Developer Reference for Intel® Integrated Performance Primitives
Apply the filter to image columns.
Case 1: Operation on integer data
IppStatus ippiFilterColumnPipeline_<mod>(const Ipp<srcDatatype>** ppSrc, Ipp<dstDatatype>* pDst, int dstStep, IppiSize roiSize, const Ipp<srcDatatype>* pKernel, int kernelSize, int divisor, Ipp8u* pBuffer);
Supported values for mod:
16s_C1R | 16s8u_C1R | 16s8s_C1R | 16u_C1R |
16s_C3R | 16s8u_C3R | 16s8s_C3R | 16u_C3R |
IppStatus ippiFilterColumnPipeline_Low_16s_C1R(const Ipp16s** ppSrc, Ipp16s* pDst, int dstStep, IppiSize roiSize, const Ipp16s* pKernel, int kernelSize, int divisor, Ipp8u* pBuffer);
IppStatus ippiFilterColumnPipeline_Low_16s_C3R(const Ipp16s** ppSrc, Ipp16s* pDst, int dstStep, IppiSize roiSize, const Ipp16s* pKernel, int kernelSize, int divisor, Ipp8u* pBuffer);
Case 2: Operation on floating-point data
IppStatus ippiFilterColumnPipeline_<mod>(const Ipp<datatype>** ppSrc, Ipp<datatype>* pDst, int dstStep, IppiSize roiSize, const Ipp<datatype>* pKernel, int kernelSize, Ipp8u* pBuffer);
Supported values for mod:
32f_C1R |
32f_C3R |
ippcv.h
Headers: ippcore.h, ippvm.h, ipps.h, ippi.h
Libraries: ippcore.lib, ippvm.lib, ipps.lib, ippi.lib
ppSrc |
Double pointer to the source image ROI. |
pDst |
Pointer to the destination image ROI. |
dstStep |
Distance in bytes between starts of consecutive lines in the destination image. |
roiSize |
Size of the destination ROI in pixels. |
pKernel |
Pointer to the strow kernel values. |
kernelSize |
Size of the kernel in pixels. |
divisor |
Value by which the computed result is divided (for operations on integer data only). |
pBuffer |
Pointer to the working buffer. |
This function operates with ROI (see Regions of Interest in Intel IPP).
The function ippiFilterColumnPipeline_Low performs calculation exclusively with the 16s-data, and the input data must be in the range ensuring that the overflow does not occur during calculation and the result can be represented by a 32-bit integer number.
These functions apply the column filter of the separable convolution kernel to the source image pSrc. The filter coefficients are placed in the reversed order. For integer data:
and for floating point data:
Here j = 0, ... roiSize.width-1, i=0,... roiSize.height-1.
The size of the source image is
(roiSize.height + kernelSize - 1) * roiSize.width.
The functions requires the external buffer pBuffer, its size should be previously computed by the functions ippiFilterColumnPipelineGetBufferSize and ippiFilterColumnPipelineGetBufferSize_Low respectively.
ippStsNoErr |
Indicates no error. Any other value indicates an error. |
ippStsNullPtrErr |
Indicates an error condition if one of the specified pointers is NULL. |
ippStsSizeErr |
Indicates an error condition if roiSize has a field with a zero or negative value. |
ippStsStepErr |
Indicates an error condition if srcStep or dstStep is less than roiSize.width * <pixelSize> |
ippStsNotEvenStepErr |
Indicates an error condition if one of the step values is not divisible by 4 for floating-point images, or by 2 for short-integer images. |
ippStsBadArgErr |
Indicates an error condition if divisor is equal to 0. |
/*******************************************************************************
* Copyright 2015 Intel Corporation.
*
*
* This software and the related documents are Intel copyrighted materials, and your use of them is governed by
* the express license under which they were provided to you ('License'). Unless the License provides otherwise,
* you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related
* documents without Intel's prior written permission.
* This software and the related documents are provided as is, with no express or implied warranties, other than
* those that are expressly stated in the License.
