Intel® oneAPI Math Kernel Library Developer Reference - Fortran
Computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
call slagv2( a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr )
call dlagv2( a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr )
The routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. The routine computes orthogonal (rotation) matrices given by csl, snl and csr, snr such that:
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then
where b11≥b22>0.
REAL for slagv2
DOUBLE PRECISION for dlagv2
Arrays:
a(lda,2) contains the 2-by-2 matrix A;
b(ldb,2) contains the upper triangular 2-by-2 matrix B.
INTEGER. The leading dimension of the array a;
lda≥ 2.
INTEGER. The leading dimension of the array b;
ldb≥ 2.
On exit, a is overwritten by the "A-part" of the generalized Schur form.
On exit, b is overwritten by the "B-part" of the generalized Schur form.
REAL for slagv2
DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar(k) + i*alphai(k))/beta(k) are the eigenvalues of the pencil (A,B), k=1,2 and i = sqrt(-1).
Note that beta(k) may be zero.
REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the left rotation matrix, respectively.
REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.