 
Euclidean path integral. In the magnetic case, this is done at fixed charge, but in the electric case at 
fixed potential, so they need an additional  Legendre transformation in order to be able to compare 
both results and show that they are duality symmetric. 



duality symmetric formulation:

Applications to black hole dualityDyons and duality: 

The derivation of this result has been streamlined and generalized in the manifestly duality 
invariant formulation. Charges have been taken into account symmetrically by including non-
dynamical longitudinal spherically symmetric electric and magnetic fields. 



action principle appropriate for fixed charges duality:

BH duality:

Deser, Henneaux, Teitelboim Phys. Rev. D 55 (1997) 826 

Applications to black hole dualityDyons and duality: 

The action principle at fixed charges is then the same as before except for the presence of the non-
dynamical longitudinal fields carrying the charges. The duality of this action then holds if the 
charges are rotated together with the dynamical components of the fields and Hawking and Ross’s 
results of electric and magnetic BH duality boils down to the statement that electromagnetic action 
with zero transverse fields with fixed electric charge and 0 magnetic one is equal to the one with 
zero electric charge and the same magnetic one. 



IM [Aa
µ, Ca; jaµ] =

1
2

∫
d4x

[
εab

(
"Ba · (∂0

"Ab − "∇Ab
0)−

−"∇Ca · "∇Ab
0 + ∂0C

a"∇ · "Ab
)
− "Ba · "Ba + 2εabA

a
µjbµ

]
,

∂µjaµ = 0

Aa
0 : !∇ · !Ba ≡ ∇2Ca = j0a Ca : ∇2Ca = εab("∇ · ∂0

"Ab −∇2Ab
0)

!Aa : −εab∂0
!Bb + !∇× !Ba = εab

!jb.

dynamical longitudinal fields and non spurious scalar potentials 

Aa
µ ≡ (Aµ, Zµ) Ca ≡ (C, Y ) !Ba ≡ ( !B, !E) !Ba = !∇× !Aa + !∇Ca

Extended formulation

New construction:

Dyons and duality: 

external sources:

Maxwell’s equations:

action principle:

{

What has not been done so far, and what we would like for the application to black holes, is the 
following new construction, involving dynamical longitudinal fields and non spurious scalar 
potentials, which make the scalar potentials non spurious. In the case of conserved external 
sources, the correct action principle is the following. Indeed, variation with respect to the scalar 
potential gives the electric and magnetic Gauss law. Variation with respect to the potentials for 
longitudinal fields shows that they are auxiliary and relates them to the scalar potentials. Finally, 
variation with respect to the vector potentials gives Maxwell’s equations for electric and magnetic 
fields. 



Extended formulationDyons and duality: 

jaµ(x) = 4πQaδµ
0 δ3(x) Aa = −εabQb

r
dt, Ca = −Qa

r

δεA
a
µ = ∂µεa, δεC

a = 0gauge invariance :

2 reducibility parameters: magnetic charge is surface integral, no longer a topologically charge

point particle dyon at origin:

no string singularity !

spectrum: additional pure gauge degrees of freedom “quartet” 
besides longitudinal and temporal photon 

For a point particle dyon at the origin, the solution of the EOM is described by two spherically 
symmetric Coulomb type fields.

This action has twice the gauge invariance of the usual Maxwell action. Without sources, the 
associated action is of course equivalent to the standard action because variation with respect to the 
Lagrange multipliers gives two Gauss type constraints forcing the longitudinal fields to be zero. 
Quantum mechanically, when one analyses the spectrum, one sees that all one has done is introduce 
additional pure gauge degrees of freedom, in BRST language, an additional quartet. 

We also see that there are 2 reducibility parameters. In other words, magnetic charge now appears 
not as a topological charge but as a surface charge on a par with electric charge. 



