Intel® oneAPI Math Kernel Library Developer Reference - Fortran

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. The following table lists the BLAS Level 2 routine groups and the data types associated with them.

BLAS Level 2 Routine Groups and Their Data Types

Routine Groups

Data Types

Description

?gbmv

s, d, c, z

Matrix-vector product using a general band matrix

?gemv

s, d, c, z

Matrix-vector product using a general matrix

?ger

s, d

Rank-1 update of a general matrix

?gerc

c, z

Rank-1 update of a conjugated general matrix

?geru

c, z

Rank-1 update of a general matrix, unconjugated

?hbmv

c, z

Matrix-vector product using a Hermitian band matrix

?hemv

c, z

Matrix-vector product using a Hermitian matrix

?her

c, z

Rank-1 update of a Hermitian matrix

?her2

c, z

Rank-2 update of a Hermitian matrix

?hpmv

c, z

Matrix-vector product using a Hermitian packed matrix

?hpr

c, z

Rank-1 update of a Hermitian packed matrix

?hpr2

c, z

Rank-2 update of a Hermitian packed matrix

?sbmv

s, d

Matrix-vector product using symmetric band matrix

?spmv

s, d

Matrix-vector product using a symmetric packed matrix

?spr

s, d

Rank-1 update of a symmetric packed matrix

?spr2

s, d

Rank-2 update of a symmetric packed matrix

?symv

s, d

Matrix-vector product using a symmetric matrix

?syr

s, d

Rank-1 update of a symmetric matrix

?syr2

s, d

Rank-2 update of a symmetric matrix

?tbmv

s, d, c, z

Matrix-vector product using a triangular band matrix

?tbsv

s, d, c, z

Solution of a linear system of equations with a triangular band matrix

?tpmv

s, d, c, z

Matrix-vector product using a triangular packed matrix

?tpsv

s, d, c, z

Solution of a linear system of equations with a triangular packed matrix

?trmv

s, d, c, z

Matrix-vector product using a triangular matrix

?trsv

s, d, c, z

Solution of a linear system of equations with a triangular matrix