*******************************************************************************/
// An example of performing The code example shows how these functions can be used to organize the separable convolution as a step of
// image processing pipeline.implemented with Intel® Integrated Primitives (Intel® IPP) functions :
// ippiFilterRowBorderPipelineGetBufferSize_Low_16s_C1R
// ippiFilterColumnPipeline_Low_16s_C1R
// ippiFilterColumnPipelineGetBufferSize_Low_16s_C1R
// ippiFilterRowBorderPipeline_Low_16s_C1R
#include <stdio.h>
#include "ipp.h"
#define WIDTH 128 /* image width */
#define HEIGHT 64 /* image height */
/* Next two defines are created to simplify code reading and understanding */
#define EXIT_MAIN exitLine: /* Label for Exit */
#define check_sts(st) if((st) != ippStsNoErr) goto exitLine; /* Go to Exit if Intel® IPP function returned status different from ippStsNoErr */
/* Results of ippMalloc() are not validated because Intel® IPP functions perform bad arguments check and will return an appropriate status */
int main(void)
{
IppStatus status = ippStsNoErr;
const Ipp16s **pGet = NULL;
Ipp16s* src = NULL, *dst = NULL;
int kernelSize = 3;
int xAnchor = kernelSize >> 1; /* The anchor value, (0 <= xAnchor < kernelSize) */
Ipp16s pKerX[3] = { 1, 2, 1 }, pKerY[3] = { 1, 0, 1 }; /* The pointer to the kernels */
Ipp16s* pSrc = NULL, *pDst = NULL; /* Pointers to source/destination images */
int srcStep = 0, dstStep = 0; /* Steps, in bytes, through the source/destination images */
IppiSize roiSize = { WIDTH, HEIGHT }; /* Size of source/destination ROI in pixels */
IppiSize roi = { WIDTH, 1 }; /* Size of destination ROI in pixels */
int divisor = 1; /* The value to divide output pixels by */
Ipp8u borderValue = 0;
Ipp8u *pBufRow = NULL, *pBufCol = NULL;/* Pointer to the work buffer */
int sizeRow = 0, sizeCol = 0; /* Common work buffer size */
int todo = roiSize.height, bufLen;
int mStep = (roiSize.width + 7)&(~7);
int sStep = 0, dStep = 0;
bufLen = mStep * 3 *sizeof(Ipp16s) + 4*sizeof(Ipp16s*);
pGet = (const Ipp16s**)ippsMalloc_8u(bufLen);
pSrc = ippiMalloc_16s_C1(roiSize.width, roiSize.height, &srcStep);
pDst = ippiMalloc_16s_C1(roiSize.width, roiSize.height, &dstStep);
dst = pDst; src = pSrc;
sStep = srcStep >> 1, dStep = dstStep >> 1;
pGet[0] = pGet[1] = (Ipp16s*)(pGet + 4);
pGet[2] = pGet[1] + mStep;
pGet[3] = pGet[2] + mStep;
check_sts( status = ippiFilterRowBorderPipelineGetBufferSize_Low_16s_C1R(roiSize, 3, &sizeRow) )
check_sts( status = ippiFilterColumnPipelineGetBufferSize_Low_16s_C1R(roiSize, 3, &sizeCol) )
pBufRow = ippsMalloc_8u(sizeRow);
pBufCol = ippsMalloc_8u(sizeCol);
check_sts( status = ippiFilterRowBorderPipeline_Low_16s_C1R(pSrc, srcStep, ( Ipp16s**)pGet, roi, pKerX, kernelSize, xAnchor, ippBorderRepl, borderValue, divisor, pBufRow) )
todo--;
if (todo==0)
{
pGet[2] = pGet[0];
}
else {
pGet[2] = pGet[0] + mStep; pGet[3] = pGet[2] + mStep;
for (; todo>0;src += sStep, dst += dStep, todo--)
{
check_sts( status = ippiFilterRowBorderPipeline_Low_16s_C1R(src, srcStep, (Ipp16s**)(pGet + 2), roi, pKerX, kernelSize, xAnchor, ippBorderRepl, borderValue, divisor, pBufRow) )
check_sts( status = ippiFilterColumnPipeline_Low_16s_C1R(pGet, dst, dstStep, roi, pKerY, kernelSize, divisor, pBufCol) )
pGet[0] = pGet[1]; pGet[1] = pGet[2]; pGet[2] = pGet[3]; pGet[3] = pGet[0];
}
}
check_sts( status = ippiFilterColumnPipeline_Low_16s_C1R(pGet, dst, dstStep, roi, pKerY, kernelSize, divisor, pBufCol) )
EXIT_MAIN
ippiFree(pSrc);
ippsFree(pBufRow);
ippsFree(pBufCol);
ippiFree(pDst);
printf("Exit status %d (%s)\n", (int)status, ippGetStatusString(status));
return (int)status;
}