p?larzc

Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.

Syntax

call pclarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

call pzlarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

Include Files

Description

The p?larzc routine applies a complex elementary reflector QH to a complex m-by-n distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the form

Q = i-tau*v*v',

where tau is a complex scalar and v is a complex vector.

If tau = 0, then Q is taken to be the unit matrix.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Input Parameters

side

(global) CHARACTER.

if side = 'L': form QH*sub(C);

if side = 'R': form sub(C)*QH .

m

(global) INTEGER.

The number of rows to be operated on, that is, the number of rows of the distributed submatrix sub(C). (m 0).

n

(global) INTEGER.

The number of columns to be operated on, that is, the number of columns of the distributed submatrix sub(C). (n 0).

l

(global) INTEGER.

The columns of the distributed submatrix sub(A) containing the meaningful part of the Householder reflectors.

If side = 'L', ml 0,

if side = 'R', n l 0.

v

(local).

COMPLEX for pclarzc

COMPLEX*16 for pzlarzc.

Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the local pieces of the distributed vectors v representing the Householder transformation Q,

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,

v(iv, jv:jv+l-1) if side = 'L' and incv = m_v,

v(iv:iv+l-1, jv) if side = 'R' and incv = 1,

v(iv, jv:jv+l-1) if side = 'R' and incv = m_v.

The vector v in the representation of Q. v is not used if tau = 0.

iv, jv

(global) INTEGER.

The row and column indices in the global array V indicating the first row and the first column of the submatrix sub(V), respectively.

descv

(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.

incv

(global). INTEGER.

The global increment for the elements of v. Only two values of incv are supported in this version, namely 1 and m_v.

incv must not be zero.

tau

(local)

COMPLEX for pclarzc

COMPLEX*16 for pzlarzc.

Array, DIMENSIONLOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors.

tau is tied to the distributed matrix V.

c

(local).

COMPLEX for pclarzc

COMPLEX*16 for pzlarzc.

Pointer into the local memory to an array of DIMENSION(lld_c, LOCc(jc+n-1) ), containing the local pieces of sub(C).

ic, jc

(global) INTEGER.

The row and column indices in the global array C indicating the first row and the first column of the submatrix sub(C), respectively.

descc

(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix C.

work

(local).

If incv = 1,
  if side = 'L' ,
    if ivcol = iccol,
      lwork nqc0
    else
      lwork  mpc0 + max(1, nqc0)
    end if
  else if side = 'R' ,
    lwork nqc0 + max(max(1, mpc0), numroc(numroc(n+icoffc, nb_v, 0, 0, npcol),
           nb_v, 0, 0, lcmq))
  end if
else if incv = m_v,
  if side = 'L' ,
    lworkmpc0 + max(max(1, nqc0), numroc(numroc(m+iroffc, mb_v, 0, 0, nprow),
           mb_v, 0, 0, lcmp))
  else if side = 'R',
    if ivrow = icrow,
      lwork mpc0
    else
      lworknqc0 + max(1, mpc0)
    end if
  end if
         end if

Here lcm is the least common multiple of nprow and npcol;

lcm = ilcm(nprow, npcol), lcmp = lcm/nprow, lcmq= lcm/npcol,

iroffc = mod(ic-1, mb_c), icoffc= mod(jc-1, nb_c),

icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),

iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),

mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),

nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions;

myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

c

(local).

On exit, sub(C) is overwritten by the QH*sub(C) if side = 'L', or sub(C)*QH if side = 'R'.


Submit feedback on this help topic