Intel® oneAPI Math Kernel Library Developer Reference - Fortran
Used by sstedc/dstedc. Solves the 2-by-2 secular equation.
call slaed5( i, d, z, delta, rho, dlam )
call dlaed5( i, d, z, delta, rho, dlam )
The routine computes the i-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix
diag(D) + rho*Z * transpose(Z).
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j.
We also assume rho > 0 and that the Euclidean norm of the vector Z is one.
INTEGER. The index of the eigenvalue to be computed;
1 ≤ i ≤ 2.
REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each. The array d contains the original eigenvalues. It is assumed that d(1) < d(2).
The array z contains the components of the updating vector.
REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.
REAL for slaed5
DOUBLE PRECISION for dlaed5
Array, dimension (2).
The vector delta contains the information necessary to construct the eigenvectors.
REAL for slaed5
DOUBLE PRECISION for dlaed5
The computed lambda_i, the i-th updated eigenvalue.