Intel® oneAPI Math Kernel Library Developer Reference - Fortran
Computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T-sigma*I = L*D*LT.
value = slaneg( n, d, lld, sigma, pivmin, r )
value = dlaneg( n, d, lld, sigma, pivmin, r )
The routine computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T-sigma*I = L*D*LT. This implementation works directly on the factors without forming the tridiagonal matrix T. The Sturm count is also the number of eigenvalues of T less than sigma. This routine is called from ?larb. The current routine does not use the pivmin parameter but rather requires IEEE-754 propagation of infinities and NaNs (NaN stands for 'Not A Number'). This routine also has no input range restrictions but does require default exception handling such that x/0 produces Inf when x is non-zero, and Inf/Inf produces NaN. (For more information see [Marques06]).
INTEGER. The order of the matrix.
REAL for slaneg
DOUBLE PRECISION for dlaneg
Array, DIMENSION (n).
Contains n diagonal elements of the matrix D.
REAL for slaneg
DOUBLE PRECISION for dlaneg
Array, DIMENSION (n-1).
Contains (n-1) elements L(i)*L(i)*D(i).
REAL for slaneg
DOUBLE PRECISION for dlaneg
Shift amount in T-sigma*I = L*D*L**T.
REAL for slaneg
DOUBLE PRECISION for dlaneg
The minimum pivot in the Sturm sequence. May be used when zero pivots are encountered on non-IEEE-754 architectures.
INTEGER.
The twist index for the twisted factorization that is used for the negcount.
INTEGER. The number of negative pivots encountered while factoring.