IM [Aa
µ, Ca, gij , N, N i] =

1
8π

∫
d4x

[
(Bai +

√
g

N
∂iCa)εab(∂0A

b
i − ∂iA

b
0)−

− N
√

g
Bi

aBa
i + εab[ijk]N iBajBbk

]
Bai = [ijk]∂jA

a
k +

√
g

N
∂iCa

δ(γαεα) = δzA δ(γαεα)

δzA
− ∂ik

T [0i]
ε [δzA]

żA = σAB δ(γαλα)

δzB

γα = 0
{ =⇒ ∂ik

T [0i]
λ = 0

Extended formulationDyons and duality: 

curved space: 

ds2 = −N2dt2 + N−2dr2 + r2(dθ2 + sin2 θdφ2),

N =

√
1− 2M

r
+

Q2 + P 2

r2
,

RN dyon: 

Aa = −εabQb

r
dt, Ca = −Qa

r

BH thermodynamics in grand canonical ensemble

zA ≡ (gij ,π
ij , Zi, Ai, Y, C) λa ≡ (N,N i, A0, Z0)variables: εa ≡ (ε⊥, εi,λ, µ)

surface integrals:

Regge & Teitelboim, Ann. Phys. 88 (1974) 286

εα = λα = (N, 0, 0, Aa
0)reducibility parameters for RN:

Hamiltonian EOM:

In curved space, we finally have all the ingredients to discuss the thermodynamics of BH dyons in 
the grand canonical ensemble, i.e., with fixed potentials of both kinds instead of fixed charges. The 
RN Nordstrom dyon for instance now appears as a solution without string like singularity but 2 non 
vanishing spherically symmetric scalar potentials that provide the correct longitudinal magnetic and 
electric fields. 

The thermodynamics can then be discussed in your favourite approach. One can for instance work 
out the conserved surface integrals in the Hamiltonian framework. The canonical variables are the 
spatial metric, their momenta, the vector potentials and the potentials for the longitudinal fields. 
The Lagrange multipliers, are, besides lapse and shift, also the scalar potentials. Besides the 
diffeomorphism vectors, there are also electric and magnetic gauge parameters. In the Hamiltonian 
formalism, the time-space components of the surface integrals can be worked out from the 
boundary terms that arise in the variation of the constraints. This is the Regge-Teitelboim 
approach. Reducibility parameters can be shown to be given by the Lagrange multipliers 
themselves. That the corresponding time-space component of the n-2 form is conserved in space 
follows from the general theory. It can also be seen directly in the Hamiltonian approach as follows. 
Because the RN dyon is stationary, the EL derivatives of the constraints contracted with the 
multipliers vanish. If furthermore, the variation satisfies the linearized EOM, which is the case in 
particular for a variation of the parameters, the LHS in the definition of the boundary term vanishes 
as well. 



1
16π

∮

S∞

dn−1xi kT [0i]
λ =

1
16π

∮

Sr+

dn−1xi kT [0i]
λ .

kmat[0i]
ε [δzA] = 4

( ε⊥
√

g
[ijk](EjδZk + BjδAk)− ε⊥

N
(E iδY + BiδC)−

−εi(BkδZk − EkδAk) + BiεkδZk − E iεkδAk −
√

ggil

N
[ljk]εj(BkδY − EkδC)−

−1

2

√
g

N
(λ∂iδY − ∂iλδY − µ∂iδC + ∂iµδC)

)
.

both magnetic and electric contributions !

first law: δM =
κ

8π
δA+ φHδQ + ψHδP

Extended formulationDyons and duality: 

matter part: 

kT [0i]
ε [δzA] = kgrav[0i]

ε [δgij , δπ
ij ] + kmat[0i]

ε [δzA].

Stokes’ theorem: 

explicitly: 

As a consequence of Stokes’ theorem, we thus find that the surface integral is independent of r and 
can be evaluated at infinity or at the horizon. 

Explicitly, the surface integrals split into the standard purely gravitational part and a matter part. 
The matter part of the surface integrals involves both electric and magnetic contributions. For 
instance, the first law for RN dyons now follows directly direct from the equality of the surface 
integral  at infinity or at the horizon.  



