Intel® oneAPI Math Kernel Library Developer Reference - C

?gttrs

Solves a system of linear equations with a tridiagonal coefficient matrix using the LU factorization computed by ?gttrf.

Syntax

lapack_int LAPACKE_sgttrs (int matrix_layout , char trans , lapack_int n , lapack_int nrhs , const float * dl , const float * d , const float * du , const float * du2 , const lapack_int * ipiv , float * b , lapack_int ldb );

lapack_int LAPACKE_dgttrs (int matrix_layout , char trans , lapack_int n , lapack_int nrhs , const double * dl , const double * d , const double * du , const double * du2 , const lapack_int * ipiv , double * b , lapack_int ldb );

lapack_int LAPACKE_cgttrs (int matrix_layout , char trans , lapack_int n , lapack_int nrhs , const lapack_complex_float * dl , const lapack_complex_float * d , const lapack_complex_float * du , const lapack_complex_float * du2 , const lapack_int * ipiv , lapack_complex_float * b , lapack_int ldb );

lapack_int LAPACKE_zgttrs (int matrix_layout , char trans , lapack_int n , lapack_int nrhs , const lapack_complex_double * dl , const lapack_complex_double * d , const lapack_complex_double * du , const lapack_complex_double * du2 , const lapack_int * ipiv , lapack_complex_double * b , lapack_int ldb );

Include Files

Description

The routine solves for X the following systems of linear equations with multiple right hand sides:

A*X = B

if trans='N',

AT*X = B

if trans='T',

AH*X = B

if trans='C' (for complex matrices only).

Before calling this routine, you must call ?gttrf to compute the LU factorization of A.

Input Parameters

matrix_layout

Specifies whether matrix storage layout for array b is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR).

trans

Must be 'N' or 'T' or 'C'.

Indicates the form of the equations:

If trans = 'N', then A*X = B is solved for X.

If trans = 'T', then AT*X = B is solved for X.

If trans = 'C', then AH*X = B is solved for X.

n

The order of A; n 0.

nrhs

The number of right-hand sides, that is, the number of columns in B; nrhs 0.

dl,d,du,du2

Arrays: dl(n -1), d(n), du(n -1), du2(n -2).

The array dl contains the (n - 1) multipliers that define the matrix L from the LU factorization of A.

The array d contains the n diagonal elements of the upper triangular matrix U from the LU factorization of A.

The array du contains the (n - 1) elements of the first superdiagonal of U.

The array du2 contains the (n - 2) elements of the second superdiagonal of U.

b

Array of size max(1, ldb*nrhs) for column major layout and max(1, n*ldb) for row major layout. Contains the matrix B whose columns are the right-hand sides for the systems of equations.

ldb

The leading dimension of b; ldb max(1, n) for column major layout and ldbnrhs for row major layout.

ipiv

Array, size (n). The ipiv array, as returned by ?gttrf.

Output Parameters

b

Overwritten by the solution matrix X.

Return Values

This function returns a value info.

If info=0, the execution is successful.

If info = -i, parameter i had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A + E)x = b, where

|E|  c(n)ε P|L||U|

c(n) is a modest linear function of n, and ε is the machine precision.

If x0 is the true solution, the computed solution x satisfies this error bound:


Equation

where cond(A,x)= || |A-1||A| |x| || / ||x|| ||A-1|| ||A|| = κ(A).

Note that cond(A,x) can be much smaller than κ(A); the condition number of AT and AH might or might not be equal to κ(A).

The approximate number of floating-point operations for one right-hand side vector b is 7n (including n divisions) for real flavors and 34n (including 2n divisions) for complex flavors.

To estimate the condition number κ(A), call ?gtcon.

To refine the solution and estimate the error, call ?gtrfs.

See Also