Intel® oneAPI Math Kernel Library Developer Reference - Fortran
Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
call slanv2( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )
call dlanv2( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )
The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:
where either
cc = 0 so that aa and dd are real eigenvalues of the matrix, or
aa = dd and bb*cc < 0, so that aa± sqrt(bb*cc) are complex conjugate eigenvalues.
The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs(rt1r) ≥ abs(rt2r).
REAL for slanv2
DOUBLE PRECISION for dlanv2.
On entry, elements of the input matrix.
On exit, overwritten by the elements of the standardized Schur form.
REAL for slanv2
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues.
If the eigenvalues are a complex conjugate pair, rt1i > 0.
REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.