Conclusion

new classical central extension in asymptotically flat 3D spacetimes at null 
infinity

construction of an explicitly duality invariant version of electromagnetism 
through addition of pure gauge degrees of freedom 

enhanced gauge invariance

static dyon described by Coulomb fields without string singularities

electric and magnetic charges are surface integrals

applications in the context of thermodynamics of BH dyons

contraction of the ADS case

To conclude, there is a new classical central extension at null infinity in asymptotically flat 3D 
spacetimes, which corresponds to a contraction of the ADS situation. Then, by introducing 
additional pure gauge degrees of freedom, we have the constructed of a local, explicitly duality 
invariant formulation of electromagnetism for which the field of a static dyon is described by  
Coulomb type fields without Dirac-type string singularities. Furthermore, both electric and 
magnetic charges appear as surface integrals. Finally I have tried to show how this formulation can 
for instance be useful in the context of the thermodynamics of black hole dyons. 



duality requires both electric and magnetic sources

action principle for charged 
point particles: Dirac string

monopole field described by 
singular potential

replaced by thin 
solenoid with no 
magnetic charge

Dynamical sources & Dirac stringsDyons and duality: 

An action principle for point particles carrying electric or magnetic charges has been devised by 
Dirac. To generate the monopole field, he first replaces the singular potential by a thin solenoid 
with no net magnetic charge. 



Felsager

+ dynamical string

action principle:

NB: asymmetric treatment of 
both types of sources

Goddard & Olive

Dynamical sources & Dirac stringsDyons and duality: 

He then adds a dynamical string into the theory which brings the magnetic charge and enters 
through a modified field strength in the action. The final action principle then describes the 
electrodynamics of both particles with either type of charge. The Dirac treatment of both types of 
sources is asymmetric, so duality invariance is again not manifest. 



dynamical dyons with Dirac strings: 

generalizes Dirac’s action

Deser, Henneaux, Teitelboim, Gomberoff Nucl. Phys. B520 (1998) 179

Dynamical sources & Dirac stringsDyons and duality: 

To complete the history of the subject, these considerations have been extended to a duality 
invariant theory with dynamical point charges carrying both type charges. Instead of the longitudinal 
fields there are now dynamical strings for both types of charges and the resulting action, with the 
approriate interaction term between vector potentials and generalizes Dirac’s action to the case of 
dyons. 
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∑
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n

∫

Γn

δ4(x− zn)dzµ
n

!αa =
∑

n

qa
n

∫

Σn

δ4(x− yn)
1
2
d!yn × ∧!dyn, !βa =

∑

n

qa
n

∫

Σn

δ4(x− yn)dy0
n ∧ !dyn,

!∇ · !βa = ja0, !∇× !αa − ∂0
!βa = !ja.

IP [zµ
n ] = −

∑

n

∫

Γn

√
−dzµ

ndznµ

yµ
n(σn, τn), yµ

n(0, τn) = zµ
n(τn)

I ′
M [Aa

µ, Ca, yµ
n] + I ′

I [A
a
µ, zµ

n ] + IP [zµ
n ]

I ′M [Aa
µ, Ca, yµ

n] =
1
2

∫
d4x

{
εab

[
( "Ba + "∇Ca)(∂0

"Ab − "∇Ab
0 + "αb)

− "Aa∂0
"βb − "βa"αb − "βa∇−2"∇× ∂0

"βb
]
− "Ba "Ba

}
,

I ′
I [A

a
µ, zµ
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d4x εab
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Aa

0j0b +
1
2

"Aa ·"jb
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zµ
n

ēg − eḡ = 2πn!
standard veto:  string attached to dyon n cannot cross any other dyon 

dynamical point particle dyons need strings for Lorentz force law:

total action:

variation with respect to gives Lorentz force law 

leads to standard quantization condition:

Extended formulationDyons and duality: 

In the case of dynamical dyons, appropriate string terms are needed in order to get the Lorentz 
force law correctly from a variation of the position of dyons and the strings. This is established 
using the standard Dirac veto and leads to the standard quantization condition for dyons.


