.. _oneapi-mkl-rng-poisson_v: oneapi::mkl::rng::poisson_v =========================== Generates Poisson distributed random values with varying mean. .. contents:: :local: :depth: 1 Description *********** The ``oneapi::mkl::rng::poisson_v`` class object is used in the ``oneapi::mkl::rng::generate`` function to provide ``n`` Poisson distributed random numbers ``x``\ :sub:`i`\ (``i`` = 1, ..., ``n``) with distribution parameter ``λi``, where ``λi∈R``; ``λi > 0``. The probability distribution is given by: .. math:: P(X_i = k) = \frac{\lambda_i^k \exp(-\lambda_i)}{k!}, k \in \{0, 1, 2, \ldots \} The cumulative distribution function is as follows: .. math:: F_{\lambda_i} (x) = \begin{cases} \sum_{k = 0}^{\lfloor x \rfloor} \frac{\lambda_i^k e^{-\lambda_i}}{k!}, & x \geq 0 \\ 0, & x < 0 \end{cases}, x \in R .. list-table:: :header-rows: 1 * - Product and Performance Information * - Performance varies by use, configuration and other factors. Learn more at `https://www.intel.com/PerformanceIndex `__. Notice revision #20201201 API *** Syntax ------ .. code-block:: cpp template class poisson_v { public: using method_type = Method; using result_type = IntType; explicit poisson_v(std::vector lambda explicit poisson_v(const param_type& pt); std::vector lambda() const; param_type param() const; void param(const param_type& pt); }; Devices supported: Host, CPU, and GPU Include Files ------------- - ``oneapi/mkl/rng.hpp`` Template Parameters ------------------- .. list-table:: :header-rows: 0 * - ``typename IntType = std::int32_t`` - Type of the produced values. The specific values are as follows: ``std::int32_t`` ``std::uint32_t`` * - ``typename Method = oneapi::mkl::rng::poisson_v_method:: by_default`` - Generation method. The specific values are as follows: ``oneapi::mkl::rng::poisson_v_method::gaussian_icdf_based`` See brief descriptions of the methods in :ref:`distributions-template-parameter-method`. Input Parameters ---------------- .. list-table:: :header-rows: 1 * - Name - Type - Description * - lambda - ``std::vector`` - Array of ``n`` distribution parameters λ.