Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.
call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
The p?larfb routine applies a real/complex block reflector Q or its transpose QT/conjugate transpose QH to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or the right.
(global).CHARACTER.
if side = 'L': apply Q or QT for real flavors (QH for complex flavors) from the Left;
if side = 'R': apply Q or QTfor real flavors (QH for complex flavors) from the Right.
(global).CHARACTER.
if trans = 'N': no transpose, apply Q;
for real flavors, if trans='T': transpose, apply QT
for complex flavors, if trans = 'C': conjugate transpose, apply QH;
(global) CHARACTER. Indicates how Q is formed from a product of elementary reflectors.
if direct = 'F': Q = H(1)*H(2)*...*H(k) (Forward)
if direct = 'B': Q = H(k)*...*H(2)*H(1) (Backward)
(global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev = 'C': Columnwise
if storev = 'R': Rowwise.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix sub(C). (m ≥ 0).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix sub(C). (n ≥ 0).
(global) INTEGER.
The order of the matrix T.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION
( lld_v, LOCc(jv+k-1)) if storev = 'C',
(lld_v, LOCc(jv+m-1)) if storev = 'R' and side = 'L',
(lld_v, LOCc(jv+n-1) ) if storev = 'R' and side = 'R'.
It contains the local pieces of the distributed vectors V representing the Householder transformation.
if storev = 'C' and side = 'L', lld_v ≥ max(1,LOCr(iv+m-1));
if storev = 'C' and side = 'R', lld_v ≥ max(1,LOCr(iv+n-1));
if storev = 'R', lld_v ≥ LOCr(jv+k-1).
(global) INTEGER.
The row and column indices in the global array V indicating the first row and the first column of the submatrix sub(V), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION(lld_c, LOCc(jc+n-1) ), containing the local pieces of sub(C).
(global) INTEGER. The row and column indices in the global array C indicating the first row and the first column of the submatrix sub(C), respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix C.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).
If storev = 'C',
if side = 'L',
lwork ≥ ( nqc0 + mpc0 ) * k
else if side = 'R',
lwork ≥ ( nqc0 + max( npv0 + numroc( numroc( n +
icoffc, nb_v, 0, 0, npcol ), nb_v, 0, 0, lcmq ),
mpc0 ) ) * k
end if
else if storev = 'R' ,
if side = 'L' ,
lwork≥ ( mpc0 + max( mqv0 + numroc( numroc( m +
iroffc, mb_v, 0, 0, nprow ), mb_v, 0, 0, lcmp ),
nqc0 ) ) * k
else if side = 'R',
lwork ≥ ( mpc0 + nqc0 ) * k
end if
end if,
where
lcmq = lcm / npcol with lcm = iclm( nprow, npcol ),
iroffv = mod( iv-1, mb_v ), icoffv = mod( jv-1, nb_v ),
ivrow = indxg2p( iv, mb_v, myrow, rsrc_v, nprow ),
ivcol = indxg2p( jv, nb_v, mycol, csrc_v, npcol ),
MqV0 = numroc( m+icoffv, nb_v, mycol, ivcol, npcol ),
NpV0 = numroc( n+iroffv, mb_v, myrow, ivrow, nprow ),
iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
MpC0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NpC0 = numroc( n+icoffc, mb_c, myrow, icrow, nprow ),
NqC0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Array, DIMENSION( mb_v, mb_v) if storev = 'R', and ( nb_v, nb_v) if storev = 'C'. The triangular matrix t is the representation of the block reflector.
(local).
On exit, sub(C) is overwritten by the Q*sub(C), or Q'*sub(C), or sub(C)*Q, or sub(C)*Q'. Q' is transpose (conjugate transpose) of Q.